Skip to main content
Antimicrobial Agents and Chemotherapy logoLink to Antimicrobial Agents and Chemotherapy
. 1974 Dec;6(6):848–852. doi: 10.1128/aac.6.6.848

Studies on the Regulation of Colicin Ib Synthesis: Replication of the Col Ib-P9 Plasmid During Colicin Induction

R E Isaacson 1, J Konisky 1
PMCID: PMC444748  PMID: 4451357

Abstract

The Col Ib-P9 plasmid content of colicinogenic cells has been measured by both sedimentation analysis of cleared lysates and by deoxyribonucleic acid hybridization to purified Col Ib-P9 factor deoxyribonucleic acid. The results show an independence between mitomycin C-induced colicin synthesis and Col Ib-P9 replication. In addition, the ratio of the various molecular configurations (i.e., covalently closed circles or open circles) of the Col Ib-P9 plasmid does not change upon induction of colicin synthesis. Heat treatment of a colicinogenic strain carrying a thermosensitive dnaB mutation on the bacterial chromosome leads to complete inhibition of Col Ib-P9 plasmid replication and the simultaneous induction of colicin Ib synthesis in all cells of the colicinogenic population. These studies rule out mechanisms or regulation of colicin Ib synthesis based on the induced replication of the Col Ib-P9 plasmid. Our studies show that in a Col Ib-P9 colicinogenic population there is, on the average, one plasmid per cell.

Full text

PDF
848

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Clewell D. B., Helinski D. E. Existence of the colicinogenic factor-sex factor ColI-b-P9 as a supercoiled circular DNA-protein relaxation complex. Biochem Biophys Res Commun. 1970 Oct 9;41(1):150–156. doi: 10.1016/0006-291x(70)90481-x. [DOI] [PubMed] [Google Scholar]
  2. Clewell D. B., Helinski D. R. Properties of a supercoiled deoxyribonucleic acid-protein relaxation complex and strand specificity of the relaxation event. Biochemistry. 1970 Oct 27;9(22):4428–4440. doi: 10.1021/bi00824a026. [DOI] [PubMed] [Google Scholar]
  3. Durkacz B. W., Kennedy C. K., Sherratt D. J. Plasmid replication and the induced synthesis of colicins E1 and E2 in Escherichia coli. J Bacteriol. 1974 Mar;117(3):940–946. doi: 10.1128/jb.117.3.940-946.1974. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Hardy K. G., Meynell G. G. "Induction" of colicin factor E2-P9 by mitomycin C. J Bacteriol. 1972 Nov;112(2):1007–1009. doi: 10.1128/jb.112.2.1007-1009.1972. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Hardy K. G., Meynell G. G. Colicin factors and mitomycin-C. J Gen Microbiol. 1972 Dec;73(3):547–549. doi: 10.1099/00221287-73-3-547. [DOI] [PubMed] [Google Scholar]
  6. Hausmann C., Clowes R. C. Mitomycin C and temperature induction of colicin B in the absence of deoxyribonucleic acid synthesis. J Bacteriol. 1971 Sep;107(3):633–635. doi: 10.1128/jb.107.3.633-635.1971. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Isaacson R. E., Konisky J. Electron microscopy of colicin I-producing cells. J Bacteriol. 1973 Jan;113(1):452–460. doi: 10.1128/jb.113.1.452-460.1973. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Isaacson R. E., Konisky J. Studies of the regulation of colicin Ib synthesis. I. Isolation of the col Ib-P9 plasmid. Mol Gen Genet. 1974;132(3):215–221. doi: 10.1007/BF00269394. [DOI] [PubMed] [Google Scholar]
  9. Isaacson R. E., Konisky J. Studies of the regulation of colicin Ib synthesis. II. The synthesis of col Ib-P9 specific RNA in vivo. Mol Gen Genet. 1974;132(3):223–232. doi: 10.1007/BF00269395. [DOI] [PubMed] [Google Scholar]
  10. JACOB F., MONOD J. Genetic regulatory mechanisms in the synthesis of proteins. J Mol Biol. 1961 Jun;3:318–356. doi: 10.1016/s0022-2836(61)80072-7. [DOI] [PubMed] [Google Scholar]
  11. MONK M., CLOWES R. C. THE REGULATION OF COLICIN SYNTHESIS AND COLICIN FACTOR TRANSFER IN ESCHERICHIA COLI K12. J Gen Microbiol. 1964 Sep;36:385–392. doi: 10.1099/00221287-36-3-385. [DOI] [PubMed] [Google Scholar]
  12. OZEKI H., STOCKER B. A., DE MARGERIE H. Production of colicine by single bacteria. Nature. 1959 Aug 1;184:337–339. doi: 10.1038/184337a0. [DOI] [PubMed] [Google Scholar]
  13. OZEKI H., STOCKER B. A., SMITH S. M. Transmission of colicinogeny between strains of Salmonella typhimurium grown together. J Gen Microbiol. 1962 Sep;28:671–687. doi: 10.1099/00221287-28-4-671. [DOI] [PubMed] [Google Scholar]
  14. SZYBALSKI W., IYER V. N. CROSSLINKING OF DNA BY ENZYMATICALLY OR CHEMICALLY ACTIVATED MITOMYCINS AND PORFIROMYCINS, BIFUNCTIONALLY "ALKYLATING" ANTIBIOTICS. Fed Proc. 1964 Sep-Oct;23:946–957. [PubMed] [Google Scholar]
  15. Sherratt D. J., Helinski D. R. Replication of colicinogenic factor E1 in Escherichia coli. Properties of newly replicated supercoils. Eur J Biochem. 1973 Aug 1;37(1):95–99. doi: 10.1111/j.1432-1033.1973.tb02962.x. [DOI] [PubMed] [Google Scholar]
  16. Wechsler J. A., Gross J. D. Escherichia coli mutants temperature-sensitive for DNA synthesis. Mol Gen Genet. 1971;113(3):273–284. doi: 10.1007/BF00339547. [DOI] [PubMed] [Google Scholar]
  17. Wickner S., Wright M., Hurwitz J. Association of DNA-dependent and -independent ribonucleoside triphosphatase activities with dnaB gene product of Escherichia coli. Proc Natl Acad Sci U S A. 1974 Mar;71(3):783–787. doi: 10.1073/pnas.71.3.783. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Antimicrobial Agents and Chemotherapy are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES