Skip to main content
Genome Announcements logoLink to Genome Announcements
. 2015 May 28;3(3):e00393-15. doi: 10.1128/genomeA.00393-15

Draft Genome Sequence of 24570, the Type Strain of Shigella flexneri

Kate S Baker a, Julian Parkhill a, Nicholas R Thomson a,b,
PMCID: PMC4447900  PMID: 26021915

Abstract

Shigella flexneri is a diarrheal pathogen that causes a large disease burden worldwide. We sequenced the genome of the publicly available type strain (S. flexneri 2a strain 24570) of this bacterial species to increase its utility as a reference. We present genome assembly results and comparisons with other reference strains.

GENOME ANNOUNCEMENT

Shigella flexneri is a highly contagious bacterial pathogen responsible for a large global disease burden. Every year, approximately 750,000 children under the age of 5 years die from diarrheal disease in developing nations (1). Within that demographic group, Shigella is one of the top four attributable causes of diarrheal disease (2), with Shigella flexneri causing the majority of the shigellosis burden in these areas (3). Bacterial type strains serve as a benchmarking tool for diagnostic and research laboratories around the world (4) and the type strain of the Shigella flexneri strain (strain 24570) is available at the American Type Culture Collection.

Genomic DNA from the Shigella flexneri type strain 24570 (ATCC 29903) was obtained and sequenced using 150 bp paired-end Illumina (MiSeq) sequencing according to in-house protocols (5, 6), with an approximately 500 bp insert size. Reads (n = 2,037,336) were assembled into 327 contiguous sequence scaffolds using Velvet Optimizer (7) and these were annotated using Prokka (8), to produce a high-quality draft genome (9). BLAST comparisons were made to determine the presence/absence of genes in the annotated assembly, and phylogenetic analysis was performed as in reference (10).

The reads of the strain 24570 draft genome mapped against reference genome 2457T (11) with approximately 70× coverage. The assembly had an N50 of 39,568 bp and a total length of 4.7 MB. Automated annotation predicted the presence of 4,653 coding sequences, including the serotype conferring gtrII-gene. Phylogenetic sequence analysis (performed as in reference 10) confirmed that the type strain of Shigella flexneri fits within a serotype 2a lineage (not shown). When compared with complete Shigella flexneri serotype 2a genomes, 24570 had 1,103 single nucleotide polymorphisms (SNPs) relative to first completed reference genome strain 301 (12), 203 SNPs relative to the common laboratory strain 2457T (11), and 414 SNPs relative to the World War 1 strain, NCTC1 (10). The availability of a draft genome for this publicly available type strain increases its utility as a resource for diagnostic and research laboratories.

Nucleotide sequence accession numbers.

This whole-genome shotgun project has been deposited in the European Nucleotide Archive under Bioproject number PRJEB2976, sample ERS574920, run ERR738429. Contiguous sequences of the de novo assembly have also been deposited at the European Nucleotide Archive under the accession numbers CELV01000001 to CELV01000327.

ACKNOWLEDGMENT

This study was funded by Wellcome Trust grant 098051.

Footnotes

Citation Baker KS, Parkhill J, Thomson NR. 2015. Draft genome sequence of 24570, the type strain of Shigella flexneri. Genome Announc 3(3):e00393-15. doi:10.1128/genomeA.00393-15.

REFERENCES

  • 1.Liu L, Johnson HL, Cousens S, Perin J, Scott S, Lawn JE, Rudan I, Campbell H, Cibulskis R, Li M, Mathers C, Black RE, Child Health Epidemiology Reference Group of WHO and UNICEF . 2012. Global, regional, and national causes of child mortality: an updated systematic analysis for 2010 with time trends since 2000. Lancet 379:2151–2161. doi: 10.1016/S0140-6736(12)60560-1. [DOI] [PubMed] [Google Scholar]
  • 2.Kotloff KL, Nataro JP, Blackwelder WC, Nasrin D, Farag TH, Panchalingam S, Wu Y, Sow SO, Sur D, Breiman RF, Faruque AS, Zaidi AK, Saha D, Alonso PL, Tamboura B, Sanogo D, Onwuchekwa U, Manna B, Ramamurthy T, Kanungo S, Ochieng JB, Omore R, Oundo JO, Hossain A, Das SK, Ahmed S, Qureshi S, Quadri F, Adegbola RA, Antonio M, Hossain MJ, Akinsola A, Mandomando I, Nhampossa T, Acacio S, Biswas K, O’Reilly CE, Mintz ED, Berkeley LY, Muhsen K, Sommerfelt H, Robins-Browne RM, Levine MM. 2013. Burden and aetiology of diarrhoeal disease in infants and young children in developing countries (the Global Enteric Multicenter Study, GEMS): a prospective, case-control study. Lancet 382:209–222. doi: 10.1016/S0140-6736(13)60844-2. [DOI] [PubMed] [Google Scholar]
  • 3.Livio S, Strockbine NA, Panchalingam S, Tennant SM, Barry EM, Marohn ME, Antonio M, Hossain A, Mandomando I, Ochieng JB, Oundo JO, Qureshi S, Ramamurthy T, Tamboura B, Adegbola RA, Hossain MJ, Saha D, Sen S, Faruque AS, Alonso PL, Breiman RF, Zaidi AK, Sur D, Sow SO, Berkeley LY, O’Reilly C, Mintz ED, Biswas K, Cohen D, Farag TH, Nasrin D, Wu Y, Blackwelder WC, Kotloff KL, Nataro JP, Levine MM. 2014. Shigella isolates from the Global Enteric Multicenter Study inform vaccine development. Clin Infect Dis 59:933–941. doi: 10.1093/cid/ciu468. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 4.Rowe B, Gross RJ. 1984. Bergey’s manual of systematic bacteriology, 1st ed, vol 1 Lippincott Williams & Wilkins, Baltimore, MD. [Google Scholar]
  • 5.Quail MA, Kozarewa I, Smith F, Scally A, Stephens PJ, Durbin R, Swerdlow H, Turner DJ. 2008. A large genome center’s improvements to the Illumina sequencing system. Nat Methods 5:1005–1010. doi: 10.1038/nmeth.1270. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 6.Quail MA, Otto TD, Gu Y, Harris SR, Skelly TF, McQuillan JA, Swerdlow HP, Oyola SO. 2012. Optimal enzymes for amplifying sequencing libraries. Nat Methods 9:10–11. doi: 10.1038/nmeth.1814. [DOI] [PubMed] [Google Scholar]
  • 7.Zerbino DR, Birney E. 2008. Velvet: algorithms for de novo short read assembly using de Bruijn graphs. Genome Res 18:821–829. doi: 10.1101/gr.074492.107. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 8.Seemann T. 2014. Prokka: rapid prokaryotic genome annotation. Bioinformatics 30:2068–2069. doi: 10.1093/bioinformatics/btu153. [DOI] [PubMed] [Google Scholar]
  • 9.Chain PS, Grafham DV, Fulton RS, Fitzgerald MG, Hostetler J, Muzny D, Ali J, Birren B, Bruce DC, Buhay C, Cole JR, Ding Y, Dugan S, Field D, Garrity GM, Gibbs R, Graves T, Han CS, Harrison SH, Highlander S, Hugenholtz P, Khouri HM, Kodira CD, Kolker E, Kyrpides NC, Lang D, Lapidus A, Malfatti SA, Markowitz V, Metha T, Nelson KE, Parkhill J, Pitluck S, Qin X, Read TD, Schmutz J, Sozhamannan S, Sterk P, Strausberg RL, Sutton G, Thomson NR, Tiedje JM, Weinstock G, Wollam A, Genomic Standards Consortium Human Microbiome Project Jumpstart, Detter JC. 2009. Genome project standards in a new era of sequencing. Science 326:236–237. doi: 10.1126/science.1180614. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 10.Baker KS, Mather AE, McGregor H, Coupland P, Langridge GC, Day M, Deheer-Graham A, Parkhill J, Russell JE, Thomson NR. 2014. The extant World War 1 dysentery bacillus NCTC1: a genomic analysis. Lancet 384:1691–1697. doi: 10.1016/S0140-6736(14)61789-X. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 11.Wei J, Goldberg MB, Burland V, Venkatesan MM, Deng W, Fournier G, Mayhew GF, Plunkett G III, Rose DJ, Darling A, Mau B, Perna NT, Payne SM, Runyen-Janecky LJ, Zhou S, Schwartz DC, Blattner FR. 2003. Complete genome sequence and comparative genomics of Shigella flexneri serotype 2a strain 2457T. Infect Immun 71:2775–2786. doi: 10.1128/IAI.71.5.2775-2786.2003. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 12.Jin Q, Yuan Z, Xu J, Wang Y, Shen Y, Lu W, Wang J, Liu H, Yang J, Yang F, Zhang X, Zhang J, Yang G, Wu H, Qu D, Dong J, Sun L, Xue Y, Zhao A, Gao Y, Zhu J, Kan B, Ding K, Chen S, Cheng H, Yao Z, He B, Chen R, Ma D, Qiang B, Wen Y, Hou Y, Yu J. 2002. Genome sequence of Shigella flexneri 2a: insights into pathogenicity through comparison with genomes of Escherichia coli K12 and O157. Nucleic Acids Res 30:4432–4441. doi: 10.1093/nar/gkf566. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Genome Announcements are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES