Skip to main content
Springer logoLink to Springer
. 2015 May 29;75(5):235. doi: 10.1140/epjc/s10052-015-3451-4

Search for dark matter, extra dimensions, and unparticles in monojet events in proton–proton collisions at s=8TeV

V Khachatryan 1, A M Sirunyan 1, A Tumasyan 1, W Adam 2, T Bergauer 2, M Dragicevic 2, J Erö 2, C Fabjan 2, M Friedl 2, R Frühwirth 2, V M Ghete 2, C Hartl 2, N Hörmann 2, J Hrubec 2, M Jeitler 2, W Kiesenhofer 2, V Knünz 2, M Krammer 2, I Krätschmer 2, D Liko 2, I Mikulec 2, D Rabady 2, B Rahbaran 2, H Rohringer 2, R Schöfbeck 2, J Strauss 2, A Taurok 2, W Treberer-Treberspurg 2, W Waltenberger 2, C-E Wulz 2, V Mossolov 3, N Shumeiko 3, J SuarezGonzalez 3, S Alderweireldt 4, M Bansal 4, S Bansal 4, T Cornelis 4, E A De Wolf 4, X Janssen 4, A Knutsson 4, S Luyckx 4, S Ochesanu 4, B Roland 4, R Rougny 4, M Van De Klundert 4, H Van Haevermaet 4, P Van Mechelen 4, N Van Remortel 4, A Van Spilbeeck 4, F Blekman 5, S Blyweert 5, J D’Hondt 5, N Daci 5, N Heracleous 5, A Kalogeropoulos 5, J Keaveney 5, TJ Kim 5, S Lowette 5, M Maes 5, A Olbrechts 5, Q Python 5, D Strom 5, S Tavernier 5, W Van Doninck 5, P Van Mulders 5, G P Van Onsem 5, I Villella 5, C Caillol 6, B Clerbaux 6, G De Lentdecker 6, D Dobur 6, L Favart 6, A P R Gay 6, A Grebenyuk 6, A Léonard 6, A Mohammadi 6, L Perniè 6, T Reis 6, T Seva 6, L Thomas 6, C Vander Velde 6, P Vanlaer 6, J Wang 6, V Adler 7, K Beernaert 7, L Benucci 7, A Cimmino 7, S Costantini 7, S Crucy 7, S Dildick 7, A Fagot 7, G Garcia 7, B Klein 7, J Mccartin 7, A A Ocampo Rios 7, D Ryckbosch 7, S Salva Diblen 7, M Sigamani 7, N Strobbe 7, F Thyssen 7, M Tytgat 7, E Yazgan 7, N Zaganidis 7, S Basegmez 8, C Beluffi 8, G Bruno 8, R Castello 8, A Caudron 8, L Ceard 8, G G Da Silveira 8, C Delaere 8, T du Pree 8, D Favart 8, L Forthomme 8, A Giammanco 8, J Hollar 8, P Jez 8, M Komm 8, V Lemaitre 8, J Liao 8, C Nuttens 8, D Pagano 8, L Perrini 8, A Pin 8, K Piotrzkowski 8, A Popov 8, L Quertenmont 8, M Selvaggi 8, M Vidal Marono 8, J M Vizan Garcia 8, N Beliy 9, T Caebergs 9, E Daubie 9, G H Hammad 9, W L Aldá Júnior 10, G A Alves 10, M CorreaMartins Junior 10, T Dos Reis Martins 10, M E Pol 10, W Carvalho 11, J Chinellato 11, A Custódio 11, E M Da Costa 11, D De JesusDamiao 11, C De OliveiraMartins 11, S Fonseca De Souza 11, H Malbouisson 11, M Malek 11, D MatosFigueiredo 11, L Mundim 11, H Nogima 11, W L Prado DaSilva 11, J Santaolalla 11, A Santoro 11, A Sznajder 11, E J Tonelli Manganote 11, A Vilela Pereira 11, C A Bernardes 12, S Dogra 12, FA Dias 12, T R FernandezPerez Tomei 12, E M Gregores 12, P G Mercadante 12, S F Novaes 12, Sandra S Padula 12, A Aleksandrov 13, V Genchev 13, P Iaydjiev 13, A Marinov 13, S Piperov 13, M Rodozov 13, G Sultanov 13, M Vutova 13, A Dimitrov 14, I Glushkov 14, R Hadjiiska 14, V Kozhuharov 14, L Litov 14, B Pavlov 14, P Petkov 14, J G Bian 15, G M Chen 15, H S Chen 15, M Chen 15, R Du 15, C H Jiang 15, D Liang 15, S Liang 15, R Plestina 8, J Tao 15, X Wang 15, Z Wang 15, C Asawatangtrakuldee 16, Y Ban 16, Y Guo 16, Q Li 16, W Li 16, S Liu 16, Y Mao 16, S J Qian 16, D Wang 16, L Zhang 16, W Zou 16, C Avila 17, L F Sierra Chaparro 17, C Florez 17, J P Gomez 17, B Gomez Moreno 17, J C Sanabria 17, N Godinovic 18, D Lelas 18, D Polic 18, I Puljak 18, Z Antunovic 19, M Kovac 19, V Brigljevic 20, K Kadija 20, J Luetic 20, D Mekterovic 20, L Sudic 20, A Attikis 21, G Mavromanolakis 21, J Mousa 21, C Nicolaou 21, F Ptochos 21, P A Razis 21, M Bodlak 22, M Finger 22, M Finger Jr 9, Y Assran 10, S Elgammal 11, M A Mahmoud 12, A Radi 11, B Calpas 11, M Kadastik 24, M Murumaa 24, M Raidal 24, A Tiko 24, P Eerola 25, G Fedi 25, M Voutilainen 25, J Härkönen 26, V Karimäki 26, R Kinnunen 26, M J Kortelainen 26, T Lampén 26, K Lassila-Perini 26, S Lehti 26, T Lindén 26, P Luukka 26, T Mäenpää 26, T Peltola 26, E Tuominen 26, J Tuominiemi 26, E Tuovinen 26, L Wendland 26, T Tuuva 27, M Besancon 28, F Couderc 28, M Dejardin 28, D Denegri 28, B Fabbro 28, J L Faure 28, C Favaro 28, F Ferri 28, S Ganjour 28, A Givernaud 28, P Gras 28, G Hamel de Monchenault 28, P Jarry 28, E Locci 28, J Malcles 28, A Nayak 28, J Rander 28, A Rosowsky 28, M Titov 28, S Baffioni 29, F Beaudette 29, P Busson 29, C Charlot 29, T Dahms 29, M Dalchenko 29, L Dobrzynski 29, N Filipovic 29, A Florent 29, R Granier de Cassagnac 29, L Mastrolorenzo 29, P Miné 29, C Mironov 29, I N Naranjo 29, M Nguyen 29, C Ochando 29, S Regnard 29, R Salerno 29, J B Sauvan 29, Y Sirois 29, C Veelken 29, Y Yilmaz 29, A Zabi 29, J-L Agram 30, J Andrea 30, A Aubin 30, D Bloch 30, J-M Brom 30, E C Chabert 30, C Collard 30, E Conte 30, J-C Fontaine 30, D Gelé 30, U Goerlach 30, C Goetzmann 30, A-C Le Bihan 30, P Van Hove 30, S Gadrat 31, S Beauceron 32, N Beaupere 32, G Boudoul 32, S Brochet 32, C A Carrillo Montoya 32, J Chasserat 32, R Chierici 32, D Contardo 32, P Depasse 32, H ElMamouni 32, J Fan 32, J Fay 32, S Gascon 32, M Gouzevitch 32, B Ille 32, T Kurca 32, M Lethuillier 32, L Mirabito 32, S Perries 32, J D Ruiz Alvarez 32, D Sabes 32, L Sgandurra 32, V Sordini 32, M Vander Donckt 32, P Verdier 32, S Viret 32, H Xiao 32, L Rurua 33, C Autermann 34, S Beranek 34, M Bontenackels 34, M Edelhoff 34, L Feld 34, O Hindrichs 34, K Klein 34, A Ostapchuk 34, A Perieanu 34, F Raupach 34, J Sammet 34, S Schael 34, D Sprenger 34, H Weber 34, B Wittmer 34, V Zhukov 34, M Ata 35, J Caudron 35, E Dietz-Laursonn 35, D Duchardt 35, M Erdmann 35, R Fischer 35, A Güth 35, T Hebbeker 35, C Heidemann 35, K Hoepfner 35, D Klingebiel 35, S Knutzen 35, P Kreuzer 35, M Merschmeyer 35, A Meyer 35, M Olschewski 35, K Padeken 35, P Papacz 35, H Reithler 35, S A Schmitz 35, L Sonnenschein 35, D Teyssier 35, S Thüer 35, M Weber 35, V Cherepanov 36, Y Erdogan 36, G Flügge 36, H Geenen 36, M Geisler 36, W Haj Ahmad 36, F Hoehle 36, B Kargoll 36, T Kress 36, Y Kuessel 36, J Lingemann 36, A Nowack 36, I M Nugent 36, L Perchalla 36, O Pooth 36, A Stahl 36, I Asin 37, N Bartosik 37, J Behr 37, W Behrenhoff 37, U Behrens 37, A J Bell 37, M Bergholz 37, A Bethani 37, K Borras 37, A Burgmeier 37, A Cakir 37, L Calligaris 37, A Campbell 37, S Choudhury 37, F Costanza 37, C Diez Pardos 37, S Dooling 37, T Dorland 37, G Eckerlin 37, D Eckstein 37, T Eichhorn 37, G Flucke 37, J Garay Garcia 37, A Geiser 37, P Gunnellini 37, J Hauk 37, G Hellwig 37, M Hempel 37, D Horton 37, H Jung 37, M Kasemann 37, P Katsas 37, J Kieseler 37, C Kleinwort 37, D Krücker 37, W Lange 37, J Leonard 37, K Lipka 37, A Lobanov 37, W Lohmann 37, B Lutz 37, R Mankel 37, I Marfin 37, I-A Melzer-Pellmann 37, A B Meyer 37, J Mnich 37, A Mussgiller 37, S Naumann-Emme 37, O Novgorodova 37, F Nowak 37, E Ntomari 37, H Perrey 37, D Pitzl 37, R Placakyte 37, A Raspereza 37, P M Ribeiro Cipriano 37, E Ron 37, M Ö Sahin 37, J Salfeld-Nebgen 37, P Saxena 37, R Schmidt 37, T Schoerner-Sadenius 37, M Schröder 37, S Spannagel 37, A D R VargasTrevino 37, R Walsh 37, C Wissing 37, M Aldaya Martin 38, V Blobel 38, M CentisVignali 38, J Erfle 38, E Garutti 38, K Goebel 38, M Görner 38, M Gosselink 38, J Haller 38, R S Höing 38, H Kirschenmann 38, R Klanner 38, R Kogler 38, J Lange 38, T Lapsien 38, T Lenz 38, I Marchesini 38, J Ott 38, T Peiffer 38, N Pietsch 38, D Rathjens 38, C Sander 38, H Schettler 38, P Schleper 38, E Schlieckau 38, A Schmidt 38, M Seidel 38, J Sibille 38, V Sola 38, H Stadie 38, G Steinbrück 38, D Troendle 38, E Usai 38, L Vanelderen 38, C Barth 39, C Baus 39, J Berger 39, C Böser 39, E Butz 39, T Chwalek 39, W De Boer 39, A Descroix 39, A Dierlamm 39, M Feindt 39, F Frensch 39, F Hartmann 39, T Hauth 39, U Husemann 39, I Katkov 39, A Kornmayer 39, E Kuznetsova 39, P LobellePardo 39, M U Mozer 39, Th Müller 39, A Nürnberg 39, G Quast 39, K Rabbertz 39, F Ratnikov 39, S Röcker 39, H J Simonis 39, F M Stober 39, R Ulrich 39, J Wagner-Kuhr 39, S Wayand 39, T Weiler 39, R Wolf 39, G Anagnostou 40, G Daskalakis 40, T Geralis 40, V A Giakoumopoulou 40, A Kyriakis 40, D Loukas 40, A Markou 40, C Markou 40, A Psallidas 40, I Topsis-Giotis 40, A Panagiotou 41, N Saoulidou 41, E Stiliaris 41, X Aslanoglou 42, I Evangelou 42, G Flouris 42, C Foudas 42, P Kokkas 42, N Manthos 42, I Papadopoulos 42, E Paradas 42, G Bencze 43, C Hajdu 43, P Hidas 43, D Horvath 43, F Sikler 43, V Veszpremi 43, G Vesztergombi 43, A J Zsigmond 43, N Beni 44, S Czellar 44, J Karancsi 44, J Molnar 44, J Palinkas 44, Z Szillasi 44, P Raics 45, Z L Trocsanyi 45, B Ujvari 45, S K Swain 46, S B Beri 47, V Bhatnagar 47, N Dhingra 47, R Gupta 47, A K Kalsi 47, M Kaur 47, M Mittal 47, N Nishu 47, J B Singh 47, Ashok Kumar 48, Arun Kumar 48, S Ahuja 48, A Bhardwaj 48, B C Choudhary 48, A Kumar 48, S Malhotra 48, M Naimuddin 48, K Ranjan 48, V Sharma 48, S Banerjee 49, S Bhattacharya 49, K Chatterjee 49, S Dutta 49, B Gomber 49, Sa Jain 49, Sh Jain 49, R Khurana 49, A Modak 49, S Mukherjee 49, D Roy 49, S Sarkar 49, M Sharan 49, A Abdulsalam 50, D Dutta 50, S Kailas 50, V Kumar 50, A K Mohanty 50, L M Pant 50, P Shukla 50, A Topkar 50, T Aziz 51, S Banerjee 51, R M Chatterjee 51, R K Dewanjee 51, S Dugad 51, S Ganguly 51, S Ghosh 51, M Guchait 51, A Gurtu 51, G Kole 51, S Kumar 51, M Maity 51, G Majumder 51, K Mazumdar 51, G B Mohanty 51, B Parida 51, K Sudhakar 51, N Wickramage 51, H Bakhshiansohi 52, H Behnamian 52, S M Etesami 52, A Fahim 52, R Goldouzian 52, A Jafari 52, M Khakzad 52, M Mohammadi Najafabadi 52, M Naseri 52, S Paktinat Mehdiabadi 52, B Safarzadeh 52, M Zeinali 52, M Felcini 53, M Grunewald 53, M Abbrescia 54, L Barbone 54, C Calabria 54, S S Chhibra 54, A Colaleo 54, D Creanza 54, N De Filippis 54, M DePalma 54, L Fiore 54, G Iaselli 54, G Maggi 54, M Maggi 54, S My 54, S Nuzzo 54, A Pompili 54, G Pugliese 54, R Radogna 54, G Selvaggi 54, L Silvestris 54, G Singh 54, R Venditti 54, P Verwilligen 54, G Zito 54, G Abbiendi 55, A C Benvenuti 55, D Bonacorsi 55, S Braibant-Giacomelli 55, L Brigliadori 55, R Campanini 55, P Capiluppi 55, A Castro 55, F R Cavallo 55, G Codispoti 55, M Cuffiani 55, G M Dallavalle 55, F Fabbri 55, A Fanfani 55, D Fasanella 55, P Giacomelli 55, C Grandi 55, L Guiducci 55, S Marcellini 55, G Masetti 55, A Montanari 55, F L Navarria 55, A Perrotta 55, A M Rossi 55, F Primavera 55, T Rovelli 55, G P Siroli 55, N Tosi 55, R Travaglini 55, S Albergo 56, G Cappello 56, M Chiorboli 56, S Costa 56, F Giordano 56, R Potenza 56, A Tricomi 56, C Tuve 56, G Barbagli 57, V Ciulli 57, C Civinini 57, R D’Alessandro 57, E Focardi 57, E Gallo 57, S Gonzi 57, V Gori 57, P Lenzi 57, M Meschini 57, S Paoletti 57, G Sguazzoni 57, A Tropiano 57, L Benussi 58, S Bianco 58, F Fabbri 58, D Piccolo 58, F Ferro 59, M LoVetere 59, E Robutti 59, S Tosi 59, M E Dinardo 60, S Fiorendi 60, S Gennai 60, R Gerosa 60, A Ghezzi 60, P Govoni 60, M T Lucchini 60, S Malvezzi 60, R A Manzoni 60, A Martelli 60, B Marzocchi 60, D Menasce 60, L Moroni 60, M Paganoni 60, D Pedrini 60, S Ragazzi 60, N Redaelli 60, T Tabarelli de Fatis 60, S Buontempo 61, N Cavallo 61, S Di Guida 61, F Fabozzi 61, A O M Iorio 61, L Lista 61, S Meola 61, M Merola 61, P Paolucci 61, P Azzi 62, N Bacchetta 62, D Bisello 62, A Branca 62, P Checchia 62, M Dall’Osso 62, T Dorigo 62, U Dosselli 62, M Galanti 62, F Gasparini 62, U Gasparini 62, A Gozzelino 62, K Kanishchev 62, S Lacaprara 62, M Margoni 62, A T Meneguzzo 62, M Passaseo 62, J Pazzini 62, M Pegoraro 62, N Pozzobon 62, P Ronchese 62, F Simonetto 62, E Torassa 62, M Tosi 62, P Zotto 62, A Zucchetta 62, G Zumerle 62, M Gabusi 63, S P Ratti 63, C Riccardi 63, P Salvini 63, P Vitulo 63, M Biasini 64, G M Bilei 64, D Ciangottini 64, L Fanò 64, P Lariccia 64, G Mantovani 64, M Menichelli 64, F Romeo 64, A Saha 64, A Santocchia 64, A Spiezia 64, K Androsov 65, P Azzurri 65, G Bagliesi 65, J Bernardini 65, T Boccali 65, G Broccolo 65, R Castaldi 65, M A Ciocci 65, R Dell’Orso 65, S Donato 65, G Fedi 65, F Fiori 65, L Foà 65, A Giassi 65, M T Grippo 65, F Ligabue 65, T Lomtadze 65, L Martini 65, A Messineo 65, C S Moon 65, F Palla 65, A Rizzi 65, A Savoy-Navarro 65, A T Serban 65, P Spagnolo 65, P Squillacioti 65, R Tenchini 65, G Tonelli 65, A Venturi 65, P G Verdini 65, C Vernieri 65, L Barone 66, F Cavallari 66, D Del Re 66, M Diemoz 66, M Grassi 66, C Jorda 66, E Longo 66, F Margaroli 66, P Meridiani 66, F Micheli 66, S Nourbakhsh 66, G Organtini 66, R Paramatti 66, S Rahatlou 66, C Rovelli 66, F Santanastasio 66, L Soffi 66, P Traczyk 66, N Amapane 67, R Arcidiacono 67, S Argiro 67, M Arneodo 67, R Bellan 67, C Biino 67, N Cartiglia 67, S Casasso 67, M Costa 67, A Degano 67, N Demaria 67, L Finco 67, C Mariotti 67, S Maselli 67, E Migliore 67, V Monaco 67, M Musich 67, M M Obertino 67, G Ortona 67, L Pacher 67, N Pastrone 67, M Pelliccioni 67, G L Pinna Angioni 67, A Potenza 67, A Romero 67, M Ruspa 67, R Sacchi 67, A Solano 67, A Staiano 67, U Tamponi 67, S Belforte 68, V Candelise 68, M Casarsa 68, F Cossutti 68, G DellaRicca 68, B Gobbo 68, C La Licata 68, M Marone 68, D Montanino 68, A Schizzi 68, T Umer 68, A Zanetti 68, S Chang 69, T A Kropivnitskaya 69, S K Nam 69, D H Kim 70, G N Kim 70, M S Kim 70, M S Kim 70, D J Kong 70, S Lee 70, Y D Oh 70, H Park 70, A Sakharov 70, D C Son 70, J Y Kim 71, S Song 71, S Choi 72, D Gyun 72, B Hong 72, M Jo 72, H Kim 72, Y Kim 72, B Lee 72, K S Lee 72, S K Park 72, Y Roh 72, M Choi 73, J H Kim 73, I C Park 73, S Park 73, G Ryu 73, M S Ryu 73, Y Choi 74, Y K Choi 74, J Goh 74, E Kwon 74, J Lee 74, H Seo 74, I Yu 74, A Juodagalvis 75, J R Komaragiri 76, H Castilla-Valdez 77, E De La Cruz-Burelo 77, I Heredia-de LaCruz 77, R Lopez-Fernandez 77, A Sanchez-Hernandez 77, S Carrillo Moreno 78, F Vazquez Valencia 78, I Pedraza 79, H A Salazar Ibarguen 79, E Casimiro Linares 80, A Morelos Pineda 80, D Krofcheck 81, P H Butler 82, S Reucroft 82, A Ahmad 83, M Ahmad 83, Q Hassan 83, H R Hoorani 83, S Khalid 83, W A Khan 83, T Khurshid 83, M A Shah 83, M Shoaib 83, H Bialkowska 84, M Bluj 84, B Boimska 84, T Frueboes 84, M Górski 84, M Kazana 84, K Nawrocki 84, K Romanowska-Rybinska 84, M Szleper 84, P Zalewski 84, G Brona 85, K Bunkowski 85, M Cwiok 85, W Dominik 85, K Doroba 85, A Kalinowski 85, M Konecki 85, J Krolikowski 85, M Misiura 85, M Olszewski 85, W Wolszczak 85, P Bargassa 86, C Beir ao Da Cruz ESilva 86, P Faccioli 86, P G Ferreira Parracho 86, M Gallinaro 86, F Nguyen 86, J Rodrigues Antunes 86, J Seixas 86, J Varela 86, P Vischia 86, M Gavrilenko 87, I Golutvin 87, I Gorbunov 87, A Kamenev 87, V Karjavin 87, V Konoplyanikov 87, A Lanev 87, A Malakhov 87, V Matveev 87, P Moisenz 87, V Palichik 87, V Perelygin 87, M Savina 87, S Shmatov 87, S Shulha 87, N Skatchkov 87, V Smirnov 87, A Zarubin 87, V Golovtsov 88, Y Ivanov 88, V Kim 88, P Levchenko 88, V Murzin 88, V Oreshkin 88, I Smirnov 88, V Sulimov 88, L Uvarov 88, S Vavilov 88, A Vorobyev 88, An Vorobyev 88, Yu Andreev 89, A Dermenev 89, S Gninenko 89, N Golubev 89, M Kirsanov 89, N Krasnikov 89, A Pashenkov 89, D Tlisov 89, A Toropin 89, V Epshteyn 90, V Gavrilov 90, N Lychkovskaya 90, V Popov 90, G Safronov 90, S Semenov 90, A Spiridonov 90, V Stolin 90, E Vlasov 90, A Zhokin 90, V Andreev 91, M Azarkin 91, I Dremin 91, M Kirakosyan 91, A Leonidov 91, G Mesyats 91, S V Rusakov 91, A Vinogradov 91, A Belyaev 92, E Boos 92, M Dubinin 92, L Dudko 92, A Ershov 92, A Gribushin 92, V Klyukhin 92, O Kodolova 92, I Lokhtin 92, S Obraztsov 92, S Petrushanko 92, V Savrin 92, A Snigirev 92, I Azhgirey 93, I Bayshev 93, S Bitioukov 93, V Kachanov 93, A Kalinin 93, D Konstantinov 93, V Krychkine 93, V Petrov 93, R Ryutin 93, A Sobol 93, L Tourtchanovitch 93, S Troshin 93, N Tyurin 93, A Uzunian 93, A Volkov 93, P Adzic 94, M Dordevic 94, M Ekmedzic 94, J Milosevic 94, J Alcaraz Maestre 95, C Battilana 95, E Calvo 95, M Cerrada 95, M Chamizo Llatas 95, N Colino 95, B De La Cruz 95, A Delgado Peris 95, D Domínguez Vázquez 95, A Escalante Del Valle 95, C Fernandez Bedoya 95, J P Fernández Ramos 95, J Flix 95, M C Fouz 95, P Garcia-Abia 95, O Gonzalez Lopez 95, S Goy Lopez 95, J M Hernandez 95, M I Josa 95, G Merino 95, E Navarro De Martino 95, A Pérez-Calero Yzquierdo 95, J Puerta Pelayo 95, A QuintarioOlmeda 95, I Redondo 95, L Romero 95, M S Soares 95, C Albajar 96, J F de Trocóniz 96, M Missiroli 96, H Brun 97, J Cuevas 97, J Fernandez Menendez 97, S Folgueras 97, I GonzalezCaballero 97, L Lloret Iglesias 97, J A Brochero Cifuentes 98, I J Cabrillo 98, A Calderon 98, J DuarteCampderros 98, M Fernandez 98, G Gomez 98, A Graziano 98, A Lopez Virto 98, J Marco 98, R Marco 98, C Martinez Rivero 98, F Matorras 98, F J MunozSanchez 98, J Piedra Gomez 98, T Rodrigo 98, A Y Rodríguez-Marrero 98, A Ruiz-Jimeno 98, L Scodellaro 98, I Vila 98, R Vilar Cortabitarte 98, D Abbaneo 99, E Auffray 99, G Auzinger 99, M Bachtis 99, P Baillon 99, A H Ball 99, D Barney 99, A Benaglia 99, J Bendavid 99, L Benhabib 99, J F Benitez 99, C Bernet 99, G Bianchi 99, P Bloch 99, A Bocci 99, A Bonato 99, O Bondu 99, C Botta 99, H Breuker 99, T Camporesi 99, G Cerminara 99, S Colafranceschi 99, M D’Alfonso 99, D d’Enterria 99, A Dabrowski 99, A David 99, F De Guio 99, A De Roeck 99, S De Visscher 99, M Dobson 99, N Dupont-Sagorin 99, A Elliott-Peisert 99, J Eugster 99, G Franzoni 99, W Funk 99, M Giffels 99, D Gigi 99, K Gill 99, D Giordano 99, M Girone 99, F Glege 99, R Guida 99, S Gundacker 99, M Guthoff 99, J Hammer 99, M Hansen 99, P Harris 99, J Hegeman 99, V Innocente 99, P Janot 99, K Kousouris 99, K Krajczar 99, P Lecoq 99, C Lourenço 99, N Magini 99, L Malgeri 99, M Mannelli 99, L Masetti 99, F Meijers 99, S Mersi 99, E Meschi 99, F Moortgat 99, S Morovic 99, M Mulders 99, P Musella 99, L Orsini 99, L Pape 99, E Perez 99, L Perrozzi 99, A Petrilli 99, G Petrucciani 99, A Pfeiffer 99, M Pierini 99, M Pimiä 99, D Piparo 99, M Plagge 99, A Racz 99, G Rolandi 99, M Rovere 99, H Sakulin 99, C Schäfer 99, C Schwick 99, S Sekmen 99, A Sharma 99, P Siegrist 99, P Silva 99, M Simon 99, P Sphicas 99, D Spiga 99, J Steggemann 99, B Stieger 99, M Stoye 99, D Treille 99, A Tsirou 99, G I Veres 99, JR Vlimant 99, N Wardle 99, H K Wöhri 99, W D Zeuner 99, W Bertl 100, K Deiters 100, W Erdmann 100, R Horisberger 100, Q Ingram 100, H C Kaestli 100, S König 100, D Kotlinski 100, U Langenegger 100, D Renker 100, T Rohe 100, F Bachmair 101, L Bäni 101, L Bianchini 101, P Bortignon 101, M A Buchmann 101, B Casal 101, N Chanon 101, A Deisher 101, G Dissertori 101, M Dittmar 101, M Donegà 101, M Dünser 101, P Eller 101, C Grab 101, D Hits 101, W Lustermann 101, B Mangano 101, A C Marini 101, P Martinez Ruiz delArbol 101, D Meister 101, N Mohr 101, C Nägeli 101, P Nef 101, F Nessi-Tedaldi 101, F Pandolfi 101, F Pauss 101, M Peruzzi 101, M Quittnat 101, L Rebane 101, FJ Ronga 101, M Rossini 101, A Starodumov 101, M Takahashi 101, K Theofilatos 101, R Wallny 101, H A Weber 101, C Amsler 102, M F Canelli 102, V Chiochia 102, A De Cosa 102, A Hinzmann 102, T Hreus 102, M Ivova Rikova 102, B Kilminster 102, B MillanMejias 102, J Ngadiuba 102, P Robmann 102, H Snoek 102, S Taroni 102, M Verzetti 102, Y Yang 102, M Cardaci 103, K H Chen 103, C Ferro 103, C M Kuo 103, W Lin 103, Y J Lu 103, R Volpe 103, S S Yu 103, P Chang 104, Y H Chang 104, Y W Chang 104, Y Chao 104, K F Chen 104, P H Chen 104, C Dietz 104, U Grundler 104, W-S Hou 104, K Y Kao 104, Y J Lei 104, Y F Liu 104, R-S Lu 104, D Majumder 104, E Petrakou 104, Y M Tzeng 104, R Wilken 104, B Asavapibhop 105, N Srimanobhas 105, N Suwonjandee 105, A Adiguzel 106, M N Bakirci 106, S Cerci 106, C Dozen 106, I Dumanoglu 106, E Eskut 106, S Girgis 106, G Gokbulut 106, E Gurpinar 106, I Hos 106, E E Kangal 106, A KayisTopaksu 106, G Onengut 106, K Ozdemir 106, S Ozturk 106, A Polatoz 106, K Sogut 106, D Sunar Cerci 106, B Tali 106, H Topakli 106, M Vergili 106, I V Akin 107, B Bilin 107, S Bilmis 107, H Gamsizkan 107, B Isildak 107, G Karapinar 107, K Ocalan 107, U E Surat 107, M Yalvac 107, M Zeyrek 107, E Gülmez 108, B Isildak 108, M Kaya 108, O Kaya 108, H Bahtiyar 108, E Barlas 108, K Cankocak 109, F I Vardarlı 109, M Yücel 109, L Levchuk 110, P Sorokin 110, J J Brooke 111, E Clement 111, D Cussans 111, H Flacher 111, R Frazier 111, J Goldstein 111, M Grimes 111, G P Heath 111, H F Heath 111, J Jacob 111, L Kreczko 111, C Lucas 111, Z Meng 111, D M Newbold 111, S Paramesvaran 111, A Poll 111, S Senkin 111, V J Smith 111, T Williams 111, K W Bell 112, A Belyaev 112, C Brew 112, R M Brown 112, D J A Cockerill 112, J A Coughlan 112, K Harder 112, S Harper 112, E Olaiya 112, D Petyt 112, C H Shepherd-Themistocleous 112, A Thea 112, I R Tomalin 112, W J Womersley 112, S D Worm 112, M Baber 113, R Bainbridge 113, O Buchmuller 113, D Burton 113, D Colling 113, N Cripps 113, M Cutajar 113, P Dauncey 113, G Davies 113, M Della Negra 113, P Dunne 113, W Ferguson 113, J Fulcher 113, D Futyan 113, A Gilbert 113, G Hall 113, G Iles 113, M Jarvis 113, G Karapostoli 113, M Kenzie 113, R Lane 113, R Lucas 113, L Lyons 113, A-M Magnan 113, S Malik 113, J Marrouche 113, B Mathias 113, J Nash 113, A Nikitenko 113, J Pela 113, M Pesaresi 113, K Petridis 113, D M Raymond 113, S Rogerson 113, A Rose 113, C Seez 113, P Sharp 113, A Tapper 113, M VazquezAcosta 113, T Virdee 113, J E Cole 114, P R Hobson 114, A Khan 114, P Kyberd 114, D Leggat 114, D Leslie 114, W Martin 114, I D Reid 114, P Symonds 114, L Teodorescu 114, M Turner 114, J Dittmann 115, K Hatakeyama 115, A Kasmi 115, H Liu 115, T Scarborough 115, O Charaf 116, S I Cooper 116, C Henderson 116, P Rumerio 116, A Avetisyan 117, T Bose 117, C Fantasia 117, A Heister 117, P Lawson 117, C Richardson 117, J Rohlf 117, D Sperka 117, J St John 117, L Sulak 117, J Alimena 118, S Bhattacharya 118, G Christopher 118, D Cutts 118, Z Demiragli 118, A Ferapontov 118, A Garabedian 118, S Jabeen 118, U Heintz 118, G Kukartsev 118, E Laird 118, G Landsberg 118, M Luk 118, M Narain 118, M Segala 118, T Sinthuprasith 118, T Speer 118, J Swanson 118, R Breedon 119, G Breto 119, M Calderon De La Barca Sanchez 119, S Chauhan 119, M Chertok 119, J Conway 119, R Conway 119, P T Cox 119, R Erbacher 119, M Gardner 119, W Ko 119, R Lander 119, T Miceli 119, M Mulhearn 119, D Pellett 119, J Pilot 119, F Ricci-Tam 119, M Searle 119, S Shalhout 119, J Smith 119, M Squires 119, D Stolp 119, M Tripathi 119, S Wilbur 119, R Yohay 119, R Cousins 120, P Everaerts 120, C Farrell 120, J Hauser 120, M Ignatenko 120, G Rakness 120, E Takasugi 120, V Valuev 120, M Weber 120, J Babb 121, R Clare 121, J Ellison 121, J W Gary 121, G Hanson 121, J Heilman 121, P Jandir 121, E Kennedy 121, F Lacroix 121, H Liu 121, O R Long 121, A Luthra 121, M Malberti 121, H Nguyen 121, A Shrinivas 121, S Sumowidagdo 121, S Wimpenny 121, W Andrews 122, J G Branson 122, G B Cerati 122, S Cittolin 122, R T D’Agnolo 122, D Evans 122, A Holzner 122, R Kelley 122, D Kovalskyi 122, M Lebourgeois 122, J Letts 122, I Macneill 122, D Olivito 122, S Padhi 122, C Palmer 122, M Pieri 122, M Sani 122, V Sharma 122, S Simon 122, E Sudano 122, Y Tu 122, A Vartak 122, C Welke 122, F Würthwein 122, A Yagil 122, J Yoo 122, D Barge 123, J Bradmiller-Feld 123, C Campagnari 123, T Danielson 123, A Dishaw 123, K Flowers 123, M Franco Sevilla 123, P Geffert 123, C George 123, F Golf 123, L Gouskos 123, J Incandela 123, C Justus 123, N Mccoll 123, J Richman 123, D Stuart 123, W To 123, C West 123, A Apresyan 124, A Bornheim 124, J Bunn 124, Y Chen 124, E Di Marco 124, J Duarte 124, A Mott 124, H B Newman 124, C Pena 124, C Rogan 124, M Spiropulu 124, V Timciuc 124, R Wilkinson 124, S Xie 124, R Y Zhu 124, V Azzolini 125, A Calamba 125, T Ferguson 125, Y Iiyama 125, M Paulini 125, J Russ 125, H Vogel 125, I Vorobiev 125, J P Cumalat 126, B R Drell 126, W T Ford 126, A Gaz 126, E LuiggiLopez 126, U Nauenberg 126, J G Smith 126, K Stenson 126, K A Ulmer 126, S R Wagner 126, J Alexander 127, A Chatterjee 127, J Chu 127, S Dittmer 127, N Eggert 127, W Hopkins 127, B Kreis 127, N Mirman 127, G Nicolas Kaufman 127, J R Patterson 127, A Ryd 127, E Salvati 127, L Skinnari 127, W Sun 127, W D Teo 127, J Thom 127, J Thompson 127, J Tucker 127, Y Weng 127, L Winstrom 127, P Wittich 127, D Winn 128, S Abdullin 129, M Albrow 129, J Anderson 129, G Apollinari 129, L A T Bauerdick 129, A Beretvas 129, J Berryhill 129, P C Bhat 129, K Burkett 129, J N Butler 129, H W K Cheung 129, F Chlebana 129, S Cihangir 129, V D Elvira 129, I Fisk 129, J Freeman 129, Y Gao 129, E Gottschalk 129, L Gray 129, D Green 129, S Grünendahl 129, O Gutsche 129, J Hanlon 129, D Hare 129, R M Harris 129, J Hirschauer 129, B Hooberman 129, S Jindariani 129, M Johnson 129, U Joshi 129, K Kaadze 129, B Klima 129, S Kwan 129, J Linacre 129, D Lincoln 129, R Lipton 129, T Liu 129, J Lykken 129, K Maeshima 129, J M Marraffino 129, V I Martinez Outschoorn 129, S Maruyama 129, D Mason 129, P McBride 129, K Mishra 129, S Mrenna 129, Y Musienko 129, S Nahn 129, C Newman-Holmes 129, V O’Dell 129, O Prokofyev 129, E Sexton-Kennedy 129, S Sharma 129, A Soha 129, W J Spalding 129, L Spiegel 129, L Taylor 129, S Tkaczyk 129, N V Tran 129, L Uplegger 129, E W Vaandering 129, R Vidal 129, A Whitbeck 129, J Whitmore 129, F Yang 129, D Acosta 130, P Avery 130, D Bourilkov 130, M Carver 130, T Cheng 130, D Curry 130, S Das 130, M De Gruttola 130, G P Di Giovanni 130, R D Field 130, M Fisher 130, I K Furic 130, J Hugon 130, J Konigsberg 130, A Korytov 130, T Kypreos 130, J F Low 130, K Matchev 130, P Milenovic 130, G Mitselmakher 130, L Muniz 130, A Rinkevicius 130, L Shchutska 130, N Skhirtladze 130, M Snowball 130, J Yelton 130, M Zakaria 130, V Gaultney 131, S Hewamanage 131, S Linn 131, P Markowitz 131, G Martinez 131, J L Rodriguez 131, T Adams 132, A Askew 132, J Bochenek 132, B Diamond 132, J Haas 132, S Hagopian 132, V Hagopian 132, K F Johnson 132, H Prosper 132, V Veeraraghavan 132, M Weinberg 132, M M Baarmand 133, M Hohlmann 133, H Kalakhety 133, F Yumiceva 133, M R Adams 134, L Apanasevich 134, V E Bazterra 134, D Berry 134, R R Betts 134, I Bucinskaite 134, R Cavanaugh 134, O Evdokimov 134, L Gauthier 134, C E Gerber 134, D J Hofman 134, S Khalatyan 134, P Kurt 134, D H Moon 134, C O’Brien 134, C Silkworth 134, P Turner 134, N Varelas 134, E A Albayrak 135, B Bilki 135, W Clarida 135, K Dilsiz 135, F Duru 135, M Haytmyradov 135, J-P Merlo 135, H Mermerkaya 135, A Mestvirishvili 135, A Moeller 135, J Nachtman 135, H Ogul 135, Y Onel 135, F Ozok 135, A Penzo 135, R Rahmat 135, S Sen 135, P Tan 135, E Tiras 135, J Wetzel 135, T Yetkin 135, K Yi 135, B A Barnett 136, B Blumenfeld 136, S Bolognesi 136, D Fehling 136, A V Gritsan 136, P Maksimovic 136, C Martin 136, M Swartz 136, P Baringer 137, A Bean 137, G Benelli 137, C Bruner 137, J Gray 137, R P Kenny III 137, M Murray 137, D Noonan 137, S Sanders 137, J Sekaric 137, R Stringer 137, Q Wang 137, J S Wood 137, A F Barfuss 138, I Chakaberia 138, A Ivanov 138, S Khalil 138, M Makouski 138, Y Maravin 138, L K Saini 138, S Shrestha 138, I Svintradze 138, J Gronberg 139, D Lange 139, F Rebassoo 139, D Wright 139, A Baden 140, B Calvert 140, S C Eno 140, J A Gomez 140, N J Hadley 140, R G Kellogg 140, T Kolberg 140, Y Lu 140, M Marionneau 140, A C Mignerey 140, K Pedro 140, A Skuja 140, M B Tonjes 140, S C Tonwar 140, A Apyan 141, R Barbieri 141, G Bauer 141, W Busza 141, I A Cali 141, M Chan 141, L Di Matteo 141, V Dutta 141, G Gomez Ceballos 141, M Goncharov 141, D Gulhan 141, M Klute 141, Y S Lai 141, Y-J Lee 141, A Levin 141, P D Luckey 141, T Ma 141, C Paus 141, D Ralph 141, C Roland 141, G Roland 141, G S F Stephans 141, F Stöckli 141, K Sumorok 141, D Velicanu 141, J Veverka 141, B Wyslouch 141, M Yang 141, M Zanetti 141, V Zhukova 141, B Dahmes 142, A De Benedetti 142, A Gude 142, S C Kao 142, K Klapoetke 142, Y Kubota 142, J Mans 142, N Pastika 142, R Rusack 142, A Singovsky 142, N Tambe 142, J Turkewitz 142, J G Acosta 143, S Oliveros 143, E Avdeeva 144, K Bloom 144, S Bose 144, D R Claes 144, A Dominguez 144, R Gonzalez Suarez 144, J Keller 144, D Knowlton 144, I Kravchenko 144, J Lazo-Flores 144, S Malik 144, F Meier 144, G R Snow 144, J Dolen 145, A Godshalk 145, I Iashvili 145, A Kharchilava 145, A Kumar 145, S Rappoccio 145, G Alverson 146, E Barberis 146, D Baumgartel 146, M Chasco 146, J Haley 146, A Massironi 146, D M Morse 146, D Nash 146, T Orimoto 146, D Trocino 146, D Wood 146, J Zhang 146, K A Hahn 147, A Kubik 147, N Mucia 147, N Odell 147, B Pollack 147, A Pozdnyakov 147, M Schmitt 147, S Stoynev 147, K Sung 147, M Velasco 147, S Won 147, A Brinkerhoff 148, K M Chan 148, A Drozdetskiy 148, M Hildreth 148, C Jessop 148, D J Karmgard 148, N Kellams 148, K Lannon 148, W Luo 148, S Lynch 148, N Marinelli 148, T Pearson 148, M Planer 148, R Ruchti 148, N Valls 148, M Wayne 148, M Wolf 148, A Woodard 148, L Antonelli 149, J Brinson 149, B Bylsma 149, L S Durkin 149, S Flowers 149, C Hill 149, R Hughes 149, K Kotov 149, T Y Ling 149, D Puigh 149, M Rodenburg 149, G Smith 149, C Vuosalo 149, B L Winer 149, H Wolfe 149, H W Wulsin 149, E Berry 150, O Driga 150, P Elmer 150, P Hebda 150, A Hunt 150, S A Koay 150, P Lujan 150, D Marlow 150, T Medvedeva 150, M Mooney 150, J Olsen 150, P Piroué 150, X Quan 150, H Saka 150, D Stickland 150, C Tully 150, J S Werner 150, S C Zenz 150, A Zuranski 150, E Brownson 151, H Mendez 151, J E Ramirez Vargas 151, E Alagoz 152, V E Barnes 152, D Benedetti 152, G Bolla 152, D Bortoletto 152, M De Mattia 152, A Everett 152, Z Hu 152, M K Jha 152, M Jones 152, K Jung 152, M Kress 152, N Leonardo 152, D Lopes Pegna 152, V Maroussov 152, P Merkel 152, D H Miller 152, N Neumeister 152, B C Radburn-Smith 152, X Shi 152, I Shipsey 152, D Silvers 152, A Svyatkovskiy 152, F Wang 152, W Xie 152, L Xu 152, H D Yoo 152, J Zablocki 152, Y Zheng 152, N Parashar 153, J Stupak 153, A Adair 154, B Akgun 154, K M Ecklund 154, F J M Geurts 154, W Li 154, B Michlin 154, B P Padley 154, R Redjimi 154, J Roberts 154, J Zabel 154, B Betchart 155, A Bodek 155, R Covarelli 155, P deBarbaro 155, R Demina 155, Y Eshaq 155, T Ferbel 155, A Garcia-Bellido 155, P Goldenzweig 155, J Han 155, A Harel 155, A Khukhunaishvili 155, D C Miner 155, G Petrillo 155, D Vishnevskiy 155, A Bhatti 155, R Ciesielski 156, L Demortier 156, K Goulianos 156, G Lungu 156, C Mesropian 156, S Arora 157, A Barker 157, J P Chou 157, C Contreras-Campana 157, E Contreras-Campana 157, D Duggan 157, D Ferencek 157, Y Gershtein 157, R Gray 157, E Halkiadakis 157, D Hidas 157, A Lath 157, S Panwalkar 157, M Park 157, R Patel 157, V Rekovic 157, S Salur 157, S Schnetzer 157, C Seitz 157, S Somalwar 157, R Stone 157, S Thomas 157, P Thomassen 157, M Walker 157, K Rose 158, S Spanier 158, A York 158, O Bouhali 159, R Eusebi 159, W Flanagan 159, J Gilmore 159, T Kamon 159, V Khotilovich 159, V Krutelyov 159, R Montalvo 159, I Osipenkov 159, Y Pakhotin 159, A Perloff 159, J Roe 159, A Rose 159, A Safonov 159, T Sakuma 159, I Suarez 159, A Tatarinov 159, N Akchurin 160, C Cowden 160, J Damgov 160, C Dragoiu 160, P R Dudero 160, J Faulkner 160, K Kovitanggoon 160, S Kunori 160, S W Lee 160, T Libeiro 160, I Volobouev 160, E Appelt 161, A G Delannoy 161, S Greene 161, A Gurrola 161, W Johns 161, C Maguire 161, Y Mao 161, A Melo 161, M Sharma 161, P Sheldon 161, B Snook 161, S Tuo 161, J Velkovska 161, M W Arenton 162, S Boutle 162, B Cox 162, B Francis 162, J Goodell 162, R Hirosky 162, A Ledovskoy 162, H Li 162, C Lin 162, C Neu 162, J Wood 162, S Gollapinni 163, R Harr 163, P E Karchin 163, C Kottachchi Kankanamge Don 163, P Lamichhane 163, J Sturdy 163, D A Belknap 164, D Carlsmith 164, M Cepeda 164, S Dasu 164, S Duric 164, E Friis 164, R Hall-Wilton 164, M Herndon 164, A Hervé 164, P Klabbers 164, A Lanaro 164, C Lazaridis 164, A Levine 164, R Loveless 164, A Mohapatra 164, I Ojalvo 164, T Perry 164, G A Pierro 164, G Polese 164, I Ross 164, T Sarangi 164, A Savin 164, W H Smith 164, N Woods 164, [Authorinst]CMS Collaboration 164,
PMCID: PMC4455910  PMID: 26069461

Abstract

Results are presented from a search for particle dark matter (DM), extra dimensions, and unparticles using events containing a jet and an imbalance in transverse momentum. The data were collected by the CMS detector in proton–proton collisions at the LHC and correspond to an integrated luminosity of 19.7fb-1at a centre-of-mass energy of 8TeV. The number of observed events is found to be consistent with the standard model prediction. Limits are placed on the DM-nucleon scattering cross section as a function of the DM particle mass for spin-dependent and spin-independent interactions. Limits are also placed on the scale parameter MD in the Arkani-Hamed, Dimopoulos, and Dvali (ADD) model of large extra dimensions, and on the unparticle model parameter ΛU. The constraints on ADD models and unparticles are the most stringent limits in this channel and those on the DM-nucleon scattering cross section are an improvement over previous collider results.

Introduction

This paper describes a search for new physics using the signature of a hadronic jet and an imbalance in transverse energy resulting from undetected particles. We use the term “monojet” to describe events with this topology. Such events can be produced in new physics scenarios, including particle dark matter (DM) production, large extra dimensions, and unparticles. The data sample corresponds to an integrated luminosity of 19.7fb-1collected by the CMS experiment in proton–proton collisions provided by the CERN LHC at a centre-of-mass energy of 8TeV.

Particle dark matter has been proposed to explain numerous astrophysical measurements, such as the rotation curves of galaxies and gravitational lensing [1, 2]. Popular models of particle dark matter hypothesize the existence of non-relativistic particles that interact weakly with the standard model (SM) particles. These are known as weakly interacting massive particles (WIMPs). Such models are consistent with the thermal relic abundance for dark matter [3, 4] if the WIMPs have weak-scale masses and if their interaction cross section with baryonic matter is of the order of electroweak cross sections. Some new physics scenarios postulated to explain the hierarchy problem also predict the existence of WIMPs [5].

Since WIMPs are weakly interacting and neutral, they are not expected to produce any discernible signal in the LHC detectors. Like neutrinos, they remain undetected and their presence in an event must be inferred from an imbalance of the total momentum of all reconstructed particles in the plane transverse to the beam axis. The magnitude of such an imbalance is referred to as missing transverse energy, denoted by ETmiss. The monojet signature can be used to search for the pair production of WIMPs in association with a jet from initial-state radiation (ISR), which is used to tag or trigger the event.

In this Letter, we investigate two scenarios for producing dark matter particles that have been extensively discussed [69]. In the first case, we assume that the mediator responsible for coupling of the SM and DM particles is heavier (few TeV) than the typical energy transfer at the LHC. We can thus assume the interaction to be a contact interaction and work within the framework of an effective field theory. In the second case, we consider the scenario in which the mediator is light enough to be produced at the LHC. Figure 1 shows Feynman diagrams leading to the pair production of DM particles for the case of a contact interaction and the exchange of a mediator.

Fig. 1.

Fig. 1

Feynman diagrams for the pair production of DM particles for the case of a contact interaction (left) and the exchange of a mediator (right)

We study interactions that are vector, axial-vector, and scalar, as described in [6, 9], for a Dirac fermion DM particle (χ). The results are not expected to be greatly altered if the DM particle is a Majorana fermion, except that certain interactions are not allowed. Results from previous searches in the monojet channel have been used to set limits on the DM-nucleon scattering cross section as a function of the DM mass [1012].

The Arkani-Hamed, Dimopoulos, and Dvali (ADD) model [1317] of large extra dimensions mitigates the hierarchy problem [18] by introducing a number δ of extra dimensions. In the simplest scenario, these are compactified over a multidimensional torus with radii R. Gravity is free to propagate into the extra dimensions, while SM particles and interactions are confined to ordinary space–time. The strength of the gravitational force is thus diluted in 3+1 dimensional space–time, explaining its apparent weakness in comparison to the other fundamental forces. The fundamental Planck scale in 3+δ spatial dimensions, MD, is related to the apparent Planck scale in 3 dimensions, MPl as MPl2=8πMD(δ+2)Rδ [16]. The increased phase space available in the extra dimensions is expected to enhance the production of gravitons, which are weakly interacting and escape undetected, their presence must therefore be inferred by detecting ETmiss. When produced in association with a jet, this gives rise to the monojet signal. Previous searches for large extra dimensions in monophoton and monojet channels have yielded no evidence of new physics [11, 12, 1925].

Unparticle models [26] postulate the existence of a scale-invariant (conformal) sector, indicating new physics that cannot be described using particles. This conformal sector is connected to the SM at a high mass scale ΛU. In the low-energy limit, with scale dimension du, events appear to correspond to the production of a non-integer number du of invisible particles. Assuming these are sufficiently long-lived to decay outside of the detector, they are undetected and so give rise to ETmiss. If ΛU is assumed to be of orderTeV, the effects of unparticles can be studied in the context of an effective field theory at the LHC. Previous searches for unparticles at CMS [24] have yielded no evidence of new physics. Figure 2 shows Feynman diagrams for some of the processes leading to the production of a graviton or unparticle in association with a jet.

Fig. 2.

