Skip to main content
Antimicrobial Agents and Chemotherapy logoLink to Antimicrobial Agents and Chemotherapy
. 1974 Oct;6(4):418–421. doi: 10.1128/aac.6.4.418

Ampicillin Resistance of Shigella sonnei

J T Smith 1,2,3, D A Bremner 1,2,3, Naomi Datta 1,2,3
PMCID: PMC444663  PMID: 4157337

Abstract

The ampicillin resistance of clinical isolates of Shigella sonnei is due to β-lactamase production. Two kinds of resistance are found: low level, nontransmissible; and high level, tranmissible. The nontransmissible type of resistance results from a chromosomal mutation which increases the production of a β-lactamase that hydrolyses cephalosporins relatively rapidly and gives cephalothin resistance. The transmissible type of resistance is due to an R factor mediating the synthesis of a different β-lactamase that does not significantly hydrolyze cephalosporins or confer cephalothin resistance. One clinical isolate is shown to possess simultaneously both these mechanisms of ampicillin resistance.

Full text

PDF
418

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Boman H. G., Eriksson-Grennberg K. G., Normark S., Matsson E. Resistance of Escherichia coli to penicillins. IV. Genetic study of mutants resistant to D,L-ampicillin concentrations o 100 mu-g-ml. Genet Res. 1968 Oct;12(2):169–185. doi: 10.1017/s0016672300011782. [DOI] [PubMed] [Google Scholar]
  2. Coetzee J. N., Datta N., Hedges R. W. R factors from Proteus rettgeri. J Gen Microbiol. 1972 Oct;72(3):543–552. doi: 10.1099/00221287-72-3-543. [DOI] [PubMed] [Google Scholar]
  3. Dale J. W., Smith J. T. The purification and properties of the -lactamase specified by the resistance factor R-1818 in Escherichia coli and Proteus mirabilis. Biochem J. 1971 Jul;123(4):493–500. doi: 10.1042/bj1230493. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Davies J. R., Farrant W. N., Tomlinson A. J. Further studies on the antibiotic resistance of Shigella sonnei. I. Transferable antibiotic resistance. J Hyg (Lond) 1968 Sep;66(3):471–477. doi: 10.1017/s0022172400041334. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Davies J. R., Farrant W. N., Uttley A. H. Antibiotic resistance of Shigella sonnei. Lancet. 1970 Dec 5;2(7684):1157–1159. doi: 10.1016/s0140-6736(70)90341-7. [DOI] [PubMed] [Google Scholar]
  6. Hedges R. W., Datta N., Kontomichalou P., Smith J. T. Molecular specificities of R factor-determined beta-lactamases: correlation with plasmid compatibility. J Bacteriol. 1974 Jan;117(1):56–62. doi: 10.1128/jb.117.1.56-62.1974. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. SMITH J. T. Penicillinase and ampicillin resistance in a strain of Escherichia coli. J Gen Microbiol. 1963 Feb;30:299–306. doi: 10.1099/00221287-30-2-299. [DOI] [PubMed] [Google Scholar]
  8. Scrimgeour G. The ampicillin resistance of Shigella sonnei: its epidemiological value. Mon Bull Minist Health Public Health Lab Serv. 1966 Dec;25:278–281. [PubMed] [Google Scholar]
  9. Smith J. T. R-factor gene expression gram-negative bacteria. J Gen Microbiol. 1969 Jan;55(1):109–120. doi: 10.1099/00221287-55-1-109. [DOI] [PubMed] [Google Scholar]

Articles from Antimicrobial Agents and Chemotherapy are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES