Skip to main content
Genome Announcements logoLink to Genome Announcements
. 2015 Jun 4;3(3):e00515-15. doi: 10.1128/genomeA.00515-15

Draft Genomes of Gammaproteobacterial Methanotrophs Isolated from Terrestrial Ecosystems

Richard Hamilton a, K Dimitri Kits b, Victoria A Ramonovskaya c, Olga N Rozova d, Hiroya Yurimoto e, Hiroyuki Iguchi e, Valentina N Khmelenina d, Yasuyoshi Sakai e, Peter F Dunfield f, Martin G Klotz g, Claudia Knief h, Huub J M Op den Camp i, Mike S M Jetten i, Françoise Bringel j, Stéphane Vuilleumier j, Mette M Svenning k, Nicole Shapiro l, Tanja Woyke l, Yuri A Trotsenko d, Lisa Y Stein b, Marina G Kalyuzhnaya a,
PMCID: PMC4457054  PMID: 26044417

Abstract

Genome sequences of Methylobacter luteus, Methylobacter whittenburyi, Methylosarcina fibrata, Methylomicrobium agile, and Methylovulum miyakonense were generated. The strains represent aerobic methanotrophs typically isolated from various terrestrial ecosystems.

GENOME ANNOUNCEMENT

Methane is a potent greenhouse gas (13). Methanotrophic bacteria of terrestrial ecosystems contribute to methane sinks not only by mitigating methane emissions but also by consuming atmospheric methane (16). Here we report five genomes of gammaproteobacterial methanotrophs isolated from various terrestrial ecosystems. Methylobacter whittenburyi (formerly “Methylobacter capsulatus” = UCM-B-3033), and Methylomicrobium agile (ATCC 35068) are methanotrophic bacteria commonly found in sediment samples from wetlands (7, 8). Methylobacter luteus strains (formerly Methylobacter bovis, represented here by the strain 98 [IMV-B-3098]) have typically been obtained from meadows, dry hay, and cow mouth samples (79). Methylovulum miyakonense HT12T (= ATCC BAA-2070) was isolated from a forest soil (10). Methylosarcina fibrata AML-C10T (= ATCC 700909) was isolated from a landfill site (11).

The draft genome sequences were generated at the DOE Joint Genome Institute (JGI), using the Illumina (12) and/or PacBio technology (13) (Table 1). Raw reads were assembled using Allpaths, version 39750 (14), Velvet, version 1.1.05 (15) HGAP, version 2.1.1 (16), and/or Phrap, version 4.24 (High Performance Software, LLC). Possible misassemblies were corrected by manual editing in Consed (1719). All general aspects of library construction and sequencing performed at the JGI can be found at http://www.jgi.doe.gov. Genome annotation was performed using Prodigal (20) and GenePRIMP (21). Additional gene prediction analyses were performed within the IMG (22) and MaGe (23) platforms.

TABLE 1.

General genome statistics and accession numbers

Species and strain Sequencing plaform Genome assembly and annotation Genome coverage (×) Genome size (Mb) No. of scaffolds (no. of contigs) Core metabolic pathwaysa NCBI accession number
M. luteus 98 (= IMV-B-3098) Illumina, PacBio Allpaths, Velvet 1/1/05, Phrap 4.24 1,288 5.1 4 (17) pMMO, Mxa, Xox, FDH, H4MTP, H4FP, pSC, dPPP, RuMP, EDD, EMP, TCA ATYJ00000000
M. fibrate AML-C10T (= ATCC 700909) Illumina Allpaths, Velvet 1/1/05, Phrap 4.24 1,112 5 8 (34) pMMO, Mxa, Xox, FDH, H4MTP, H4FP, pSC, dPPP, RuMP, EDD, EMP, TCA ARCU00000000
M. miyakonense HT12T (= ATCC BAA-2070) Illumina Allpaths, Velvet 1/1/05, Phrap 4.24 1,199 4.7 9 (32) pMMO, sMMO, Mxa, Xox, FDH, H4MTP, H4FP, pSC, dPPP, RuMP, EDD, EMP, TCA AQZU00000000
M. agile ATCC 35068 PacBio Prodigal, GenePRIMP 210.3 4.5 4 (4) pMMO, Mxa, Xox, FDH, H4MTP, H4FP, pSC, dPPP, RuMP, EDD, EMP, TCA JPOJ00000000
M. whittenburyi UCM-B-3033 PacBio Prodigal, GenePRIMP 209.5 5.4 7 (7) pMMO, Mxa, Xox, FDH, H4MTP, H4FP, pSC, dPPP, RuMP, EDD, EMP, TCA JQNS00000000
a

pMMO, membrane-bound methane monooxygenase; Mxa, PQQ-linked methanol dehydrogenases; Xox, PQQ-linked methanol and formaldehyde dehydrogenases; FDH, formate dehydrogenases; H4MTP, methanopterin-linked C1 transfer; H4FP, folate-linked C1 transfer; pSC, partial serine cycle (i.e., no evidence for glyoxylate regeneration pathway is found); dPPP, dissimilatory pentose phosphate cycle; RuMP, assimilatory ribulose monophosphate pathway; EDD, Entner-Doudoroff pathway, EMP, Embden-Meyerhof-Parnas pathway; TCA, tricarboxylic acid cycle; sMMO, soluble methane monooxygenase.

Genome statistics and predicted core metabolic pathways are shown in Table 1. Genes encoding a soluble methane monooxygenase were detected only in the M. miyakonense HT12T genome (24). A functional operon encoding methane monooxygenase was present in all genomes, and a homologous operon encoding related proteins (pxmABC) (25) was found in all except M. miyakonense HT12T. Each genome contains at least one homologue of the large subunit of methanol dehydrogenase (26). Two types of the structural organization of the gene cluster encoding 3-hexulose-6-phosphatesynthase (HPS) and 6-phospho-3-hexuloisomerase (PHI) were found. The genomes of M. miyakonense HT12T and M. fibrata AML-C10T contain the hps-phi operon and another hpsi gene encoding an HPS-PHI fused protein (27). M. luteus 98 and M. whittenburyi UCM-B-3033 possess only the hps-phi operon. The genome of M. agile ATCC 35068 has only the hpsi gene. Genes encoding respiratory nitrate reductase (28) were identified only in the genome of M. fibrate AML-C10T. The genome sequences indicated that all strains can import and assimilate ammonium (amtB/glnA/gdhB/ald) or urea (urtABCDE/ureABCDEFG) as the sole source of nitrogen. M. miyakonense HT12T, M. luteus 98, and M. whittenburyi UCM-B-3033 possess the key genetic elements for nitrogen fixation (nifKDHWENX).

Many methanotrophic species (including Methylobacter spp.) produce cysts (7). We were not able to identify homologues of known cyst formation genes in any of the sequenced genomes, suggesting that this stage in the life cycle of some methanotrophs might be unique. Production of bacteriocins has been reported for M. luteus 98 (29, 30). Two gene clusters encoding a bacteriocin-producing peptidase C39 and a putative precursor (31) were identified in this strain. The contribution of these genes to the production of the biologically active bacteriocin will require experimental validation by mutagenesis studies.

Nucleotide sequence accession numbers.

The genome sequences have been deposited in GenBank under the accession numbers listed in Table 1.

ACKNOWLEDGMENTS

We thank all members of the Organization for Methanotroph Genome Analysis for collaboration (OMeGA) and Genoscope for access to its MicroScope platform for comparative genome analysis. This report is based upon work supported by the National Science Foundation under award MCB-0842686 and by faculty startup funds to M. G. Kalyuzhnaya from San Diego State University. Work conducted by the U.S. Department of Energy Joint Genome Institute was supported by the Office of Science of the U.S. Department of Energy under contract DE-AC02-05CH11231.

This is contribution 11 from the Organization for Methanotroph Genome Analysis (OMeGA).

Footnotes

Citation Hamilton R, Kits KD, Ramonovskaya VA, Rozova ON, Yurimoto H, Iguchi H, Khmelenina VN, Sakai Y, Dunfield PF, Klotz MG, Knief C, Op den Camp HJM, Jetten MSM, Bringel F, Vuilleumier S, Svenning MM, Shapiro N, Woyke T, Trotsenko YA, Stein LY, Kalyuzhnaya MG. 2015. Draft genomes of gammaproteobacterial methanotrophs isolated from terrestrial ecosystems. Genome Announc 3(3):e00515-15. doi:10.1128/genomeA.00515-15.

REFERENCES

  • 1.Conrad R. 1989. Control of methane production in terrestrial ecosystems, p 39–58. In Andreae MO, Schimel DS (ed), Exchange of trace gases between terrestrial ecosystems and the atmosphere: Dahlem Workshop Reports, Life Sciences Research Report 47. Wiley, New York, NY. [Google Scholar]
  • 2.Smith TJ, Murrell JC. 2009. Methanotrophy, p 173–178. In Schmidt T, Schaechter M (ed), Topics in ecological and environmental microbiology. Academic Press, Elsevier, Inc., Waltham, MA. [Google Scholar]
  • 3.Holmes AJ, Roslev P, McDonald IR, Iversen N, Henriksen K, Murrell JC. 1999. Characterization of methanotrophic bacterial populations in soils showing atmospheric methane uptake. Appl Environ Microbiol 65:3312–3318. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 4.Le Mer J, Roger P. 2001. Production, oxidation, emission and consumption of methane by soils: a review. Eur J Soil Biol 37:25–50. doi: 10.1016/S1164-5563(01)01067-6. [DOI] [Google Scholar]
  • 5.Kolb S, Knief C, Stubner S, Conrad R. 2003. Quantitative detection of methanotrophs in soil by novel pmoA-targeted real-time PCR assays. Appl Environ Microbiol 69:2423–2429. doi: 10.1128/AEM.69.5.2423-2429.2003. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 6.Knief C, Lipski A, Dunfield PF. 2003. Diversity and activity of methanotrophic bacteria in different upland soils. Appl Environ Microbiol 69:6703–6714. doi: 10.1128/AEM.69.11.6703-6714.2003. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 7.Whittenbury R, Phillips KC, Wilkinson JF. 1970. Enrichment, isolation and some properties of methane-utilizing bacteria. J Gen Microbiol 61:205–218. doi: 10.1099/00221287-61-2-205. [DOI] [PubMed] [Google Scholar]
  • 8.Bowman JP, Sly LI, Nichols PD, Hayward AC. 1993. Revised taxonomy of the methanotrophs: description of Methylobacter gen. nov., emendation of Methylococcus, validation of Methylosinus and Methylocystis species, and a proposal that the family Methylococcaceae includes only the group I methanotrophs. Int J Syst Bacteriol 43:735–753. doi: 10.1099/00207713-43-4-735. [DOI] [Google Scholar]
  • 9.Romanovskaya VA. 1991. Taxonomy of methylotrophic bacteria, p 3–23. In Goldberg I, Rokem JS (ed), Biology of methylotrophs. Reed Elsevier, New York, NY. [DOI] [PubMed] [Google Scholar]
  • 10.Iguchi H, Yurimoto H, Sakai Y. 2011. Methylovulum miyakonense gen. nov., sp. nov., a type I methanotroph isolated from forest soil. Int J Syst Evol Microbiol 61:810–815. doi: 10.1099/ijs.0.019604-0. [DOI] [PubMed] [Google Scholar]
  • 11.Wise MG, McArthur JV, Shimkets LJ. 1999. Methanotroph diversity in landfill soil: isolation of novel type I and type II methanotrophs whose presence was suggested by culture-independent 16S ribosomal DNA analysis. Appl Environ Microbiol 65:4887–4897. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 12.Bennett S. 2004. Solexa Ltd. Pharmacogenomics 5:433–438. doi: 10.1517/14622416.5.4.433. [DOI] [PubMed] [Google Scholar]
  • 13.Eid J, Fehr A, Gray J, Luong K, Lyle J, Otto G, Peluso P, Rank D, Baybayan P, Bettman B, Bibillo A, Bjornson K, Chaudhuri B, Christians F, Cicero R, Clark S, Dalal R, Dewinter A, Dixon J, Foquet M. 2009. Real-time DNA sequencing from single polymerase molecules. Science 323:133–138. doi: 10.1126/science.1162986. [DOI] [PubMed] [Google Scholar]
  • 14.Gnerre S, MacCallum I, Przybylski D, Ribeiro FJ, Burton JN, Walker BJ, Sharpe T, Hall G, Shea TP, Sykes S, Berlin AM, Aird D, Costello M, Daza R, Williams L, Nicol R, Gnirke A, Nusbaum C, Lander ES, Jaffe DB. 2011. High-quality draft assemblies of mammalian genomes from massively parallel sequence data. Proc Natl Acad Sci U S A 108:1513–1518. doi: 10.1073/pnas.1017351108. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 15.Zerbino DR, Birney E. 2008. Velvet: algorithms for de novo short read assembly using de Bruijn graphs. Genome Res 18:821–829. doi: 10.1101/gr.074492.107. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 16.Chin CS, Alexander DH, Marks P, Klammer AA, Drake J, Heiner C, Clum A, Copeland A, Huddleston J, Eichler EE, Turner SW, Korlach J. 2013. Nonhybrid, finished microbial genome assemblies from long-read SMRT sequencing data. Nat Methods 10:563–569. doi: 10.1038/nmeth.2474. [DOI] [PubMed] [Google Scholar]
  • 17.Ewing B, Green P. 1998. Base-calling of automated sequencer traces using Phred. II. Error probabilities. Genome Res 8:186–194. [PubMed] [Google Scholar]
  • 18.Ewing B, Hillier L, Wendl MC, Green P. 1998. Base-calling of automated sequencer traces using Phred. I. Accuracy assessment. Genome Res 8:175–185. doi: 10.1101/gr.8.3.175. [DOI] [PubMed] [Google Scholar]
  • 19.Gordon D, Abajian C, Green P. 1998. Consed: a graphical tool for sequence finishing. Genome Res 8:195–202. doi: 10.1101/gr.8.3.195. [DOI] [PubMed] [Google Scholar]
  • 20.Hyatt D, Chen GL, Locascio PF, Land ML, Larimer FW, Hauser LJ. 2010. Prodigal: prokaryotic gene recognition and translation initiation site identification. BMC Bioinformatics 11:119 doi: 10.1186/1471-2105-11-119. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 21.Pati A, Ivanova NN, Mikhailova N, Ovchinnikova G, Hooper SD, Lykidis A, Kyrpides NC. 2010. GenePRIMP: a gene prediction improvement pipeline for prokaryotic genomes. Nat Methods 7:455–457. doi: 10.1038/nmeth.1457. [DOI] [PubMed] [Google Scholar]
  • 22.Markowitz VM, Chen IM, Palaniappan K, Chu K, Szeto E, Pillay M, Ratner A, Huang J, Woyke T, Huntemann M, Anderson I, Billis K, Varghese N, Mavromatis K, Pati A, Ivanova NN, Kyrpides NC. 2014. IMG 4 version of the integrated microbial genomes comparative analysis system. Nucleic Acids Res 42:D560–D567. doi: 10.1093/nar/gkt963. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 23.Vallenet D, Belda E, Calteau A, Cruveiller S, Engelen S, Lajus A, Le Fèvre F, Longin C, Mornico D, Roche D, Rouy Z, Salvignol G, Scarpelli C, Thil Smith AA, Weiman M, Médigue C. 2013. MicroScope—an integrated microbial resource for the curation and comparative analysis of genomic and metabolic data. Nucleic Acids Res 41:D636–D647. doi: 10.1093/nar/gks1194. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 24.Iguchi H, Yurimoto H, Sakai Y. 2010. Soluble and particulate methane monooxygenase gene clusters of the type I methanotroph Methylovulum miyakonense HT12. FEMS Microbiol Lett 312:71–76. doi: 10.1111/j.1574-6968.2010.02101.x. [DOI] [PubMed] [Google Scholar]
  • 25.Tavormina PL, Orphan VJ, Kalyuzhnaya MG, Jetten MS, Klotz MG. 2011. A novel family of functional operons encoding methane/ammonia monooxygenase-related proteins in gammaproteobacterial methanotrophs. Environ Microbiol Rep 3:91–100. doi: 10.1111/j.1758-2229.2010.00192.x. [DOI] [PubMed] [Google Scholar]
  • 26.Chistoserdova L. 2011. Modularity of methylotrophy, revisited. Environ Microbiol 13:2603–2622. doi: 10.1111/j.1462-2920.2011.02464.x. [DOI] [PubMed] [Google Scholar]
  • 27.Yurimoto H, Kato N, Sakai Y. 2009. Genomic organization and biochemistry of the ribulose monophosphate pathway and its application in biotechnology. Appl Microbiol Biotechnol 84:407–416. doi: 10.1007/s00253-009-2120-7. [DOI] [PubMed] [Google Scholar]
  • 28.Kits KD, Klotz MG, Stein LY. 12 January 2015. Methane oxidation coupled to nitrate reduction under hypoxia by the gammaproteobacterium Methylomonas denitrificans, sp. nov. type strain FJG1. Environ Microbiol. doi: 10.1111/1462-2920.12772. [DOI] [PubMed] [Google Scholar]
  • 29.Pashkova NI, Starostina NG, Tsiomenko AB. 1997. A secretory protein involved in the antagonistic interactions between methanotrophic bacteria. Biochemistry (Mosc) 62:386–390. [PubMed] [Google Scholar]
  • 30.Starostina NG, Pashkova NI, Tsiomenko AB. 1998. Detection and partial characterization of bacteriocin in the methanotrophic bacterium Methylobacter bovis. Biochemistry (Mosc) 63:1122–1125. [PubMed] [Google Scholar]
  • 31.De Jong A, van Heel AJ, Kok J, Kuipers OP. 2010. BAGEL2: mining for bacteriocins in genomic data. Nucleic Acids Res 38:W647–W651. doi: 10.1093/nar/gkq365. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Genome Announcements are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES