Abstract
After the growth of Paecilomyces persicinus P-10 in a glucose-peptone medium, filtrates were collected and analyzed for antibiotic antivity. Activities against Salmonella gallinarum ATCC 3030 and Alcaligenes faecalis ATCC 8750 (penicillin N-resistant strain) were obtained. Part of the former activity was readily inactivated by penicillinase. The fraction active against A. faecalis was isolated by passage through Amberlite XAD-2 and Amberlite IRA-68. The powder eventually obtained was subjected to paper chromatography followed by bioautography, and the activity obtained corresponded to that of a sample of cephalosporin C. Thin-layer chromatography was also employed to verify the presence of cephalosporin C in the P-10 powder. The active solids were further purified by means of paper chromatography in a solvent system consisting of n-butanol-acetic acid-water (60:15:25, vol/vol). The material obtained from this procedure yielded an infrared absorption spectrum identical to that of cephalosporin C. Similarly, the ultraviolet absorption of the purified preparation coincided with that of cephalosporin C. Exposure of the purified solids to cephalosporinase resulted in rapid inactivation of the antibiotic. In addition to penicillin N and cephalosporin C, filtrates of P. persicinus P-10 also contained deacetylcephalosporin C, deacetoxycephalosporin C, and cephalosporin P.
Full text
PDF




Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- ABRAHAM E. P., NEWTON G. G. The structure of cephalesporin C. Biochem J. 1961 May;79:377–393. doi: 10.1042/bj0790377. [DOI] [PMC free article] [PubMed] [Google Scholar]
- DEMAIN A. L., NEWKIRK J. F. Biosynthesis of cephalosporin C. Appl Microbiol. 1962 Jul;10:321–325. doi: 10.1128/am.10.4.321-325.1962. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Higgens C. E., Hamill R. L., Sands T. H., Hoehn M. M., Davis N. E. Letter: The occurrence of deacetoxycephalosporin C in fungi and streptomycetes. J Antibiot (Tokyo) 1974 Apr;27(4):298–300. doi: 10.7164/antibiotics.27.298. [DOI] [PubMed] [Google Scholar]
- Huber F. M., Baltz R. H., Caltrider P. G. Formation of desacetylcephalosporin C in cephalosporin C fermentation. Appl Microbiol. 1968 Jul;16(7):1011–1014. doi: 10.1128/am.16.7.1011-1014.1968. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Konecny J., Felber E., Gruner J. Kinetics of the hydrolysis of cephalosporin C. J Antibiot (Tokyo) 1973 Mar;26(3):135–141. doi: 10.7164/antibiotics.26.135. [DOI] [PubMed] [Google Scholar]
- LODER B., NEWTON G. G., ABRAHAM E. P. The cephalosporin C nucleus (7-aminocephalosporanic acid) and some of its derivatives. Biochem J. 1961 May;79:408–416. doi: 10.1042/bj0790408. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Ott J. L., Godzeski C. W., Pavey D., Farran J. D., Horton D. R. Biosynthesis of Cephalosporin C: I. Factors Affecting the Fermentation. Appl Microbiol. 1962 Nov;10(6):515–523. doi: 10.1128/am.10.6.515-523.1962. [DOI] [PMC free article] [PubMed] [Google Scholar]
- YONEHARA H., TAKEUCHI S., UMEZAWA H., SUMIKI Y. Variotin, a new antifungal antibiotic, produced by Paecilomyces varioti Bainier var. antibioticus. J Antibiot (Tokyo) 1959 May;12(3):109–110. [PubMed] [Google Scholar]