Fig. 2

Feynman diagrams for the production of a graviton (G) or unparticles (U) in association with a jet

The CMS detector and event reconstruction

The CMS apparatus features a superconducting solenoid, 12.5\,m long with an internal diameter of 6\,m, providing a uniform magnetic field of 3.8\,T. Within the field volume are a silicon pixel and strip tracker, a crystal electromagnetic calorimeter and a brass/scintillator hadron calorimeter. The momentum resolution for reconstructed tracks in the central region is about 1.5 % for non-isolated particles with transverse momenta (pT) between 1 and 10GeV and 2.8 % for isolated particles with pT of 100GeV. The calorimeter system surrounds the tracker and consists of a scintillating lead tungstate crystal electromagnetic calorimeter and a brass/scintillator hadron calorimeter with coverage up to |η|=3. The quartz/steel forward hadron calorimeters extend the calorimetry coverage up to |η|=5.

A system of gas-ionization muon detectors embedded in the steel flux-return yoke of the solenoid allows reconstruction and identification of muons in the |η|<2.4 region. Events are recorded using a two-level trigger system. A more detailed description of the CMS detector and the trigger system can be found in [27].

Offline, particle candidates are individually identified using a particle-flow reconstruction [28, 29]. This algorithm reconstructs each particle produced in a collision by combining information from the tracker, the calorimeters, and the muon system, and identifies them as either a charged hadron, neutral hadron, photon, muon, or electron. The candidate particles are then clustered into jets using the anti-kT algorithm [30] with a distance parameter of 0.5. The energy resolution for jets is 15 % at pT of 10GeV, 8 % at pT of 100GeV, and 4 % at pT of 1 TeV [31]. Corrections are applied to the jet four-momenta as a function of the jet pT and η to account for residual effects of non-uniform detector response [32]. Contributions from multiple proton–proton collisions overlapping with the event of interest (pileup) are mitigated by discarding charged particles not associated with the primary vertex and accounting for the effects from neutral particles [33]. The ETmiss in this analysis is defined as the magnitude of the vector sum of the transverse momenta of all particles reconstructed in the event, excluding muons.

Event selection

Events are collected using two triggers, the first of which has an ETmiss threshold of 120GeV, where the ETmiss is calculated using calorimeter information only. The second trigger requires a particle-flow jet with pT>80GeV and ETmiss>105GeV, where the ETmiss is reconstructed using the particle-flow algorithm and excludes muons. This definition of ETmiss allows the control sample of Zμμ events used for estimating the Zνν background to be collected from the same trigger as the signal sample. The trigger efficiencies are measured to be nearly 100 % for all signal regions. Events are required to have a well-reconstructed primary vertex [34], which is defined as the one with the largest sum of pT2 of all the associated tracks, and is assumed to correspond to the hard scattering process. Instrumental and beam-related backgrounds are suppressed by rejecting events where less than 20 % of the energy of the highest pT jet is carried by charged hadrons, or more than 7 % of this energy is carried by either neutral hadrons or photons. This is very effective in rejecting non-collision backgrounds, which are found to be negligible. The jet with the highest transverse momentum (j1) is required to have pT>110GeV and |η|<2.4. As signal events typically contain jets from initial state radiation, a second jet (j2) with pT above 30GeV and |η|<4.5 is allowed, provided the second jet is separated from the first in azimuth (ϕ) by less than 2.5 radians, Δϕ(j1,j2)<2.5. This angular requirement suppresses Quantum ChromoDynamics (QCD) dijet events. Events with more than two jets with pT>30GeV and |η|<4.5 are discarded, thereby significantly reducing background from top-quark pair tt¯ and QCD multijet events. Processes producing leptons, such as W and Z production, dibosons, and top-quark decays, are suppressed by rejecting events with well reconstructed and isolated electrons with pT>10GeV, reconstructed muons [35] with pT>10GeV and well-identified [36] hadronically decaying tau leptons with pT>20GeV and |η|<2.3. Electrons and muons are considered isolated if the scalar sum of the pT of the charged hadrons, neutral hadrons and photon contributions computed in a cone of radius (Δη)2+(Δϕ)2=0.4 about the lepton direction, divided by the electron or muon pT, is less than 0.2. The analysis is performed in seven inclusive regions of ETmiss: ETmiss>250, 300, 350, 400, 450, 500, 550GeV.

Monte Carlo event generation

The DM signal samples are produced using the leading order (LO) matrix element generator MadGraph  [37] interfaced with pythia 6.4.26 [38] with tune Z2* [39] for parton showering and hadronization, and the CTEQ 6L1 [40] parton distribution functions (PDFs). The process of DM pair production is generated with up to two additional partons and a transverse momentum requirement of 80GeV on the partons, with no matching to pythia. Only initial states with gluons and the four lightest quarks are considered and a universal coupling is assumed to all the quarks. The renormalization and factorization scales are set to the sum of M2+pT2 for all produced particles, where M is the mass of the particle. For the heavy mediator case, where an effective field theory is assumed, DM particles with masses Mχ=1, 10, 100, 200, 400, 700, and 1000GeV are generated. For the case of a light mediator, the mediator mass, M, is varied from 50GeV all the way up to 10 TeV(to show the effect of the transition to heavy mediators) for DM particle masses of 50 and 500GeV. Three separate samples are generated for each value of M, with the width, Γ, of the mediator set to Γ=M/3, M/10, or M/8π, where M/3 and M/8π are taken as the extremes of a wide-width and narrow-width mediator, respectively.

The events for the ADD and unparticle models are generated with pythia 8.130 [41, 42] using tune 4C [43] and the CTEQ 6.6M [40] PDFs. This model is an effective theory and holds only for energies well below MD (ΛU) for the graviton (unparticle). For a parton-parton centre-of-mass energy s^>MD (ΛU), the simulated cross sections of the graviton (unparticle) is suppressed by a factor MD4/s^2 (ΛU4/s^2) [42]. The renormalization and factorization scales are set to the geometric mean of the squared transverse mass of the outgoing particles.

The MadGraph  [44, 45] generator interfaced with pythia 6.4.26 and the CTEQ 6L1 PDFs is used to produce vector bosons in association with jets (Z + jets and W + jets), tt¯, or vector bosons in association with photons (Wγ, Zγ). The QCD multijet and diboson (ZZ, WZ, WW) processes are generated with pythia 6.4.26 and CTEQ 6L1 PDFs. Single top-quark events are generated with powheg  [46, 47] interfaced with pythia 6.4.26 and CTEQ 6.6M PDFs. In all cases, pythia 6.4.26 is used with the Z2* tune. All the generated signal and background events are passed through a Geant4  [48, 49] simulation of the CMS detector and reconstructed with the same algorithms as used for collision data. The effect of additional proton–proton interactions in each beam crossing (pileup) is modelled by superimposing minimum bias interactions (obtained using pythia with the Z2* tune) onto the hard interaction, with the multiplicity distribution of primary vertices matching the one observed in data.

Background estimate

After the full event selection, there are two dominant backgrounds: Z + jets events with the Z boson decaying into a pair of neutrinos, denoted Z(νν); and W + jets with the W boson decaying leptonically, denoted W(ν) (where stands for a charged lepton, and can be replaced by e, μ or τ to denote specific decays to electron, muon, or tau, respectively). Other background processes include: tt¯ production; single top quark, denoted (tt¯); QCD multijet; diboson processes, including ZZ, WZ, and WW; and Z + jets events with the Z boson decaying to charged leptons, denoted Z(). Together, these other background processes constitute 4 % of the total. The dominant backgrounds are estimated from data, as described in detail below, whilst others are taken from simulation, and cross-checked with data. Figure 3 shows the ETmiss distribution of the data and of the expected background, after imposing all the selections described in Sect. 3 and normalised to the estimation from data using the ETmiss threshold of 500GeV.

Fig. 3.

Fig. 3

Missing transverse energy ETmiss after all selections for data and SM backgrounds. The processes contributing to the SM background are from simulation, normalised to the estimation from data using the ETmiss threshold of 500GeV. The error bars in the lower panel represent the statistical uncertainty. Overflow events are included in the last bin

The background from events containing Z(νν) decays is estimated from a control data sample of Z(μμ) events, since the kinematic features of the two processes are similar. The control sample is selected by applying the full signal selection, except for the muon veto, and in addition requiring two reconstructed muons with pT>20GeV and |η|<2.4, with at least one muon also passing the isolation requirement. The reconstructed invariant mass is required to be between 60 and 120GeV. The distribution of Z(νν) events is estimated from the observed dimuon control sample after correcting for the following: the estimated background in the dimuon sample; differences in muon acceptance and efficiency with respect to neutrinos; and the ratio of branching fractions for the Z decay to a pair of neutrinos, and to a pair of muons (RBF). The acceptance estimate is taken from the fraction of simulated events that pass all signal selection requirements (except muon veto), having two generated muons with pT>20GeV and |η|<2.4 and an invariant mass within the Z-boson mass window of 60–120GeV. The efficiency of the selection, which has the additional requirement that there be at least one isolated muon in the event, is also estimated from simulation. It is corrected to account for differences in the measured muon reconstruction efficiencies in data and simulation. The uncertainty in the Z(νν) prediction includes both statistical and systematic components. The sources of uncertainty are: (1) the statistical uncertainty in the numbers of Z(μμ) events in the data, (2) uncertainty due to backgrounds contributing to the control sample, (3) uncertainties in the acceptance due to the size of the simulation samples and from PDFs evaluated based on the PDF4LHC [50, 51] recommendations, (4) the uncertainty in the selection efficiency as determined from the difference in measured efficiencies in data and simulation and the size of the simulation samples, and (5) the theoretical uncertainty on the ratio of branching fractions [52]. The backgrounds to the Z(μμ) control sample contribute at the level of 3–5 % across the ETmiss signal regions and are predominantly from diboson and tt¯ processes. These are taken from simulation and a 50 % uncertainty is assigned to them. The dominant source of uncertainty in the high ETmiss regions is the statistical uncertainty in the number of Z(μμ) events, which is 11 % for ETmiss>500GeV. Table 1 summarizes the statistical and systematic uncertainties.

Table 1.

Summary of the statistical and systematic contributions to the total uncertainty on the Z(νν) background

ETmiss (GeV ) >250 >300 >350 >400 >450 >500 >550
(1) Z(μμ) + jets statistical unc. 1.7 2.7 4.0 5.6 7.8 11 16
(2) Background 1.4 1.7 2.1 2.4 2.7 3.2 3.9
(3) Acceptance 2.0 2.1 2.1 2.2 2.3 2.6 2.8
(4) Selection efficiency 2.1 2.2 2.2 2.4 2.7 3.1 3.7
(5) RBF 2.0 2.0 2.0 2.0 2.0 2.0 2.0
Total uncertainty (%) 5.1 5.6 6.6 7.9 9.9 13 18

The second-largest background arises from W + jets events that are not rejected by the lepton veto. This can occur when a lepton (electron or muon) from the W decays (prompt or via leptonic tau decay) fails the identification, isolation or acceptance requirements, or a hadronic tau decay is not identified. The contributions to the signal region from these events are estimated from the W(μν)+ jets control sample in data. This sample is selected by applying the full signal selection, except the muon veto, and instead requiring an isolated muon with pT>20GeV and |η|<2.4, and the transverse mass MT to be between 50 and 100GeV. Here MT=2pTμETmiss1-cosΔϕ, where pTμ is the transverse momentum of the muon and Δϕ is the azimuthal angle between the muon direction of flight and the negative of the sum of the transverse momenta of all the particles reconstructed in the event.

The observed number of events in the W control sample is used to find the numbers of W(μν)+ jets events passing the selection steps prior to the lepton veto. The required corrections for background contamination of the control sample, and for the acceptance and efficiency are taken from simulation. Using these correction factors, we estimate the fraction of events containing muons that are not identified, either due to inefficiencies in the reconstruction or because they have trajectories outside the muon system acceptance. This acceptance and the selection efficiency are also taken from simulation. Such events will not be rejected by the lepton veto and so contribute to the background in the signal region.

In addition, there are similar contributions from W decays to electrons and tau leptons. These contributions are also estimated based on the W(μν)+ jets sample. The ratio of W(ν)+ jets events to W(μν)+ jets events passing the selection steps prior to the lepton veto is taken from simulation, separately for each lepton flavor. The same procedure as that used in the muon case is then applied to obtain the background contribution to the signal region.

The detector acceptances for electrons, muons and tau leptons are obtained from simulation. The lepton selection efficiency is also obtained from simulation, but corrected for any difference between the efficiency measured in data and simulation [53]. A systematic uncertainty of 50 % is assigned to the correction for contamination from background events taken from simulation.

The sources of uncertainty in the W + jets estimation are: (1) the statistical uncertainty in the number of single-muon events in the data, (2) uncertainty in the background events obtained from simulation, (3) uncertainty in acceptance from PDFs and size of the simulation samples and uncertainty in the selection efficiency from the variation in the data/MC scale factor and size of the simulation samples. A summary of the fractional contributions of these uncertainties to the total uncertainty in the W + jets background is shown in Table 2.

Table 2.

Summary of the statistical and systematic contributions to the total uncertainty on the W + jets background from the various factors used in the estimation from data

ETmiss (GeV) >250 >300 >350 >400 >450 >500 >550
(1) W(μν) + jets statistical unc. 0.8 1.3 1.9 2.8 3.9 5.5 7.3
(2) Background 2.3 2.3 2.2 2.3 2.4 2.6 2.8
(3) Acceptance and efficiency 4.5 4.6 4.9 5.2 5.7 6.4 7.6
Total uncertainty (%) 5.1 5.3 5.7 6.4 7.3 8.8 11

The QCD multijet background is estimated by correcting the prediction from simulation with a data/MC scale factor derived from a QCD-enriched region in data. The QCD-enriched region is selected by applying the signal selection but relaxing the requirement on the jet multiplicity and the angular separation between the first and second jet and instead requiring that the azimuth angle between the ETmiss and the second jet is less than 0.3. The pT threshold for selecting jets (all except the leading jet) is varied from 20 to 80GeV and an average scale factor is derived from a comparison between data and simulation. The tt¯ background is determined from simulation and normalised to the approximate next-to-next-to-leading-order cross section [54], and is validated using a control sample of eμ events in data. The predictions for the number of diboson (WW, WZ, ZZ) events are also determined from simulation, and normalised to their next-to-leading-order (NLO) cross sections [55]. Predictions for Wγ and Z(νν)γ events are included in the estimation of W + jets and Z(νν) + jets from data, as photons are not explicitly vetoed in the estimation of the W + jets and Z(νν) + jets backgrounds. Single top and Z() + jets (including Z()γ production) are predicted to contribute 0.3 % of the total background, and are determined from simulation. A 50% uncertainty is assigned to these backgrounds. In addition to this 50 % uncertainty, the uncertainty on the QCD background also receives a contribution of 30 % arising from the uncertainty on the data/MC scale factor.

Results

A summary of the predictions and corresponding uncertainties for all the SM backgrounds and the data is shown in Table 3 for different values of the ETmiss selection. The observed number of events is consistent with the background expectation, given the statistical and systematic uncertainties. The CLs method [5658] is employed for calculating the upper limits on the signal cross section using a profile likelihood ratio as the test-statistic and systematic uncertainties modeled by log-normal distributions. Uncertainties in the signal acceptance (described below) are taken into account when upper limits on the cross section are determined. The expected and observed 95 % confidence level (CL) upper limits on the contribution of events from new physics are also shown. The model-independent upper limits on the visible cross section for non-SM production of events (denoted σvisBSM) are shown in Fig. 4.

Table 3.

SM background predictions for the numbers of events passing the selection requirements, for various ETmiss thresholds, compared with the observed numbers of events. The uncertainties include both statistical and systematic components. The last two rows give the expected and observed upper limits, at 95 % CL, for the contribution of events from non-SM sources passing the selection requirements

ETmiss (GeV ) >250 >300 >350 >400 >450 >500 >550
Z(νν) + jets 32100 ± 1600 12700 ± 720 5450 ± 360 2740 ± 220 1460 ± 140 747 ± 96 362 ± 64
W + jets 17600 ± 900 6060 ± 320 2380 ± 130 1030 ± 65 501 ± 36 249 ± 22 123 ± 13
(tt¯)  446 ± 220 167 ± 84 69 ± 35 31 ± 16 15 ± 7.7 6.6 ± 3.3 2.8 ± 1.4
Z() + jets 139 ± 70 44 ± 22 18 ± 9.0 8.9 ± 4.4 5.2 ± 2.6 2.3 ± 1.2 1.0 ± 0.5
Single t 155 ± 77 53 ± 26 18 ± 9.1 6.1 ± 3.1 0.9 ± 0.4
QCD multijets 443 ± 270 94 ± 57 29 ± 18 4.9 ± 3.0 2.0 ± 1.2 1.0 ± 0.6 0.5 ± 0.3
Diboson 980 ± 490 440 ± 220 220 ± 110 118 ± 59 65 ± 33 36 ± 18 20 ± 10
Total SM 51800 ± 2000 19600 ± 830 8190 ± 400 3930 ± 230 2050 ± 150 1040 ± 100 509 ± 66
Data 52200 19800 8320 3830 1830 934 519
Exp. upper limit +1σ 5940 2470 1200 639 410 221 187
Exp. upper limit -1σ 2870 1270 638 357 168 123 104
Exp. upper limit 4250 1800 910 452 266 173 137
Obs. upper limit 4510 1940 961 397 154 120 142

Fig. 4.

Fig. 4

The model-independent observed and expected 95 % CL upper limits on the visible cross section times acceptance times efficiency (σ×A×ε) for non-SM production of events. Shaded areas show the ±1σ and ±2σ bands on the expected limits

The total systematic uncertainty in the signal yield is found to be approximately 20 % for the vector and axial-vector dark matter models, ADD extra dimensions, and unparticles, and between 20 and 35 % for the scalar dark matter model. The sources of systematic uncertainties considered are: jet energy scale, which is estimated by shifting the four-vectors of the jets by an η- and pT-dependent factor [32]; PDFs, evaluated using the PDF4LHC prescription from the envelope of the CT10 [59], MSTW2008NLO [60], NNPDF2.1 [61] error sets; renormalization/factorization scales, evaluated by varying simultaneously the renormalization/factorization scale up and down by a factor of 2; modeling of the ISR; simulation of event pileup; and the integrated luminosity measurement. The PDF uncertainty is also evaluated using the LO PDFs (MSTW2008LO [60] and NNPDF21LO [61]) and found to be consistent with the results from the NLO PDFs. The ISR uncertainty is estimated by varying parton shower parameters within pythia for all signal models. In addition, for the dark matter models, a further uncertainty in ISR is obtained by considering the difference in acceptance and cross section from the nominal generated samples to those where a pT threshold of 15GeV is applied on the generated partons and the MLM matching prescription is used to match the matrix element calculation to the parton shower in pythia, with the matching pT scale of 20GeV. The dominant uncertainties are from the modeling of the ISR, which contributes at the level of 5 % for the dark matter models and 12 % for ADD/unparticle models, and the choice of renormalization/factorization scale, which leads to an uncertainty of around 10 % for ADD/unparticle models and 15 % for the dark matter models. In addition, the uncertainty on the scalar dark matter model is dominated by the PDF uncertainty, which ranges from 7 % for low DM mass and up to 30 % for high DM mass.

For each signal point, limits are derived from the signal region expected to give the best limit on the cross section. For dark matter and ADD models, the most stringent limits are obtained for ETmiss>500GeV, whereas for unparticles the optimal selection varies from ETmiss>300GeV for ΛU=1TeVto ETmiss>500GeV for larger values of ΛU.

Interpretation

The observed limit on the cross section depends on the mass of the dark matter particle and the nature of its interaction with the SM particles. The limits on the effective contact interaction scale Λ as a function of Mχ can be translated into a limit on the dark matter-nucleon scattering cross section using the reduced mass of the χ-nucleon system [9].

Within the framework of the effective field theory, we extract limits on the contact interaction scale, Λ, and on the DM-nucleon scattering cross-section, σχN. The confidence level chosen for these limits is 90 %, to enable a direct comparison with the results from the direct detection experiments. The expected and observed limits as a function of the DM mass, Mχ, are shown for the vector and axial-vector operators [6, 9] in Tables 4 and 5, respectively, and for the scalar operator [6, 9] in Table 6. Figure 5 shows the 90 % CL upper limits on the DM-nucleon scattering cross section as a function of Mχ together with those from the direct detection experiments and the previously published CMS result. The limits for the axial-vector operator translate to spin dependent interactions of the dark matter with nucleons, and for the vector and scalar operators they translate to spin independent dark matter-nucleon interactions.

Table 4.

Expected and observed 90 % CL upper limits on the DM-nucleon cross section, σχN, and 90 % CL lower limits on the effective contact interaction scale, Λ, for the vector operator

Mχ (GeV) Expected Expected -1σ Expected +1σ Observed
Λ (GeV) σχN (cm2) Λ (GeV) σχN (cm2) Λ (GeV) σχN (cm2) Λ (GeV) σχN (cm2)
1 951 3.19×10-40 1040 2.23×10-40 843 5.17×10-40 1029 2.33×10-40
10 959 9.68×10-40 1049 6.77×10-40 850 1.57×10-39 1038 7.06×10-40
100 960 1.13×10-39 1050 7.92×10-40 851 1.83×10-39 1039 8.26×10-40
200 926 1.32×10-39 1013 9.21×10-40 821 2.13×10-39 1003 9.60×10-40
400 848 1.89×10-39 927 1.32×10-39 752 3.06×10-39 918 1.37×10-39
700 652 5.40×10-39 713 3.78×10-39 578 8.75×10-39 706 3.94×10-39
1000 471 1.99×10-38 515 1.39×10-38 418 3.22×10-38 510 1.45×10-38

Table 5.

Expected and observed 90 % CL upper limits on the DM-nucleon cross section, σχN, and 90 % CL lower limits on the effective contact interaction scale, Λ, for the axial-vector operator

Mχ (GeV ) Expected Expected -1σ Expected +1σ Observed
Λ (GeV ) σχN (cm2) Λ (GeV ) σχN (cm2) Λ (GeV ) σχN (cm2) Λ (GeV ) σχN (cm2)
1 947 1.19×10-41 1035 8.33×10-42 839 1.93×10-41 1025 8.68×10-42
10 949 3.71×10-41 1038 2.59×10-41 841 6.00×10-41 1027 2.70×10-41
100 932 4.68×10-41 1019 3.28×10-41 826 7.58×10-41 1008 3.41×10-41
200 880 5.94×10-41 962 4.15×10-41 780 9.62×10-41 952 4.33×10-41
400 722 1.32×10-40 789 9.21×10-41 640 2.13×10-40 781 9.60×10-41
700 505 5.52×10-40 552 3.86×10-40 447 8.94×10-40 546 4.03×10-40
1000 335 2.85×10-39 366 1.99×10-39 297 4.61×10-39 363 2.08×10-39

Table 6.

Expected and observed 90 % CL upper limits on the DM-nucleon cross section, σχN, and 90 % CL lower limits on the effective contact interaction scale, Λ, for the scalar operator

Mχ (GeV ) Expected Expected -1σ Expected +1σ Observed
Λ (GeV) σχN (cm2) Λ (GeV ) σχN (cm2) Λ (GeV ) σχN (cm2) Λ (GeV ) σχN (cm2)
1 411 1.85×10-45 437 1.30×10-45 380 3.00×10-45 436 1.31×10-45
10 407 6.15×10-45 432 4.31×10-45 375 1.02×10-44 430 4.44×10-45
100 407 7.25×10-45 432 5.08×10-45 375 1.20×10-44 430 5.23×10-45
200 402 7.96×10-45 426 5.58×10-45 369 1.31×10-44 424 5.75×10-45
400 348 1.90×10-44 368 1.34×10-44 319 3.16×10-44 366 1.39×10-44
700 274 7.91×10-44 290 5.60×10-44 252 1.32×10-43 289 5.79×10-44
1000 208 4.15×10-43 220 2.94×10-43 191 6.93×10-43 219 3.04×10-43

Fig. 5.

Fig. 5

Upper limits on the DM-nucleon cross section, at 90 % CL, plotted against DM particle mass and compared with previously published results. Toplimits for the vector and scalar operators from the previous CMS analysis [11], together with results from the CoGeNT [66], SIMPLE [67], COUPP [68], CDMS [69, 70], SuperCDMS [71], XENON100 [72], and LUX [73] collaborations. The solid and hatched yellow contours show the 68 and 90 % CL contours respectively for a possible signal from CDMS [74]. Bottomlimits for the axial-vector operator from the previous CMS analysis [11], together with results from the SIMPLE [67], COUPP [68], Super-K [75], and IceCube [76] collaborations

Given the high centre-of-mass energies that are being probed by the LHC, it is important to consider the possibility that the effective theory is not always valid. The validity of the effective theory has been discussed in [7, 9, 6265]. It is pointed out in the literature that for theories to be perturbative the product of the couplings gχgq is typically required to be smaller than 4π, and this condition is likely not satisfied for the entire region of phase space probed by the collider searches. In addition, the range of values for the couplings being probed within the effective field theory may be unrealistically large [65].

Therefore, we also consider the explicit case of an s-channel mediator with vector interactions, following the model described in [62]. The mass of the mediator is varied for two fixed values of the mass of the DM particle, 50 and 500GeV. The width of the mediator is varied between the extremes of M/8π and M/3, where M/8π corresponds to a mediator that can annihilate into only one quark flavor and helicity, has couplings gχgq=1 and is regarded as a lower limit on the mediator width. However, not all widths may be physically realizable for the DM couplings that are considered [62]. Figure 6 shows the resulting observed limits on the mediator mass divided by coupling (M/gχgq), as a function of the mass of the mediator. The resonant enhancement in the production cross section, once the mass of the mediator is within the kinematic range and can be produced on-shell, can be clearly seen. The limits on M/gχgq approximate to those obtained from the effective field theory framework at large mediator mass, but are weaker at low mediator mass. Also shown are dashed contours corresponding to constant values of the couplings gχgq.

Fig. 6.

Fig. 6

Observed limits on the mediator mass divided by coupling, M/gχgq, as a function of the mass of the mediator, M, assuming vector interactions and a dark matter mass of 50GeV (blue, filled) and 500GeV (red, hatched). The width, Γ, of the mediator is varied between M/3 and M/8π. The dashed lines show contours of constant coupling gχgq

Lower limits on MD in the ADD model, for different values of δ, have been obtained using LO cross section calculations, and the application of NLO QCD corrections, using K-factors, K=σNLO/σLO of 1.4 for δ={2,3}, 1.3 for δ={4, 5}, and 1.2 for δ=6 [77]. Figure 7 shows 95 % CL limits at LO, compared to published results from ATLAS, LEP, and the Tevatron. The ATLAS limits were produced using the full kinematic phase space, without any truncation applied to restrict the phase space to the region where the effective field theory is valid. The CMS limits are obtained using the truncated phase space, after discarding events for which the parton center of mass energy s^>MD2. The maximum difference in the cross section evaluated with and without the truncation was found to be 11 %. Table 7 shows the expected and observed limits at LO and NLO for the ADD model.

Fig. 7.

Fig. 7

Lower limits at 95 % CL on MD plotted against the number of extra dimensions δ, with results from the ATLAS [25], CMS [11], LEP [1921, 78], CDF [22], and DØ [23] collaborations

Table 7.

Expected and observed 95 % CL lower limits on ADD model parameter MD in TeV as a function of δ at LO and NLO

δ Expected limit +1σ -1σ Observed limit
LO limit on MD (TeV)
   2 5.09 4.80 5.60 5.61
   3 3.99 3.87 4.36 4.38
   4 3.74 3.56 3.86 3.86
   5 3.32 2.99 3.54 3.55
   6 2.99 2.98 3.25 3.26
NLO limit on MD (TeV)
   2 5.53 5.21 6.08 6.09
   3 4.34 4.21 4.74 4.77
   4 3.85 3.66 3.97 3.97
   5 3.49 3.14 3.72 3.73
   6 3.24 3.23 3.52 3.53

Figure 8 shows the expected and observed 95 % CL limits on the cross-sections for scalar unparticles (S=0) with dU=1.5, 1.6, 1.7, 1.8, and 1.9 as a function of ΛU for a fixed coupling constant λ=1. The observed 95 % CL limit ΛU for these values of dU is shown in Table 8.

Fig. 8.

Fig. 8

The expected and observed lower limits on the unparticle model parameters ΛU as a function of dU at 95 % CL, compared to previous results [24, 79]. The shaded region indicates the side of the curve that is excluded

Table 8.

Expected and observed 95 % CL lower limits on ΛU (in TeV) for scalar unparticles with dU=1.5, 1.6, 1.7, 1.8 and 1.9 and a fixed coupling constant λ=1

dU Expected limit on ΛU (TeV) +1σ -1σ Observed limit on ΛU (TeV)
1.5 7.88 6.63 8.39 10.00
1.6 3.89 2.51 4.88 4.91
1.7 2.63 2.09 2.89 2.91
1.8 1.91 1.76 1.98 2.01
1.9 1.41 0.88 1.46 1.60

Summary

A search for particle dark matter, large extra dimensions, and unparticle production has been performed in the monojet channel using a data sample of proton–proton collisions at s=8TeVcorresponding to an integrated luminosity of 19.7fb-1. The dominant backgrounds to this topology are from Z(νν) + jets and W(ν)+ jets events, and are estimated from data samples of Z(μμ) and W(μν)events, respectively. The data are found to be in agreement with expected contributions from standard model processes. Limits are set on the DM-nucleon scattering cross section assuming vector, axial-vector, and scalar operators. Limits are also set on the fundamental Planck scale MD in the ADD model of large extra dimensions and on the unparticle model parameter ΛU. Compared to previous CMS publications in this channel, the lower limits on MD represent an approximately 40 % improvement, and the lower limits on the unparticle model parameter ΛU represent an improvement by a factor of roughly 3. The upper limit on the DM-nucleon cross section has been reduced from 8.79×10-41 to 2.70×10-41cm2 for the axial-vector operator and from 2.47×10-39 to 7.06×10-40cm2 for the vector operator for a particle DM mass of 10GeV. The constraints on ADD models and unparticles are the most stringent limits in this channel and those on the DM-nucleon scattering cross section are an improvement over previous collider results.

Acknowledgments

We congratulate our colleagues in the CERN accelerator departments for the excellent performance of the LHC and thank the technical and administrative staffs at CERN and at other CMS institutes for their contributions to the success of the CMS effort. In addition, we gratefully acknowledge the computing centres and personnel of the Worldwide LHC Computing Grid for delivering so effectively the computing infrastructure essential to our analyses. Finally, we acknowledge the enduring support for the construction and operation of the LHC and the CMS detector provided by the following funding agencies: BMWFW and FWF (Austria); FNRS and FWO (Belgium); CNPq, CAPES, FAPERJ, and FAPESP (Brazil); MES (Bulgaria); CERN; CAS, MoST, and NSFC (China); COLCIENCIAS (Colombia); MSES and CSF (Croatia); RPF (Cyprus); MoER, ERC IUT and ERDF (Estonia); Academy of Finland, MEC, and HIP (Finland); CEA and CNRS/IN2P3 (France); BMBF, DFG, and HGF (Germany); GSRT (Greece); OTKA and NIH (Hungary); DAE and DST (India); IPM (Iran); SFI (Ireland); INFN (Italy); NRF and WCU (Republic of Korea); LAS (Lithuania); MOE and UM (Malaysia); CINVESTAV, CONACYT, SEP, and UASLP-FAI (Mexico); MBIE (New Zealand); PAEC (Pakistan); MSHE and NSC (Poland); FCT (Portugal); JINR (Dubna); MON, RosAtom, RAS and RFBR (Russia); MESTD (Serbia); SEIDI and CPAN (Spain); Swiss Funding Agencies (Switzerland); MST (Taipei); ThEPCenter, IPST, STAR and NSTDA (Thailand); TUBITAK and TAEK (Turkey); NASU and SFFR (Ukraine); STFC (United Kingdom); DOE and NSF (USA). Individuals have received support from the Marie-Curie programme and the European Research Council and EPLANET (European Union); the Leventis Foundation; the A. P. Sloan Foundation; the Alexander von Humboldt Foundation; the Belgian Federal Science Policy Office; the Fonds pour la Formation à la Recherche dans l’Industrie et dans l’Agriculture (FRIA-Belgium); the Agentschap voor Innovatie door Wetenschap en Technologie (IWT-Belgium); the Ministry of Education, Youth and Sports (MEYS) of the Czech Republic; the Council of Science and Industrial Research, India; the HOMING PLUS programme of Foundation for Polish Science, cofinanced from European Union, Regional Development Fund; the Compagnia di San Paolo (Torino); the Consorzio per la Fisica (Trieste); MIUR project 20108T4XTM (Italy); the Thalis and Aristeia programmes cofinanced by EU-ESF and the Greek NSRF; and the National Priorities Research Program by Qatar National Research Fund.

References

  • 1.Trimble V. Existence and nature of dark matter in the universe. Ann. Rev. Astron. Astrophys. 1987;25:425. doi: 10.1146/annurev.aa.25.090187.002233. [DOI] [Google Scholar]
  • 2.Feng JL. Dark matter candidates from particle physics and methods of detection. Ann. Rev. Astron. Astrophys. 2010;48:495. doi: 10.1146/annurev-astro-082708-101659. [DOI] [Google Scholar]
  • 3.G. Hinshaw et al., Nine-year Wilkinson microwave anisotropy probe (WMAP) observations: cosmological parameter results. Astrophys. J. Suppl. Ser. 208(2), 19 (2013). doi:10.1088/0067-0049/208/2/19
  • 4.Collaboration Planck. Planck 2013 results. XVI. Cosmological parameters. Astron. Astrophys. 2014;571:A16. doi: 10.1051/0004-6361/201322984. [DOI] [Google Scholar]
  • 5.Farrar GR, Fayet P. Phenomenology of the production, decay, and detection of new hadronic states associated with supersymmetry. Phys. Lett. B. 1978;76:575. doi: 10.1016/0370-2693(78)90858-4. [DOI] [Google Scholar]
  • 6.Beltran M, et al. Maverick dark matter at colliders. JHEP. 2010;09:037. doi: 10.1007/JHEP09(2010)037. [DOI] [Google Scholar]
  • 7.Goodman J, et al. Constraints on dark matter from colliders. Phys. Rev. D. 2010;82:116010. doi: 10.1103/PhysRevD.82.116010. [DOI] [Google Scholar]
  • 8.Goodman J, et al. Constraints on light Majorana dark matter from colliders. Phys. Lett. B. 2011;695:185. doi: 10.1016/j.physletb.2010.11.009. [DOI] [Google Scholar]
  • 9.Bai Y, Fox PJ, Harnik R. The Tevatron at the frontier of dark matter direct detection. JHEP. 2010;12:048. doi: 10.1007/JHEP12(2010)048. [DOI] [Google Scholar]
  • 10.CDF Collaboration, A search for dark matter in events with one jet and missing transverse energy in pp¯ collisions at s=1.96 TeV. Phys. Rev. Lett. 108, 211804 (2012). doi:10.1103/PhysRevLett.108.211804. arXiv:1203.0742 [DOI] [PubMed]
  • 11.CMS Collaboration, Search for dark matter and large extra dimensions in monojet events in pp collisions at s=7 TeV. JHEP 09, 094 (2012). doi:10.1007/JHEP09(2012)094. arXiv:1206.5663
  • 12.ATLAS Collaboration, Search for dark matter candidates and large extra dimensions in events with a jet and missing transverse momentum with the ATLAS detector. JHEP 04, 075 (2013). doi:10.1007/JHEP04(2013)075. arXiv:1210.4491 [DOI] [PubMed]
  • 13.N. Arkani-Hamed, S. Dimopoulos, G. Dvali, The hierarchy problem and new dimensions at a millimeter. Phys. Lett. B 429, 263 (1998). doi:10.1016/S0370-2693(98)00466-3. arXiv:hep-ph/9803315
  • 14.N. Arkani-Hamed, S. Dimopoulos, G. Dvali, Phenomenology, astrophysics and cosmology of theories with submillimeter dimensions and TeV scale quantum gravity. Phys. Rev. D 59, 086004 (1999). doi:10.1103/PhysRevD.59.086004. arXiv:hep-ph/9807344
  • 15.I. Antoniadis, K. Benakli, M. Quiros, Direct collider signatures of large extra dimensions. Phys. Lett. B 460, 176 (1999). doi:10.1016/S0370-2693(99)00764-9. arXiv:hep-ph/9905311
  • 16.G. Giudice, R. Rattazzi, J. Wells, Quantum gravity and extra dimensions at high-energy colliders. Nucl. Phys. B 544, 3 (1999). doi:10.1016/S0550-3213(99)00044-9. arXiv:hep-ph/9811291
  • 17.E. Mirabelli, M. Perelstein, M. Peskin, Collider signatures of new large space dimensions. Phys. Rev. Lett. 82, 2236 (1999). doi:10.1103/PhysRevLett.82.2236. arXiv:hep-ph/9811337
  • 18.Witten E. Mass hierarchies in supersymmetric theories. Phys. Lett. B. 1981;105:267. doi: 10.1016/0370-2693(81)90885-6. [DOI] [Google Scholar]
  • 19.OPAL Collaboration, Photonic events with missing energy in e+e- collisions at s=189 GeV. Eur. Phys. J. C 18, 253 (2000). doi:10.1007/s100520000522. arXiv:hep-ex/0005002
  • 20.ALEPH Collaboration, Single- and multi-photon production in e+e- collisions at s up to 209 GeV. Eur. Phys. J. C 28, 1 (2003). doi:10.1140/epjc/s2002-01129-7
  • 21.L3 Collaboration, Single- and multi-photon events with missing energy in e+e- collisions at LEP. Phys. Lett. B 587, 16 (2004). doi:10.1016/j.physletb.2004.01.010. arXiv:hep-ex/0402002
  • 22.CDF Collaboration, Search for large extra dimensions in final states containing one photon or jet and large missing transverse energy produced in pp¯ Collisions at s=1.96 TeV. Phys. Rev. Lett. 101, 181602 (2008). doi:10.1103/PhysRevLett.101.181602. arXiv:0807.3132 [DOI] [PubMed]
  • 23.D0 Collaboration, Search for large extra dimensions via single photon plus missing energy final states at s=1.96 TeV. Phys. Rev. Lett. 101, 011601 (2008). doi:10.1103/PhysRevLett.101.011601. arXiv:0803.2137 [DOI] [PubMed]
  • 24.CMS Collaboration, Search for new physics with a mono-jet and missing transverse energy in pp collisions at s=7 TeV. Phys. Rev. Lett. 107, 201804 (2011). doi:10.1103/PhysRevLett.107.201804. arXiv:1106.4775 [DOI] [PubMed]
  • 25.ATLAS Collaboration, Search for new phenomena with the monojet and missing transverse momentum signature using the ATLAS detector in s=7 TeV proton–proton collisions. Phys. Lett. B 705, 294 (2011). doi:10.1016/j.physletb.2011.10.006. arXiv:1106.5327
  • 26.H. Georgi, Unparticle physics. Phys. Rev. Lett. 98, 221601 (2007). doi:10.1103/PhysRevLett.98.221601. arXiv:hep-ph/0703260 [DOI] [PubMed]
  • 27.CMS Collaboration, The CMS experiment at the CERN LHC. JINST 3, S08004 (2008). doi:10.1088/1748-0221/3/08/S08004
  • 28.CMS Collaboration, Particle-flow event reconstruction in CMS and performance for Jets, Taus, and ETmiss. CMS Physics Analysis Summary CMS-PAS-PFT-09-001 (2009)
  • 29.CMS Collaboration, Commissioning of the particle-flow event reconstruction with the first LHC collisions recorded in the CMS detector. CMS Physics Analysis Summary CMS-PAS-PFT-10-001 (2010)
  • 30.Cacciari M, Salam GP, Soyez G. The anti-kt jet clustering algorithm. JHEP. 2008;04:063. doi: 10.1088/1126-6708/2008/04/063. [DOI] [Google Scholar]
  • 31.CMS Collaboration, Energy calibration and resolution of the CMS electromagnetic calorimeter in pp collisions at s = 7 TeV. JINST 8, P09009 (2013). doi:10.1088/1748-0221/8/09/P09009. arXiv:1306.2016
  • 32.CMS Collaboration, Determination of jet energy calibration and transverse momentum resolution in CMS. JINST 6, P11002 (2011). doi:10.1088/1748-0221/6/11/P11002. arXiv:1107.4277
  • 33.Cacciari M, Salam GP, Soyez G. FastJet user manual. Eur. Phys. J. C. 2012;72:1896. doi: 10.1140/epjc/s10052-012-1896-2. [DOI] [Google Scholar]
  • 34.CMS Collaboration, CMS tracking performance results from early LHC operation. Eur. Phys. J. C 70, 1165 (2010). doi:10.1140/epjc/s10052-010-1491-3. arXiv:1007.1988
  • 35.CMS Collaboration, Performance of CMS muon reconstruction in pp collision events at s=7TeV. J. Instrum. 7, P10002 (2012). doi:10.1088/1748-0221/7/10/P10002
  • 36.CMS Collaboration, Performance of τ-lepton reconstruction and identification in CMS. J. Instrum. 7, P01001 (2012). doi:10.1088/1748-0221/7/01/P01001
  • 37.Alwall J, et al. MadGraph/MadEvent v4: the new web generation. JHEP. 2007;09:028. doi: 10.1088/1126-6708/2007/09/028. [DOI] [Google Scholar]
  • 38.T. Sjöstrand, S. Mrenna, P.Z. Skands, PYTHIA 6.4 physics and manual. JHEP 05, 026 (2006). doi:10.1088/1126-6708/2006/05/026. arXiv:hep-ph/0603175
  • 39.R. Field, Early LHC underlying event data - findings and surprises (2010). arXiv:1010.3558
  • 40.J. Pumplin et al., New generation of parton distributions with uncertainties from global QCD analysis. JHEP 07, 012 (2002). doi:10.1088/1126-6708/2002/07/012. arXiv:hep-ph/0201195
  • 41.Sjöstrand T, Mrenna S, Skands PZ. A brief introduction to PYTHIA 8.1. Comput. Phys. Commun. 2008;178:852. doi: 10.1016/j.cpc.2008.01.036. [DOI] [Google Scholar]
  • 42.Ask S, et al. Real emission and virtual exchange of gravitons and unparticles in PYTHIA8. Comput. Phys. Commun. 2010;181:1593. doi: 10.1016/j.cpc.2010.05.013. [DOI] [Google Scholar]
  • 43.Corke R, Sjöstrand T. Interleaved parton showers and tuning prospects. JHEP. 2011;03:032. doi: 10.1007/JHEP03(2011)032. [DOI] [Google Scholar]
  • 44.Alwall J, et al. MadGraph 5: going beyond. JHEP. 2011;06:128. doi: 10.1007/JHEP06(2011)128. [DOI] [Google Scholar]
  • 45.Alwall J, et al. The automated computation of tree-level and next-to-leading order differential cross sections, and their matching to parton shower simulations. JHEP. 2014;07:079. doi: 10.1007/JHEP07(2014)079. [DOI] [Google Scholar]
  • 46.Frixione S, Nason P, Oleari C. Matching NLO QCD computations with parton shower simulations: the POWHEG method. JHEP. 2007;11:070. doi: 10.1088/1126-6708/2007/11/070. [DOI] [Google Scholar]
  • 47.S. Alioli, P. Nason, C. Oleari, E. Re, NLO single-top production matched with shower in POWHEG: s- and t-channel contributions. JHEP 09, 111 (2009). doi:10.1088/1126-6708/2009/09/111. arXiv:0907.4076. (Erratum: doi:10.1007/JHEP02(2010)011)
  • 48.GEANT4 Collaboration, GEANT4 – a simulation toolkit. Nucl. Instrum. Methods A 506, 250 (2003). doi:10.1016/S0168-9002(03)01368-8
  • 49.Allison J, et al. GEANT4 developments and applications. IEEE Trans. Nucl. Sci. 2006;53:270. doi: 10.1109/TNS.2006.869826. [DOI] [Google Scholar]
  • 50.M. Botje et al., The PDF4LHC working group interim recommendations (2011). arXiv:1101.0538
  • 51.S. Alekhin et al., The PDF4LHC working group interim report (2011). arXiv:1101.0536
  • 52.Particle Data Group Collaboration, Review of particle physics. J. Phys. G 37, 075021 (2010). doi:10.1088/0954-3899/37/7A/075021
  • 53.CMS Collaboration, Measurements of inclusive W and Z cross sections in pp collisions at s=7 TeV. JHEP 01, 080 (2011). doi:10.1007/JHEP01(2011)080. arXiv:1012.2466
  • 54.Kidonakis N. Next-to-next-to-leading soft-gluon corrections for the top quark cross section and transverse momentum distribution. Phys. Rev. D. 2010;82:114030. doi: 10.1103/PhysRevD.82.114030. [DOI] [Google Scholar]
  • 55.Campbell JM, Ellis RK, Williams C. Vector boson pair production at the LHC. JHEP. 2011;07:018. doi: 10.1007/JHEP07(2011)018. [DOI] [Google Scholar]
  • 56.Read AL. Presentation of search results: the CLs technique. J. Phys. G. 2002;28:2693. doi: 10.1088/0954-3899/28/10/313. [DOI] [Google Scholar]
  • 57.T. Junk, Confidence level computation for combining searches with small statistics. Nucl. Instrum. Methods A 434, 435 (1999). doi:10.1016/S0168-9002(99)00498-2. arXiv:hep-ex/9902006
  • 58.L. Moneta, K. Cranmer, G. Schott, and W. Verkerke, The RooStats Project”, in Proceedings of the 13th International Workshop on Advanced Computing and Analysis Techniques in Physics Research (ACAT2010). SISSA (2010). arXiv:1009.1003
  • 59.Lai H-L, et al. New parton distributions for collider physics. Phys. Rev. D. 2010;82:074024. doi: 10.1103/PhysRevD.82.074024. [DOI] [Google Scholar]
  • 60.Martin A, Stirling W, Thorne R, Watt G. Parton distributions for the LHC. Eur. Phys. J. C. 2009;63:189. doi: 10.1140/epjc/s10052-009-1072-5. [DOI] [Google Scholar]
  • 61.NNPDF Collaboration, A first unbiased global NLO determination of parton distributions and their uncertainties. Nucl. Phys. B 838, 136 (2010). doi:10.1016/j.nuclphysb.2010.05.008. arXiv:1002.4407
  • 62.Fox PJ, Harnik R, Kopp J, Tsai Y. Missing energy signatures of dark matter at the LHC. Phys. Rev. D. 2012;85:056011. doi: 10.1103/PhysRevD.85.056011. [DOI] [Google Scholar]
  • 63.An H, Ji X, Wang L-T. Light dark matter and Z dark force at colliders. JHEP. 2012;07:182. doi: 10.1007/JHEP07(2012)182. [DOI] [Google Scholar]
  • 64.Friedland A, Graesser ML, Shoemaker IM, Vecchi L. Probing nonstandard standard model backgrounds with LHC monojets. Phys. Lett. B. 2012;714:267. doi: 10.1016/j.physletb.2012.06.078. [DOI] [Google Scholar]
  • 65.Buchmueller O, Dolan MJ, McCabe C. Beyond effective field theory for dark matter searches at the LHC. JHEP. 2014;01:025. doi: 10.1007/JHEP01(2014)025. [DOI] [Google Scholar]
  • 66.Collaboration CoGeNT. Results from a search for light-mass dark matter with a p-type point contact germanium detector. Phys. Rev. Lett. 2011;106:131301. doi: 10.1103/PhysRevLett.106.131301. [DOI] [PubMed] [Google Scholar]
  • 67.SIMPLE Collaboration, Final analysis and results of the phase II simple dark matter search. Phys. Rev. Lett. 108, 201302 (2012). doi:10.1103/PhysRevLett.108.201302. arXiv:1106.3014 [DOI] [PubMed]
  • 68.COUPP Collaboration, First dark matter search results from a 4-kg CF3I bubble chamber operated in a deep underground site. Phys. Rev. D 86, 052001 (2012). doi:10.1103/PhysRevD.86.052001. arXiv:1204.3094
  • 69.CDMS-II Collaboration, Dark matter search results from the CDMS II experiment. Science 327, 1619 (2010). doi:10.1126/science.1186112. arXiv:0912.3592 [DOI] [PubMed]
  • 70.CDMS Collaboration, Results from a Low-Energy Analysis of the CDMS II Germanium Data. Phys. Rev. Lett. 106, 131302 (2011). doi:10.1103/PhysRevLett.106.131302. arXiv:1011.2482 [DOI] [PubMed]
  • 71.SuperCDMS Collaboration, CDMSlite: a search for low-mass WIMPS using voltage-assisted calorimetric ionization detection in the superCDMS experiment Phys. Rev. Lett. 112, 041302 (2014). doi:10.1103/PhysRevLett.112.041302. arXiv:1309.3259 [DOI] [PubMed]
  • 72.XENON100 Collaboration, Dark matter results from 100 live days of XENON100 data. Phys. Rev. Lett. 107, 131302 (2011). doi:10.1103/PhysRevLett.107.131302. arXiv:1104.2549 [DOI] [PubMed]
  • 73.LUX Collaboration, First results from the LUX dark matter experiment at the Sanford Underground Research Facility. Phys. Rev. Lett. 112, 091303 (2014). doi:10.1103/PhysRevLett.112.091303. arXiv:1310.8214 [DOI] [PubMed]
  • 74.CDMS Collaboration, Silicon detector dark matter results from the final exposure of CDMS II. Phys. Rev. Lett. 111, 251301 (2013). doi:10.1103/PhysRevLett.111.251301. arXiv:1304.4279 [DOI] [PubMed]
  • 75.Super-Kamiokande Collaboration, An indirect search for WIMPs in the sun using 3109.6 days of upward-going muons in Super-Kamiokande. Astrophys. J. 742, 78 (2011). doi:10.1088/0004-637X/742/2/78. arXiv:1108.3384
  • 76.Collaboration IceCube. Multi-year search for dark matter annihilations in the Sun with the AMANDA-II and IceCube detectors. Phys. Rev. D. 2012;85:042002. doi: 10.1103/PhysRevD.85.042002. [DOI] [Google Scholar]
  • 77.Karg S, Krämer M, Li Q, Zeppenfeld D. NLO QCD corrections to graviton production at hadron colliders. Phys. Rev. D. 2010;81:094036. doi: 10.1103/PhysRevD.81.094036. [DOI] [Google Scholar]
  • 78.DELPHI Collaboration, Photon events with missing energy in e+e- collisions at s=130 to 209 GeV. Eur. Phys. J. C 38, 395 (2005). doi:10.1140/epjc/s2004-02051-8. arXiv:hep-ex/0406019
  • 79.Kathrein S, Knapen S, Strassler MJ. Bounds from LEP on unparticle interactions with electroweak bosons. Phys. Rev. D. 2011;84:015010. doi: 10.1103/PhysRevD.84.015010. [DOI] [Google Scholar]

Articles from The European Physical Journal. C, Particles and Fields are provided here courtesy of Springer

RESOURCES