Skip to main content
Genome Announcements logoLink to Genome Announcements
. 2015 Jun 4;3(3):e00567-15. doi: 10.1128/genomeA.00567-15

Draft Genome Sequence of the Toluene-Degrading Pseudomonas stutzeri Strain ST-9

Margarita Gomila a, Antonio Busquets a, Elena García-Valdés a,b, Esti Michael c,d, Rivka Cahan c, Yeshayahu Nitzan d, Jorge Lalucat a,b,
PMCID: PMC4457061  PMID: 26044424

Abstract

Strain ST-9 was isolated from toluene-contaminated soil (Samaria, Israel). The draft genome has an estimated size of 4.8 Mb, exhibits an average G+C content of 60.37%, and is predicted to encode 4,183 proteins, including a gene cluster for aromatic hydrocarbon degradation. It is assigned to genomovar 3 of Pseudomonas stutzeri.

GENOME ANNOUNCEMENT

Strain ST-9 was isolated from toluene-contaminated soil from the Barkan industrial zone in Samaria, Israel, after enrichment in a mineral medium with toluene as the only carbon and energy source. Phenotypic traits and a phylogenetic multilocus sequence analysis performed as described by Mulet and colleagues (1) demonstrated that Pseudomonas stutzeri was its closest neighbor.

Whole-genome shotgun sequencing on strain ST-9 was performed by using paired-end sequencing with a MiSeq sequencing system (Illumina). The Newbler Assembler version 2.7 software package (Roche) was used for the de novo genome assembly. The draft genome size is 4,643,775 bp and contains 116 contigs, with an average contig length of 40.03 kb, a median coverage depth of 75-fold, and an average G+C content of 60.37 mol%.

The genome prediction and annotation was performed using the NCBI Prokaryotic Genome Automatic Annotation Pipeline (http://www.ncbi.nlm.nih.gov/genome/annotation_prok/). Analysis and comparison of the functional annotation was done using the Kyoto Encyclopedia of Genes and Genomes (KEGG Automatic Annotation Server [KAAS]) (2). A total of 4,183 coding sequences, 52 tRNA sequences, and 1 rRNA sequence were identified in the chromosome. Genes coding for discriminating metabolic and physiological properties of the species were detected: the complete set of genes for the denitrification pathway, for starch metabolism, and for flagella synthesis. Of the 4,183 encoded proteins, 32 were annotated as transposases and 18 as integrases. Five hundred sixty-seven encoded proteins were annotated as hypothetical proteins without function prediction.

No plasmids were detected. Strain ST-9 was found to possess in contig 2, close to an integrase gene, a fragment of 19,158 bp organized as a putative operon with a regulatory gene and 21 genes related to an aromatic degradation pathway that includes the pathway to channel the metabolites to catechol and an aromatic ring cleavage enzyme with 75% similarity with the catechol 2,3 dioxygenase gene of the TOL plasmid pWW0. Genes coding for proteins involved in the resistance against arsenic, cobalt/zinc/cadmium, mercury, copper, and chromate were located in other 4 contigs, in the vicinity of transposase and integrase genes.

Whole-genome sequences of 21 P. stutzeri strains are publicly available (319). Comparative genome analysis and G+C content confirmed that strain ST-9 exhibited overall similarity to the P. stutzeri strains of genomovars previously sequenced. Average nucleotide identities based on BLAST (ANIb values) (20), which discriminated the genomovars of the species, confirmed the adscription of strain ST-9 to gv3: values higher than 96% were found for strains of the same genomovar, 80 to 93% for strains of different genomovars, and lower than 77% with other Pseudomonas species. The genome sequence will help to elucidate the chromosomal toluene degradation pathway of strain ST-9 and the mechanisms involved in the adaptation of P. stutzeri strains to contaminated sites.

Nucleotide sequence accession numbers.

This whole-genome shotgun project has been deposited at DDBJ/EMBL/GenBank under the accession no. JXJL00000000. The version described in this paper is version JXJL01000000.

ACKNOWLEDGMENTS

Margarita Gomila is the recipient of a postdoctoral contract from the Conselleria d’ Educació, Cultura i Universitats del Govern de les Illes Balears and the European Social Fund. Financial support was obtained from the Spanish MINECO through projects CGL2011-24318 and Consolider CSD2009-00006.

Footnotes

Citation Gomila M, Busquets A, García-Valdés E, Michael E, Cahan R, Nitzan Y, Lalucat J. 2015. Draft genome sequence of the toluene-degrading Pseudomonas stutzeri strain ST-9. Genome Announc 3(3):e00567-15. doi:10.1128/genomeA.00567-15.

REFERENCES

  • 1.Mulet M, Gomila M, Scotta C, Sánchez D, Lalucat J, García-Valdés E. 2012. Concordance between whole-cell matrix-assisted laser-desorption/ionization time-of-flight mass spectrometry and multilocus sequence analysis approaches in species discrimination within the genus Pseudomonas. Syst Appl Microbiol 35:455–464. doi: 10.1016/j.syapm.2012.08.007. [DOI] [PubMed] [Google Scholar]
  • 2.Moriya Y, Itoh M, Okuda S, Yoshizawa AC, Kanehisa M. 2007. KAAS: an automatic genome annotation and pathway reconstruction server. Nucleic Acids Res 35:W182–W185. doi: 10.1093/nar/gkm321. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 3.Yan Y, Yang J, Dou Y, Chen M, Ping S, Peng J, Lu W, Zhang W, Yao Z, Li H, Liu W, He S, Geng L, Zhang X, Yang F, Yu H, Zhan Y, Li D, Lin Z, Wang Y, Elmerich C, Lin M, Jin Q. 2008. Nitrogen fixation island and rhizosphere competence traits in the genome of root-associated Pseudomonas stutzeri A1501. Proc Natl Acad Sci U S A 105:7564–7569. doi: 10.1073/pnas.0801093105. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 4.Brunet-Galmés I, Busquets A, Peña A, Gomila M, Nogales B, García-Valdés E, Lalucat J, Bennasar A, Bosch R. 2012. Complete genome sequence of the naphthalene-degrading bacterium Pseudomonas stutzeri AN10 (CCUG 29243). J Bacteriol 194:6642–6643. doi: 10.1128/JB.01753-12. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 5.Smith BA, Dougherty KM, Baltrus DA. 2014. Complete genome sequence of the highly transformable Pseudomonas stutzeri strain 28a24. Genome Announc 2(3):e00543-14. doi: 10.1128/genomeA.00543-14. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 6.Li X, Gong J, Hu Y, Cai L, Johnstone L, Grass G, Rensing C, Wang G. 2012. Genome sequence of the moderately halotolerant, arsenite-oxidizing bacterium Pseudomonas stutzeri TS44. J Bacteriol 194:4473–4474. doi: 10.1128/JB.00907-12. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 7.Yu H, Yuan M, Lu W, Yang J, Dai S, Li Q, Yang Z, Dong J, Sun L, Deng Z, Zhang W, Chen M, Ping S, Han Y, Zhan Y, Yan Y, Jin Q, Lin M. 2011. Complete genome sequence of the nitrogen-fixing and rhizosphere-associated bacterium Pseudomonas stutzeri strain DSM4166. J Bacteriol 193:3422–3423. doi: 10.1128/JB.05039-11. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 8.Chen M, Yan Y, Zhang W, Lu W, Wang J, Ping S, Lin M. 2011. Complete genome sequence of the type strain Pseudomonas stutzeri CGMCC 1.1803. J Bacteriol 193:6095. doi: 10.1128/JB.06061-11. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 9.Busquets A, Peña A, Gomila M, Bosch R, Nogales B, García-Valdés E, Lalucat J, Bennasar A. 2012. Genome sequence of Pseudomonas stutzeri strain JM300 (DSM 10701), a soil isolate and model organism for natural transformation. J Bacteriol 194:5477–5478. doi: 10.1128/JB.01257-12. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 10.Grigoryeva TV, Laikov AV, Naumova RP, Manolov AI, Larin AK, Karpova IY, Semashko TA, Alexeev DG, Kostryukova ES, Müller R, Govorun VM. 2013. Draft genome of the nitrogen-fixing bacterium Pseudomonas stutzeri strain KOS6 isolated from industrial hydrocarbon sludge. Genome Announc 1(1):e00072-12. doi: 10.1128/genomeA.00072-12. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 11.Shi YH, Ren L, Jia Y, Yan YC. 2015. Genome sequence of organophosphorus pesticide-degrading bacterium Pseudomonas stutzeri strain YC-YH1. Genome Announc 3(2):e00192-15. doi: 10.1128/genomeA.00192-15. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 12.Jiang T, Gao C, Su F, Zhang W, Hu C, Dou P, Zheng Z, Tao F, Ma C, Xu P. 2012. Genome sequence of Pseudomonas stutzeri SDM-LAC, a typical strain for studying the molecular mechanism of lactate utilization. J Bacteriol 194:894–895. doi: 10.1128/JB.06478-11. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 13.Peña A, Busquets A, Gomila M, Bosch R, Nogales B, García-Valdés E, Lalucat J, Bennasar A. 2012. Draft genome of Pseudomonas stutzeri strain ZoBell (CCUG 16156), a marine isolate and model organism for denitrification studies. J Bacteriol 194:1277–1278. doi: 10.1128/JB.06648-11. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 14.Liu X, Gai Z, Tao F, Yu H, Tang H, Xu P. 2012. Genome sequences of Pseudomonas luteola XLDN4-9 and Pseudomonas stutzeri XLDN-R, two efficient carbazole-degrading strains. J Bacteriol 194:5701–5702. doi: 10.1128/JB.01296-12. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 15.Li A, Gai Z, Cui D, Ma F, Yang J, Zhang X, Sun Y, Ren N. 2012. Genome sequence of a highly efficient aerobic denitrifying bacterium, Pseudomonas stutzeri T13. J Bacteriol 194:5720. doi: 10.1128/JB.01376-12. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 16.Peña A, Busquets A, Gomila M, Mayol J, Bosch R, Nogales B, García-Valdés E, Bennasar A, Lalucat J. 2013. Draft genome of Pseudomonas stutzeri strain NF13, a nitrogen fixer isolated from the Galapagos rift hydrothermal vent. Genome Announc 1(2):e00113-13. doi: 10.1128/genomeA.00113-13. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 17.Busquets A, Peña A, Gomila M, Mayol J, Bosch R, Nogales B, García-Valdés E, Bennasar A, Lalucat J. 2013. Draft genome sequence of Pseudomonas stutzeri strain B1SMN1, a nitrogen-fixing and naphthalene-degrading strain isolated from wastewater. Genome Announc 1(4):e00584-13. doi: 10.1128/genomeA.00584-13. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 18.Chauhan A, Green S, Pathak A, Thomas J, Venkatramanan R. 2013. Whole-genome sequences of five oyster-associated bacteria show potential for crude oil hydrocarbon degradation. Genome Announc 1(5):e00802-13. doi: 10.1128/genomeA.00802-13. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 19.Tatusova T, Ciufo S, Fedorov B, O'Neill K, Tolstoy I. 2014. RefSeq microbial genomes database: new representation and annotation strategy. Nucleic Acids Res 42:D553–D559. doi: 10.1093/nar/gkt1274. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 20.Richter M, Rosselló-Móra R. 2009. Shifting the genomic gold standard for the prokaryotic species definition. Proc Natl Acad Sci U S A 106:19126–19131. doi: 10.1073/pnas.0906412106. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Genome Announcements are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES