Abstract
Amplification of rearranged human immunoglobulin heavy-chain genes using the polymerase chain reaction resulted unexpectedly in the amplification of human transposable repetitive element genomes. These were identified as members of the THE I (transposon-like human element I) transposable element family. Analysis of the THE I sequences revealed the presence of several copies of the ancestral building block described > 10 years ago by Ohno and coworkers as the primordial immunoglobulin sequence. The frequency and degree of homology of the repeats of the basic unit were similar for the two genes, as well as for two murine intracisternal A particles. These findings suggest that both the transposable genetic elements and the immunoglobulin genes originated from a common ancestral building block.
Full text
PDF


Images in this article
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Amariglio N., Rechavi G. Insertional mutagenesis by transposable elements in the mammalian genome. Environ Mol Mutagen. 1993;21(3):212–218. doi: 10.1002/em.2850210303. [DOI] [PubMed] [Google Scholar]
- Davis M. M., Kim S. K., Hood L. E. DNA sequences mediating class switching in alpha-immunoglobulins. Science. 1980 Sep 19;209(4463):1360–1365. doi: 10.1126/science.6774415. [DOI] [PubMed] [Google Scholar]
- Deka N., Willard C. R., Wong E., Schmid C. W. Human transposon-like elements insert at a preferred target site: evidence for a retrovirally mediated process. Nucleic Acids Res. 1988 Feb 11;16(3):1143–1151. doi: 10.1093/nar/16.3.1143. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Deka N., Wong E., Matera A. G., Kraft R., Leinwand L. A., Schmid C. W. Repetitive nucleotide sequence insertions into a novel calmodulin-related gene and its processed pseudogene. Gene. 1988 Nov 15;71(1):123–134. doi: 10.1016/0378-1119(88)90084-4. [DOI] [PubMed] [Google Scholar]
- Erlich H. A., Gelfand D., Sninsky J. J. Recent advances in the polymerase chain reaction. Science. 1991 Jun 21;252(5013):1643–1651. doi: 10.1126/science.2047872. [DOI] [PubMed] [Google Scholar]
- Leder P. The genetics of antibody diversity. Sci Am. 1982 May;246(5):102–115. doi: 10.1038/scientificamerican0582-102. [DOI] [PubMed] [Google Scholar]
- Lueders K. K., Grossman Z., Fewell J. W. Characterization of amplified intracisternal A-particle elements encoding integrase. Nucleic Acids Res. 1989 Nov 25;17(22):9267–9277. doi: 10.1093/nar/17.22.9267. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Lueders K. K., Mietz J. A. Structural analysis of type II variants within the mouse intracisternal A-particle sequence family. Nucleic Acids Res. 1986 Feb 11;14(3):1495–1510. doi: 10.1093/nar/14.3.1495. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Misra R., Shih A., Rush M., Wong E., Schmid C. W. Cloned extrachromosomal circular DNA copies of the human transposable element THE-1 are related predominantly to a single type of family member. J Mol Biol. 1987 Jul 20;196(2):233–243. doi: 10.1016/0022-2836(87)90687-5. [DOI] [PubMed] [Google Scholar]
- Ohno S., Kato K., Hozumi T., Matsunaga T. Mouse immunoglobulin coding sequences for the heavy-chain variable region arose as repeats of the two short building blocks. Proc Natl Acad Sci U S A. 1982 Jan;79(1):132–136. doi: 10.1073/pnas.79.1.132. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Ohno S., Matsunaga T. The 48-base-long primordial building block of immunoglobulin light-chain variable regions is complementary to the primordial building block of heavy-chain variable regions. Proc Natl Acad Sci U S A. 1982 Apr;79(7):2338–2341. doi: 10.1073/pnas.79.7.2338. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Ohno S., Matsunaga T., Wallace R. B. Identification of the 48-base-long primordial building block sequence of mouse immunoglobulin variable region genes. Proc Natl Acad Sci U S A. 1982 Mar;79(6):1999–2002. doi: 10.1073/pnas.79.6.1999. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Paulson K. E., Deka N., Schmid C. W., Misra R., Schindler C. W., Rush M. G., Kadyk L., Leinwand L. A transposon-like element in human DNA. Nature. 1985 Jul 25;316(6026):359–361. doi: 10.1038/316359a0. [DOI] [PubMed] [Google Scholar]
- Ravetch J. V., Kirsch I. R., Leder P. Evolutionary approach to the question of immunoglobulin heavy chain switching: evidence from cloned human and mouse genes. Proc Natl Acad Sci U S A. 1980 Nov;77(11):6734–6738. doi: 10.1073/pnas.77.11.6734. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Ravetch J. V., Siebenlist U., Korsmeyer S., Waldmann T., Leder P. Structure of the human immunoglobulin mu locus: characterization of embryonic and rearranged J and D genes. Cell. 1981 Dec;27(3 Pt 2):583–591. doi: 10.1016/0092-8674(81)90400-1. [DOI] [PubMed] [Google Scholar]
- Saiki R. K., Gelfand D. H., Stoffel S., Scharf S. J., Higuchi R., Horn G. T., Mullis K. B., Erlich H. A. Primer-directed enzymatic amplification of DNA with a thermostable DNA polymerase. Science. 1988 Jan 29;239(4839):487–491. doi: 10.1126/science.2448875. [DOI] [PubMed] [Google Scholar]
- Shen A., Humphries C., Tucker P., Blattner F. Human heavy-chain variable region gene family nonrandomly rearranged in familial chronic lymphocytic leukemia. Proc Natl Acad Sci U S A. 1987 Dec;84(23):8563–8567. doi: 10.1073/pnas.84.23.8563. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Singer M. F. SINEs and LINEs: highly repeated short and long interspersed sequences in mammalian genomes. Cell. 1982 Mar;28(3):433–434. doi: 10.1016/0092-8674(82)90194-5. [DOI] [PubMed] [Google Scholar]
- Tonegawa S. Somatic generation of antibody diversity. Nature. 1983 Apr 14;302(5909):575–581. doi: 10.1038/302575a0. [DOI] [PubMed] [Google Scholar]
- Yazaki A., Ohno S. Recurrence of 49-base decamers, nonomers, and octamers within mouse C mu gene of Ig heavy chain and its primordial building block. Proc Natl Acad Sci U S A. 1983 Apr;80(8):2337–2340. doi: 10.1073/pnas.80.8.2337. [DOI] [PMC free article] [PubMed] [Google Scholar]