Skip to main content
Antimicrobial Agents and Chemotherapy logoLink to Antimicrobial Agents and Chemotherapy
. 1973 Oct;4(4):455–458. doi: 10.1128/aac.4.4.455

Use of the 295- to 300-Nanometer Circular Dichroism Trough of Ribonucleic Acid to Study Helix Winding: Effect of Acridine Orange

Betty-Ann Hoener 1, Theodore D Sokoloski 1, Lester A Mitscher 1
PMCID: PMC444576  PMID: 4791307

Abstract

Acridine orange decreases the amplitude of the 295-nm circular dichroism (CD) trough of ribosomal ribonucleic acid (rRNA) where the trough has been related to coil character. Since acridine orange is known from earlier work to intercalate between base pairs of nucleic acids, causing an unwinding of the coil, and our studies show a decrease in the 295-nm CD trough, it appears that CD measurements may be used to observe relative unwinding of rRNA. Under similar solution conditions, melting temperatures with acridine orange indicate no significant change in the stabilization of rRNA structure by acridine orange. Hypochromicity studies show no increase in the percent base pairing in rRNA when 0.1 M tris(hydroxymethyl)aminomethane (pH 7.6) with 1.35 M KCl is used. These results indicate that CD changes in the amplitude of the 295-nm trough of rRNA are related to helix winding in rRNA.

Full text

PDF
455

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Armstrong R. W., Kurucsev T., Strauss U. P. The interaction between acridine dyes and deoxyribonucleic acid. J Am Chem Soc. 1970 May 20;92(10):3174–3181. doi: 10.1021/ja00713a041. [DOI] [PubMed] [Google Scholar]
  2. Bellemare G., Cedergren R. J., Cousineau G. H. Comparison of the physical and optical properties of Escherichia coli and sea urchin 5 s ribosomal RNA's. J Mol Biol. 1972 Jul 28;68(3):445–454. doi: 10.1016/0022-2836(72)90098-8. [DOI] [PubMed] [Google Scholar]
  3. Blake A., Peacocke A. R. The interaction of aminocridines with nucleic acids. Biopolymers. 1968;6(9):1225–1253. doi: 10.1002/bip.1968.360060902. [DOI] [PubMed] [Google Scholar]
  4. Boedtker H. The reaction of ribonucleic acid with formaldehyde. I. Optical absorbance studies. Biochemistry. 1967 Sep;6(9):2718–2727. doi: 10.1021/bi00861a011. [DOI] [PubMed] [Google Scholar]
  5. Cantor C. R. The extent of base pairing in 5S ribosomal RNA. Proc Natl Acad Sci U S A. 1968 Feb;59(2):478–483. doi: 10.1073/pnas.59.2.478. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. LERMAN L. S. Structural considerations in the interaction of DNA and acridines. J Mol Biol. 1961 Feb;3:18–30. doi: 10.1016/s0022-2836(61)80004-1. [DOI] [PubMed] [Google Scholar]
  7. Resnik R. A., Yamaoka K. Extrinsic Cotton effects of acridine orange bound to native, denatured and formylated deoxyribonucleic acid. Biochem Biophys Res Commun. 1970 Nov 25;41(4):952–957. doi: 10.1016/0006-291x(70)90176-2. [DOI] [PubMed] [Google Scholar]
  8. Sarkar P. K., Wells B., Yang J. T. A new circular dichroic band in nucleic acids and ribosomes. J Mol Biol. 1967 May 14;25(3):563–566. doi: 10.1016/0022-2836(67)90208-2. [DOI] [PubMed] [Google Scholar]
  9. Waring M. J. Complex formation between ethidium bromide and nucleic acids. J Mol Biol. 1965 Aug;13(1):269–282. doi: 10.1016/s0022-2836(65)80096-1. [DOI] [PubMed] [Google Scholar]

Articles from Antimicrobial Agents and Chemotherapy are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES