Abstract
Myxococcus xanthus produced an antibiotic during the end of its exponential growth phase which was capable of inhibiting growth of several gram-positive and gram-negative bacteria. The antibiotic was bactericidal to growing cultures only; chloramphenicol inhibited the bactericidal action of the antibiotic. Upon addition of the antibiotic to Escherichia coli B, deoxyribonucleic acid and ribonucleic acid as well as turbidity of the culture continued to increase even after the viable count decreased; the culture lysed about 60 min after addition of sufficient concentrations of the antibiotic. Spheroplasts could be prepared if the antibiotic was added to a culture growing in the presence of high concentrations of sucrose and MgSO4. Mutants of M. xanthus FB which are incapable of fruiting body formation or glycerol-induced myxospore formation also produced the antibiotic. A mutant of E. coli resistant to the purified antibiotic was isolated in order to study the role of the antibiotic in the predatory behavior of myxococci.
Full text
PDF






Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Bacon K., Rosenberg E. Ribonucleic acid synthesis during morphogenesis in Myxococcus xanthus. J Bacteriol. 1967 Dec;94(6):1883–1889. doi: 10.1128/jb.94.6.1883-1889.1967. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Behki R. M., Lesley S. M. Deoxyribonucleic acid degradation and the lethal effect by myxin in Escherichia coli. J Bacteriol. 1972 Jan;109(1):250–261. doi: 10.1128/jb.109.1.250-261.1972. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Dworkin M. Biology of the myxobacteria. Annu Rev Microbiol. 1966;20:75–106. doi: 10.1146/annurev.mi.20.100166.000451. [DOI] [PubMed] [Google Scholar]
- Lesley S. M., Behki R. M. Mode of action of myxin on Escherichia coli. J Bacteriol. 1967 Dec;94(6):1837–1845. doi: 10.1128/jb.94.6.1837-1845.1967. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Lesley S. M., Behki R. M. Recovery of metabolic activity in Escherichia coli following limited exposure to myxin. Can J Microbiol. 1971 Oct;17(10):1327–1333. doi: 10.1139/m71-212. [DOI] [PubMed] [Google Scholar]
- Loo Y. H., Skell P. S., Thornberry H. H., Ehrlich J., McGuire J. M., Savage G. M., Sylvester J. C. Assay of Streptomycin by the Paper-Disc Plate Method. J Bacteriol. 1945 Dec;50(6):701–709. [PMC free article] [PubMed] [Google Scholar]
- NOREN B., RAPER K. B. Antibiotic activity of myxobacteria in relation to their bacteriolytic capacity. J Bacteriol. 1962 Jul;84:157–162. doi: 10.1128/jb.84.1.157-162.1962. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Oxford A. E. Observations Concerning the Growth and Metabolic Activities of Myxococci in a Simple Protein-free Liquid Medium. J Bacteriol. 1947 Feb;53(2):129–138. doi: 10.1128/jb.53.2.129-138.1947. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Peterson E. A., Gillespie D. C., Cook F. D. A wide-spectrum antibiotic produced by a species of Sorangium. Can J Microbiol. 1966 Apr;12(2):221–230. doi: 10.1139/m66-031. [DOI] [PubMed] [Google Scholar]
- Rosenberg E., Katarski M., Gottlieb P. Deoxyribonucleic acid synthesis during exponential growth and microcyst formation in Myxococcus xanthus. J Bacteriol. 1967 Apr;93(4):1402–1408. doi: 10.1128/jb.93.4.1402-1408.1967. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Sudo S. Z., Dworkin M. Comparative biology of prokaryotic resting cells. Adv Microb Physiol. 1973;9:153–224. doi: 10.1016/s0065-2911(08)60378-1. [DOI] [PubMed] [Google Scholar]
- Sudo S., Dworkin M. Bacteriolytic enzymes produced by Myxococcus xanthus. J Bacteriol. 1972 Apr;110(1):236–245. doi: 10.1128/jb.110.1.236-245.1972. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Witkin S. S., Rosenberg E. Induction of morphogenesis by methionine starvation in Myxococcus xanthus: polyamine control. J Bacteriol. 1970 Sep;103(3):641–649. doi: 10.1128/jb.103.3.641-649.1970. [DOI] [PMC free article] [PubMed] [Google Scholar]
