Skip to main content
Antimicrobial Agents and Chemotherapy logoLink to Antimicrobial Agents and Chemotherapy
. 1973 Aug;4(2):125–132. doi: 10.1128/aac.4.2.125

Use of Escherichia coli Mutants to Evaluate Purines, Purine Nucleosides, and Analogues

Donald L Hill 1, Robert F Pittillo 1
PMCID: PMC444517  PMID: 4598216

Abstract

Of 142 purines, purine nucleosides, and analogues tested for inhibition of growth of Escherichia coli B Hill, 45 were active. Of these, 27 were evaluated for inhibition of other E. coli lines, including those resistant to 6-thioguanine, 2-fluoroadenosine, 2,6-diaminopurine, or 6-mercaptopurine. Most toxic to the parent lines were 2-fluoroadenosine, 2-fluoroadenine, 2-fluoro-5′-deoxyadenosine, adenosine, 6-thioguanosine, 6-thioguanine, 6-mercaptopurine, 6-mercaptopurine ribonucleoside, 2-azaadenine, 2′-deoxyinosine, 6-N-aminoadenine, and inosine. Hypoxanthine was strongly inhibitory only to E. coli B Hill. Evidence regarding the substrate specificity of the three purine phosphoribosyltransferases was obtained by assaying for these enzymes in extracts of the various cell lines and by cross-resistance studies. The line selected for resistance to 6-thioguanine had low guanine phosphoribosyltransferase activity (guanosine monophosphate: pyrophosphate phosphoribosyltransferase, EC 2.4.2.8) and was deficient in activity for xanthine and 6-thioguanine. The lines selected for resistance to 2-fluoroadenosine and 2,6-diaminopurine were deficient in adenine phosphoribosyltransferase activity (adenosine monophosphate: pyrophosphate phosphoribosyltransferase, EC 2.4.2.7), and that selected for resistance to 6-mercaptopurine had low hypoxanthine phosphoribosyltransferase activity and undetectable activity with 6-mercaptopurine as a substrate. Purine, 6-methylpurine, 2-fluoroadenine, 2,6-diaminopurine, and 2-azaadenine were classified as adenine analogues; 6-mercaptopurine and 8-aza-2,6-diaminopurine, as hypoxanthine analogues; and 6-thioguanine and 2-amino-6-chloropurine, as analogues of guanine. The inhibition of bacterial growth by hypoxanthine, inosine, 2′-deoxyinosine, or adenosine was prevented by small amounts of thiamine or by relatively high concentrations of either cytidine or uridine. Cytidine also reversed the inhibition by some purine and purine ribonucleoside analogues. Orotate phosphoribosyltransferase (OMP: pyrophosphate phosphoribosyltransferase, EC 2.4.2.10), a possible site of action for these compounds, was not inhibited directly by the toxic agents.

