Abstract
Adoptive cellular immunotherapy, infusions of interleukin 2 (IL-2) in conjunction with in vitro-activated killer cells, has brought new hope to patients with cancer. The broad application of this strategy, however, is constrained by the need for repeated leukapheresis and by the labor-intensive process of in vitro activation of cells. Also, current protocols generally use nonphysiological and toxic concentrations of IL-2. Identification of an in vivo stimulant that renders T cells responsive to physiologic concentrations of IL-2 represents a potential improvement over existing approaches. We have determined whether in vivo administration of monoclonal antibodies (mAbs) directed at the T-cell surface protein CD3 induces T-cell responsiveness to IL-2, stimulates cytolytic molecular programs of natural killer cells and cytotoxic T cells, and induces tumor regression. These hypotheses were explored in a murine hepatic MCA-102 fibrosarcoma model. We report that in vivo administration of anti-CD3 mAbs plus IL-2 results in intrahepatic expression of mRNA-encoding perforin, cytotoxic T-cell-specific serine esterase, and tumor necrosis factor alpha. Anti-CD3 mAbs alone or IL-2 alone failed to induce or induced minimal expression of these molecular mediators of cytotoxicity. The anti-CD3 mAbs plus IL-2 regimen also resulted in a significantly smaller number of hepatic metastases and a significantly longer survival time of tumor-bearing mice, compared to treatment with anti-CD3 mAbs alone or IL-2 alone. Our findings suggest that a regimen of anti-CD3 mAbs plus IL-2 is a more effective antitumor regimen compared with anti-CD3 mAbs alone or IL-2 alone and advance an alternative immunotherapy strategy of potential value for the treatment of cancer in humans.
Full text
PDF




Images in this article
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Anderson P. M., Blazar B. R., Bach F. H., Ochoa A. C. Anti-CD3 + IL-2-stimulated murine killer cells. In vitro generation and in vivo antitumor activity. J Immunol. 1989 Feb 15;142(4):1383–1394. [PubMed] [Google Scholar]
- Chen L., Ashe S., Brady W. A., Hellström I., Hellström K. E., Ledbetter J. A., McGowan P., Linsley P. S. Costimulation of antitumor immunity by the B7 counterreceptor for the T lymphocyte molecules CD28 and CTLA-4. Cell. 1992 Dec 24;71(7):1093–1102. doi: 10.1016/s0092-8674(05)80059-5. [DOI] [PubMed] [Google Scholar]
- Clément M. V., Legros-Maïda S., Israël-Biet D., Carnot F., Soulié A., Reynaud P., Guillet J., Gandjbakch I., Sasportes M. Perforin and granzyme B expression is associated with severe acute rejection. Evidence for in situ localization in alveolar lymphocytes of lung-transplanted patients. Transplantation. 1994 Feb;57(3):322–326. doi: 10.1097/00007890-199402150-00002. [DOI] [PubMed] [Google Scholar]
- Doherty P. C. Cell-mediated cytotoxicity. Cell. 1993 Nov 19;75(4):607–612. doi: 10.1016/0092-8674(93)90480-e. [DOI] [PubMed] [Google Scholar]
- Dranoff G., Jaffee E., Lazenby A., Golumbek P., Levitsky H., Brose K., Jackson V., Hamada H., Pardoll D., Mulligan R. C. Vaccination with irradiated tumor cells engineered to secrete murine granulocyte-macrophage colony-stimulating factor stimulates potent, specific, and long-lasting anti-tumor immunity. Proc Natl Acad Sci U S A. 1993 Apr 15;90(8):3539–3543. doi: 10.1073/pnas.90.8.3539. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Ellenhorn J. D., Hirsch R., Schreiber H., Bluestone J. A. In vivo administration of anti-CD3 prevents malignant progressor tumor growth. Science. 1988 Oct 28;242(4878):569–571. doi: 10.1126/science.2902689. [DOI] [PubMed] [Google Scholar]
- Ellenhorn J. D., Schreiber H., Bluestone J. A. Mechanism of tumor rejection in anti-CD3 monoclonal antibody-treated mice. J Immunol. 1990 Apr 1;144(7):2840–2846. [PubMed] [Google Scholar]
- Fearon E. R., Pardoll D. M., Itaya T., Golumbek P., Levitsky H. I., Simons J. W., Karasuyama H., Vogelstein B., Frost P. Interleukin-2 production by tumor cells bypasses T helper function in the generation of an antitumor response. Cell. 1990 Feb 9;60(3):397–403. doi: 10.1016/0092-8674(90)90591-2. [DOI] [PubMed] [Google Scholar]
- Gallinger S., Hoskin D. W., Mullen J. B., Wong A. H., Roder J. C. Comparison of cellular immunotherapies and anti-CD3 in the treatment of MCA-38-LD experimental hepatic metastases in C57BL/6 mice. Cancer Res. 1990 Apr 15;50(8):2476–2480. [PubMed] [Google Scholar]
- Jicha D. L., Mulé J. J., Rosenberg S. A. Interleukin 7 generates antitumor cytotoxic T lymphocytes against murine sarcomas with efficacy in cellular adoptive immunotherapy. J Exp Med. 1991 Dec 1;174(6):1511–1515. doi: 10.1084/jem.174.6.1511. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kedar E., Klein E. Cancer immunotherapy: are the results discouraging? Can they be improved? Adv Cancer Res. 1992;59:245–322. doi: 10.1016/s0065-230x(08)60308-5. [DOI] [PubMed] [Google Scholar]
- Kim B., Warnaka P., Konrad C. Anti-CD3-enhanced interleukin-2 immunotherapy of pulmonary metastases. J Surg Res. 1991 May;50(5):480–484. doi: 10.1016/0022-4804(91)90028-k. [DOI] [PubMed] [Google Scholar]
- Lafreniere R., Rosenberg S. A. A novel approach to the generation and identification of experimental hepatic metastases in a murine model. J Natl Cancer Inst. 1986 Feb;76(2):309–322. [PubMed] [Google Scholar]
- Leo O., Foo M., Sachs D. H., Samelson L. E., Bluestone J. A. Identification of a monoclonal antibody specific for a murine T3 polypeptide. Proc Natl Acad Sci U S A. 1987 Mar;84(5):1374–1378. doi: 10.1073/pnas.84.5.1374. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Li B., Sehajpal P. K., Khanna A., Vlassara H., Cerami A., Stenzel K. H., Suthanthiran M. Differential regulation of transforming growth factor beta and interleukin 2 genes in human T cells: demonstration by usage of novel competitor DNA constructs in the quantitative polymerase chain reaction. J Exp Med. 1991 Nov 1;174(5):1259–1262. doi: 10.1084/jem.174.5.1259. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Lipman M. L., Stevens A. C., Bleackley R. C., Helderman J. H., McCune T. R., Harmon W. E., Shapiro M. E., Rosen S., Strom T. B. The strong correlation of cytotoxic T lymphocyte-specific serine protease gene transcripts with renal allograft rejection. Transplantation. 1992 Jan;53(1):73–79. doi: 10.1097/00007890-199201000-00014. [DOI] [PubMed] [Google Scholar]
- Lotze M. T. T-cell growth factors and the treatment of patients with cancer. Clin Immunol Immunopathol. 1992 Jan;62(1 Pt 2):S47–S54. doi: 10.1016/0090-1229(92)90040-u. [DOI] [PubMed] [Google Scholar]
- O'Connell P. J., Pacheco-Silva A., Nickerson P. W., Muggia R. A., Bastos M., Kelley V. R., Strom T. B. Unmodified pancreatic islet allograft rejection results in the preferential expression of certain T cell activation transcripts. J Immunol. 1993 Feb 1;150(3):1093–1104. [PubMed] [Google Scholar]
- Old L. J. Tumor necrosis factor (TNF). Science. 1985 Nov 8;230(4726):630–632. doi: 10.1126/science.2413547. [DOI] [PubMed] [Google Scholar]
- Podack E. R., Hengartner H., Lichtenheld M. G. A central role of perforin in cytolysis? Annu Rev Immunol. 1991;9:129–157. doi: 10.1146/annurev.iy.09.040191.001021. [DOI] [PubMed] [Google Scholar]
- Rosenberg S. A., Aebersold P., Cornetta K., Kasid A., Morgan R. A., Moen R., Karson E. M., Lotze M. T., Yang J. C., Topalian S. L. Gene transfer into humans--immunotherapy of patients with advanced melanoma, using tumor-infiltrating lymphocytes modified by retroviral gene transduction. N Engl J Med. 1990 Aug 30;323(9):570–578. doi: 10.1056/NEJM199008303230904. [DOI] [PubMed] [Google Scholar]
- Rosenberg S. A., Lotze M. T., Muul L. M., Chang A. E., Avis F. P., Leitman S., Linehan W. M., Robertson C. N., Lee R. E., Rubin J. T. A progress report on the treatment of 157 patients with advanced cancer using lymphokine-activated killer cells and interleukin-2 or high-dose interleukin-2 alone. N Engl J Med. 1987 Apr 9;316(15):889–897. doi: 10.1056/NEJM198704093161501. [DOI] [PubMed] [Google Scholar]
- Rosenberg S. A., Mulé J. J., Spiess P. J., Reichert C. M., Schwarz S. L. Regression of established pulmonary metastases and subcutaneous tumor mediated by the systemic administration of high-dose recombinant interleukin 2. J Exp Med. 1985 May 1;161(5):1169–1188. doi: 10.1084/jem.161.5.1169. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Sehajpal P. K., Li B., Zanker B., Murthi V. K., Subramaniam A., Sharma V. K., Estin D., Skolnik E. Y., Wieder K. J., Walz G. The molecular basis for the synergism between the CD3/alpha beta T cell receptor and the CD2 antigen-derived signals in promoting T-cell proliferation. Transplantation. 1991 Feb;51(2):468–474. doi: 10.1097/00007890-199102000-00038. [DOI] [PubMed] [Google Scholar]
- Sherry B., Cerami A. Cachectin/tumor necrosis factor exerts endocrine, paracrine, and autocrine control of inflammatory responses. J Cell Biol. 1988 Oct;107(4):1269–1277. doi: 10.1083/jcb.107.4.1269. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Strom T. B., Tilney N. L., Paradysz J. M., Bancewicz J., Carpenter C. B. Cellular components of allograft rejection: identity, specificity, and cytotoxic function of cells infiltrating acutely rejecting allografts. J Immunol. 1977 Jun;118(6):2020–2026. [PubMed] [Google Scholar]
- Suthanthiran M., Williams P. S., Solomon S. D., Rubin A. L., Stenzel K. H. Induction of cytolytic activity by anti-T3 monoclonal antibody. Activation of alloimmune memory cells and natural killer cells from normal and immunodeficient individuals. J Clin Invest. 1984 Dec;74(6):2263–2271. doi: 10.1172/JCI111653. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Tschopp J., Nabholz M. Perforin-mediated target cell lysis by cytolytic T lymphocytes. Annu Rev Immunol. 1990;8:279–302. doi: 10.1146/annurev.iy.08.040190.001431. [DOI] [PubMed] [Google Scholar]
- Urba W. J., Ewel C., Kopp W., Smith J. W., 2nd, Steis R. G., Ashwell J. D., Creekmore S. P., Rossio J., Sznol M., Sharfman W. Anti-CD3 monoclonal antibody treatment of patients with CD3-negative tumors: a phase IA/B study. Cancer Res. 1992 May 1;52(9):2394–2401. [PubMed] [Google Scholar]
- Vassalli P. The pathophysiology of tumor necrosis factors. Annu Rev Immunol. 1992;10:411–452. doi: 10.1146/annurev.iy.10.040192.002211. [DOI] [PubMed] [Google Scholar]
- Wang J. C., Walle A., Novogrodsky A., Suthanthiran M., Silver R. T., Bander N. H., Rubin A. L., Stenzel K. H. A phase II clinical trial of adoptive immunotherapy for advanced renal cell carcinoma using mitogen-activated autologous leukocytes and continuous infusion interleukin-2. J Clin Oncol. 1989 Dec;7(12):1885–1891. doi: 10.1200/JCO.1989.7.12.1885. [DOI] [PubMed] [Google Scholar]
- Yang S. C., Fry K. D., Grimm E. A., Roth J. A. Successful combination immunotherapy for the generation in vivo of antitumor activity with anti-CD3, interleukin 2, and tumor necrosis factor alpha. Arch Surg. 1990 Feb;125(2):220–225. doi: 10.1001/archsurg.1990.01410140098016. [DOI] [PubMed] [Google Scholar]
- Yoshizawa H., Chang A. E., Shu S. Specific adoptive immunotherapy mediated by tumor-draining lymph node cells sequentially activated with anti-CD3 and IL-2. J Immunol. 1991 Jul 15;147(2):729–737. [PubMed] [Google Scholar]