Full text

PDF
125

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Arnold W. J., Kelley W. N. Human hypoxanthine-guanine phosphoribosyltransferase. Purification and subunit structure. J Biol Chem. 1971 Dec 10;246(23):7398–7404. [PubMed] [Google Scholar]
  2. BROCKMAN R. W., SPARKS C., HUTCHISON D. J., SKIPPER H. E. A mechanism of resistance to 8-azaguanine. I. Microbiological studies on the metabolism of purines and 8 azapurines. Cancer Res. 1959 Feb;19(2):177–188. [PubMed] [Google Scholar]
  3. Bennett L. L., Jr, Adamson D. J. Reversal of the growth inhibitory effects of 6-methylthiopurine ribonucleoside. Biochem Pharmacol. 1970 Jun;19(6):2172–2176. doi: 10.1016/0006-2952(70)90318-7. [DOI] [PubMed] [Google Scholar]
  4. Bennett L. L., Jr, Vail M. H., Allan P. W., Shaddix S. C. Use of enzyme-deficient cell culture lines as a biochemical screen for study of purines, purine nucleosides and related compounds. Biochem Pharmacol. 1973 May 15;22(10):1221–1227. doi: 10.1016/0006-2952(73)90239-6. [DOI] [PubMed] [Google Scholar]
  5. Benson C. E., Love S. H., Remy C. N. Inhibition of de novo purine biosynthesis and interconversion by 6-methylpurine in Escherichia coli. J Bacteriol. 1970 Mar;101(3):872–880. doi: 10.1128/jb.101.3.872-880.1970. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Chou J. Y., Martin R. G. Purine phosphoribosyltransferases of Salmonella typhimurium. J Bacteriol. 1972 Nov;112(2):1010–1013. doi: 10.1128/jb.112.2.1010-1013.1972. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Coggin J. H., Loosemore M., Martin W. R. Metabolism of 6-Mercaptopurine by Resistant Escherichia coli Cells. J Bacteriol. 1966 Aug;92(2):446–454. doi: 10.1128/jb.92.2.446-454.1966. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. De Groodt A., Whitehead E. P., Heslot H., Poirier L. The substrate specificity of purine phosphoribosyltransferases in Schizosaccharomyces pombe. Biochem J. 1971 May;122(4):415–420. doi: 10.1042/bj1220415. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Fleysher M. H., Hakala M. T., Bloch A., Hall R. H. Synthesis and biological activity of some N6-alkyladenosines. J Med Chem. 1968 Jul;11(4):717–720. doi: 10.1021/jm00310a018. [DOI] [PubMed] [Google Scholar]
  10. Gots J. S., Benson C. E., Shumas S. R. Genetic separation of hypoxanthine and guanine-xanthine phosphoribosyltransferase activities by deletion mutations in Salmonella typhimurium. J Bacteriol. 1972 Nov;112(2):910–916. doi: 10.1128/jb.112.2.910-916.1972. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Gray C. H., Tatum E. L. X-Ray Induced Growth Factor Requirements in Bacteria. Proc Natl Acad Sci U S A. 1944 Dec 15;30(12):404–410. doi: 10.1073/pnas.30.12.404. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. HOWELLS D. J., PLAUT G. W. BIOSYNTHESIS OF RIBOFLAVINE BY A PURINE-REQUIRING MUTANT STRAIN OF ESCHERICHIA COLI. Biochem J. 1965 Mar;94:755–759. doi: 10.1042/bj0940755. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Henderson J. F. Hypoxanthine-guanine phosphoribosyltransferase: further evidence for the identity of the binding sites for hypoxanthine and guanine. Can J Biochem. 1969 Jan;47(1):69–71. doi: 10.1139/o69-012. [DOI] [PubMed] [Google Scholar]
  14. Hill D. L. Hypoxanthine phosphoribosyltransferase and guanine metabolism of adenocarcinoma 755 cells. Biochem Pharmacol. 1970 Feb;19(2):545–557. doi: 10.1016/0006-2952(70)90211-x. [DOI] [PubMed] [Google Scholar]
  15. Hill D. L., Straight S., Allan P. W. Use of Tetrahymena pyriformis to evaluate the effects of purine and pyrimidine analogs. J Protozool. 1970 Nov;17(4):619–623. doi: 10.1111/j.1550-7408.1970.tb04739.x. [DOI] [PubMed] [Google Scholar]
  16. Hill D. L., Straight S. Effects of 6-N-allyladenosine on bacterial and mammalian cells. Mol Pharmacol. 1970 Sep;6(5):468–473. [PubMed] [Google Scholar]
  17. Hochstadt-Ozer J., Stadtman E. R. The regulation of purine utilization in bacteria. III. The involvement of purine phosphoribosyltransferases in the uptake of adenine and other nucleic acid precursors by intact resting cells. J Biol Chem. 1971 Sep 10;246(17):5312–5320. [PubMed] [Google Scholar]
  18. KALLE G. P., GOTS J. S. Alterations in purine nucleotide pyrophosphorylases and resistance to purine analogues. Biochim Biophys Acta. 1961 Oct 14;53:166–173. doi: 10.1016/0006-3002(61)90803-4. [DOI] [PubMed] [Google Scholar]
  19. KOCH A. L., VALLEE G. The properties of adenosine deaminase and adenosine nucleoside phosphorylase in extracts of Escherichia coli. J Biol Chem. 1959 May;234(5):1213–1218. [PubMed] [Google Scholar]
  20. Kelley W. N., Fox I. H., Wyngaarden J. B. Regulation of purine biosynthesis in cultured human cells. I. Effects of orotic acid. Biochim Biophys Acta. 1970 Sep 22;215(3):512–516. doi: 10.1016/0304-4165(70)90101-7. [DOI] [PubMed] [Google Scholar]
  21. Kelley W. N., Rosenbloom F. M., Henderson J. F., Seegmiller J. E. Xanthine phosphoribosyltransferase in man: relationship to hypoxanthine-guanine phosphoribosyltransferase. Biochem Biophys Res Commun. 1967 Aug 7;28(3):340–345. doi: 10.1016/0006-291x(67)90315-4. [DOI] [PubMed] [Google Scholar]
  22. Krenitsky T. A., Neil S. M., Miller R. L. Guanine and xanthine phosphoribosyltransfer activities of Lactobacillus casei and Escherichia coli. Their relationship to hypoxanthine and adenine phosphoribosyltransfer activities. J Biol Chem. 1970 May 25;245(10):2605–2611. [PubMed] [Google Scholar]
  23. Krenitsky T. A., Papaioannou R., Elion G. B. Human hypoxanthine phosphoribosyltransferase. I. Purification, properties, and specificity. J Biol Chem. 1969 Mar 10;244(5):1263–1270. [PubMed] [Google Scholar]
  24. Martin W. R., Yang R. R. Inosine and guanine phosphoribosyltransferase in Escherichia coli. Biochem Biophys Res Commun. 1972 Sep 26;48(6):1641–1648. doi: 10.1016/0006-291x(72)90903-5. [DOI] [PubMed] [Google Scholar]
  25. Miller R. L., Bieber A. L. Substrate binding specificity and properties of inosine monophosphate: pyrophosphate phosphoribosyltransferase (EC 2.4.2.8) from Brewers yeast. Biochemistry. 1969 Feb;8(2):603–608. doi: 10.1021/bi00830a021. [DOI] [PubMed] [Google Scholar]
  26. Miller R. L., Ramsey G. A., Krenitsky T. A., Elion G. B. Guanine phosphoribosyltransferase from Escherichia coli, specificity and properties. Biochemistry. 1972 Dec 5;11(25):4723–4731. doi: 10.1021/bi00775a014. [DOI] [PubMed] [Google Scholar]
  27. Newell P. C., Tucker R. G. Biosynthesis of the pyrimidine moiety of thiamine. A new route of pyrimidine biosynthesis involving purine intermediates. Biochem J. 1968 Jan;106(1):279–287. doi: 10.1042/bj1060279. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. SLECHTA L. Studies on the mode of action of psicofuranine. Biochem Pharmacol. 1960 Oct;5:96–107. doi: 10.1016/0006-2952(60)90013-7. [DOI] [PubMed] [Google Scholar]
  29. Schnebli H. P., Hill D. L., Bennett L. L., Jr Purification and properties of adenosine kinase from human tumor cells of type H. Ep. No. 2. J Biol Chem. 1967 May 10;242(9):1997–2004. [PubMed] [Google Scholar]
  30. WAY J. L., PARKS R. E., Jr Enzymatic synthesis of 5'-phosphate nucleotides of purine analogues. J Biol Chem. 1958 Mar;231(1):467–480. [PubMed] [Google Scholar]

Articles from Antimicrobial Agents and Chemotherapy are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES