Skip to main content
Acta Crystallographica Section E: Crystallographic Communications logoLink to Acta Crystallographica Section E: Crystallographic Communications
. 2015 May 23;71(Pt 6):687–689. doi: 10.1107/S2056989015009160

Crystal structure of 4-(tri­methyl­germ­yl)benzoic acid

Lena Knauer a, Eva R Barth a, Christopher Golz a, Carsten Strohmann a,*
PMCID: PMC4459299  PMID: 26090151

During synthesis of the corresponding aldehyde, 4-(tri­methyl­germ­yl)benzoic acid was obtained as a side-product. It crystallizes with two independent mol­ecules in the asymmetric unit which exhibit slightly different geometries. In the crystal structure, centrosymmetric hydrogen-bonded dimers of the mol­ecular pairs are formed.

Keywords: crystal structure, 4-(tri­methyl­germ­yl)benzoic acid, germanium, hydrogen bonding

Abstract

The title compound, [Ge(CH3)3(C7H5O2)], was obtained as a by-product in the synthesis of the corresponding aldehyde. Two slightly different mol­ecules are present in the asymmetric unit. In both mol­ecules, the geometry of the aromatic ring plane is distorted by varying intensities. Additionally, the Ge atoms deviate from the mean aromatic ring planes. Whereas the distance of the Ge atom to the ring plane is only 0.101 (4) Å in the first mol­ecule, this distance is increased to 0.210 (4) Å in the second. In the crystal structure, centrosymmetric O—H⋯O hydrogen-bonded dimers are formed. The title compound is isostructural with the Si analogue [Haberecht et al. (2004). Acta Cryst. E60, o329–0330].

Chemical context  

The application of 1,4-di­hydro­pyridines (DHPs) as a pharmaceutical tool represents a novel and promising approach in the therapy of autoimmune diseases, cancer and other illnesses. The effect of drugs containing DHPs is based on the inter­action with the Transforming Growth Factor β (TGFβ). The title compound, [Ge(CH3)3(C7H5O2)], (I), was obtained as a side-product in the synthesis of the corresponding aldehyde, which can be employed in the synthesis of DHPs (Längle et al., 2015).graphic file with name e-71-00687-scheme1.jpg

Structural commentary  

The asymmetric unit of (I) contains two mol­ecules (Fig. 1), which exhibit different deformations of the aromatic plane. This deformation may be caused by the sterically demanding substituents in 1- and 4-positions. In the first mol­ecule, the opposite carbon atoms C2 and C5 deviate from the mean aromatic ring plane by −0.015 (2) Å, which leads to a boat-shaped deformation (Table 1). The distance of the germanium atom Ge1 to this plane is −0.210 (4) Å. Corresponding to this boat-shaped deformation, the bond lengths of the aromatic ring are not equidistant, but can be divided into three pairs of similar distances: the bonds C5—C4 [1.393 (4) Å] and C5—C6 [1.398 (4) Å] are slightly elongated, C2—C3 [1.383 (4) Å] and C2—C7 [1.384 (4) Å] lie in a medium range, and C3—C4 [1.368 (4) Å] and C6—C7 [1.379 (4) Å] are the shortest. In the second mol­ecule, the aromatic ring exhibits a nearly planar geometry (Table 1). Similar to the first mol­ecule, the Ge2 atom deviates from the mean aromatic ring plane by 0.101 (4) Å. Additionally, elongated bond lengths at C12 and C15 can be observed [C12—C13 1.385 (4), C12—C17 1.381 (4), C15—C14 1.393 (4), C15—C16 1.398 (4) Å].

Figure 1.

Figure 1

The structures and atom numbering of the two independent mol­ecules in the title compound. Displacement ellipsoids are drawn at the 30% probability level.

Table 1. Deviation of atoms from the benzene ring least-squares planes ().

Atom Deviation Atom Deviation
C2 0.015(2) C12 0.004(2)
C3 0.007(2) C13 0.003(2)
C4 0.008(2) C14 0.003(2)
C5 0.015(2) C15 0.007(2)
C6 0.007(2) C16 0.006(2)
C7 0.007(2) C17 0.000(4)
Ge1* 0.210(4) Ge2* 0.101(4)

Note: (*) not used in the least-squares-plane calculation.

All in all, the degree of deformation in the second mol­ecule is smaller compared to the first mol­ecule. This difference may be the reason for the presence of two mol­ecules in the asymmetric unit. The deformations described above may be caused by the sterically demanding substituents attached to the aromatic ring in 1- and 4-positions, or may be traced back to packing effects.

Supra­molecular features  

The mol­ecules in the title compound crystallize as centrosymmetric hydrogen-bonded dimers (Fig. 2, Table 2). Considering the donor⋯acceptor bond lengths of 2.626 (3) Å [O2—H2⋯O1] and 2.635 (3) Å [O4—H4A⋯O3], the strength of the hydrogen bonds can be classified as moderate according to Jeffrey (1997).

Figure 2.

Figure 2

Illustration of the hydrogen-bonded dimers in the unit cell. Hydrogen bonds are represented as dashed lines.

Table 2. Hydrogen-bond geometry (, ).

DHA DH HA D A DHA
O2H2O1i 0.93(5) 1.71(5) 2.626(3) 170(5)
O4H4AO3ii 0.93(5) 1.70(5) 2.635(3) 179(4)

Symmetry codes: (i) Inline graphic; (ii) Inline graphic.

Database survey  

In the isotypic structure containing silicon instead of germanium, similar distortions can be observed (Haberecht et al., 2004). In this structure, the asymmetric unit also contains two differently deformed mol­ecules. In the first mol­ecule, a nearly planar geometry of the aromatic ring plane is exhibited. The second mol­ecule shows the same boat-shaped deformation of the aromatic ring as described for the Ge compound. The atoms equal to C12 and C15 deviate by −0.016 (1) Å and −0.017 (1) Å, respectively. The silicon atoms Si1 and Si2 exhibit distances to the aromatic ring plane of 0.088 (3) and −0.219 (2) Å, respectively. A comparison of these distances to those reported for the title compound reveals that the observed distortions occur in similar dimensions for both structures. This points to a comparable steric demand of the tri­methyl­germyl and tri­methyl­silyl moieties.

Synthesis and crystallization  

To a solution of 1,4-di­bromo­benzene (1.50 g, 6.36 mmol) in Et2O (13 ml) was added n-BuLi (6.36 mmol, 2.5 M in hexa­ne) at 195 K and the mixture stirred at this temperature for 4 h. Then chloro­tri­methyl­germane (1.10 g, 7.00 mmol) was added to the reaction mixture at 195 K, stirred at this temperature for 10 min, followed by stirring over night at room temperature. After addition of H2O, the organic phase was separated and the aqueous phase was extracted with Et2O three times. The combined organic phases were washed with brine and dried over Na2SO4. Removal of the solvent under reduced pressure afforded (4-bromo­phen­yl)tri­methyl­germane (1.67 g, 6.12 mmol, 96%) as a colorless liquid. The reaction product was used in following syntheses without further purification.

To a solution of (4-bromo­phen­yl)tri­methyl­germane (1.67 g, 6.12 mmol) in THF (38 ml) was added n-BuLi (6.73 mmol, 2.5 M in hexa­ne) at 195 K and the mixture was stirred at this temperature for 15 minutes. Then di­methyl­formamide (1.34 g, 18.4 mmol) was added to the reaction mixture at 195 K, and it was allowed to warm to room temperature over night. After addition of a saturated aqueous NH4Cl solution, the organic phase was separated and the aqueous phase extracted three times with Et2O. The combined organic phases were washed with water and brine and dried over Na2SO4. Removal of the solvent under reduced pressure and subsequent silica gel chromatography (pentane, penta­ne/Et2O = 100:1 → 50:1) afforded 4-(tri­methyl­germ­yl)benzaldehyde, which oxidized at ambient air conditions to give 4-(tri­methyl­germ­yl)benzoic acid, (I), (1.05 g, 4.70 mmol, 77%) as a colorless solid. A schematic representation of the synthetic procedure is shown in Fig. 3.

Figure 3.

Figure 3

Schematic representation of the synthesis of compound (I).

Refinement  

Crystal data, data collection and structure refinement details are summarized in Table 3. Hydrogen atoms were located from difference Fourier maps. They were refined with ideal­ized positions in a riding model with U iso(H) = 1.2U eq(C) and C—H = 0.95 Å for aromatic hydrogen atoms, and with U iso(H) = 1.5U eq(C) and C—H = 0.98 Å for methyl hydrogen atoms. All CH3 hydrogen atoms were allowed to rotate but not to tip. Hydroxyl hydrogen atoms were located from difference Fourier maps and were refined freely.

Table 3. Experimental details.

Crystal data
Chemical formula [Ge(CH3)3(C7H5O2)]
M r 238.80
Crystal system, space group Triclinic, P Inline graphic
Temperature (K) 173
a, b, c () 6.3560(4), 12.3927(6), 14.2084(7)
, , () 96.348(4), 92.846(4), 93.246(4)
V (3) 1108.76(10)
Z 4
Radiation type Mo K
(mm1) 2.73
Crystal size (mm) 0.08 0.08 0.02
 
Data collection
Diffractometer Agilent Xcalibur Sapphire3
Absorption correction Multi-scan (CrysAlis PRO; Agilent, 2014)
T min, T max 0.794, 1.000
No. of measured, independent and observed [I > 2(I)] reflections 15667, 4781, 3261
R int 0.044
(sin /)max (1) 0.639
 
Refinement
R[F 2 > 2(F 2)], wR(F 2), S 0.036, 0.083, 1.02
No. of reflections 4781
No. of parameters 249
H-atom treatment H atoms treated by a mixture of independent and constrained refinement
max, min (e 3) 0.54, 0.31

Computer programs: CrysAlis PRO (Agilent, 2014), SHELXS97 (Sheldrick, 2008), SHELXL2014 (Sheldrick, 2015) and OLEX2 (Dolomanov et al., 2009).

Supplementary Material

Crystal structure: contains datablock(s) I. DOI: 10.1107/S2056989015009160/wm5155sup1.cif

e-71-00687-sup1.cif (487.6KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S2056989015009160/wm5155Isup2.hkl

e-71-00687-Isup2.hkl (380.5KB, hkl)

Supporting information file. DOI: 10.1107/S2056989015009160/wm5155Isup3.cml

CCDC reference: 1400647

Additional supporting information: crystallographic information; 3D view; checkCIF report

Acknowledgments

We are grateful to the Deutsche Forschungsgemeinschaft (DFG) for financial support.

supplementary crystallographic information

Crystal data

[Ge(CH3)3(C7H5O2)] Z = 4
Mr = 238.80 F(000) = 488
Triclinic, P1 Dx = 1.431 Mg m3
a = 6.3560 (4) Å Mo Kα radiation, λ = 0.71073 Å
b = 12.3927 (6) Å Cell parameters from 4611 reflections
c = 14.2084 (7) Å θ = 2.9–28.4°
α = 96.348 (4)° µ = 2.73 mm1
β = 92.846 (4)° T = 173 K
γ = 93.246 (4)° Plate, clear colourless
V = 1108.76 (10) Å3 0.08 × 0.08 × 0.02 mm

Data collection

Agilent Xcalibur Sapphire3 diffractometer 4781 independent reflections
Radiation source: Enhance (Mo) X-ray Source 3261 reflections with I > 2σ(I)
Graphite monochromator Rint = 0.044
Detector resolution: 16.0560 pixels mm-1 θmax = 27.0°, θmin = 2.3°
ω scans h = −8→8
Absorption correction: multi-scan (CrysAlis PRO; Agilent, 2014) k = −15→15
Tmin = 0.794, Tmax = 1.000 l = −18→18
15667 measured reflections

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Hydrogen site location: mixed
R[F2 > 2σ(F2)] = 0.036 H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.083 w = 1/[σ2(Fo2) + (0.0332P)2] where P = (Fo2 + 2Fc2)/3
S = 1.01 (Δ/σ)max < 0.001
4781 reflections Δρmax = 0.54 e Å3
249 parameters Δρmin = −0.31 e Å3
0 restraints

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
Ge1 0.34904 (5) 0.43946 (2) 0.19617 (2) 0.02258 (10)
O1 0.1858 (3) 0.90478 (18) −0.01761 (15) 0.0386 (6)
O2 −0.0693 (4) 0.9178 (2) 0.08546 (16) 0.0369 (6)
H2 −0.124 (7) 0.976 (4) 0.060 (3) 0.13 (2)*
C1 0.0846 (5) 0.8712 (3) 0.0511 (2) 0.0268 (7)
C2 0.1569 (5) 0.7738 (2) 0.0910 (2) 0.0237 (7)
C3 0.3337 (5) 0.7244 (3) 0.0588 (2) 0.0309 (8)
H3 0.4140 0.7559 0.0131 0.037*
C4 0.3942 (5) 0.6307 (3) 0.0920 (2) 0.0306 (8)
H4 0.5164 0.5985 0.0688 0.037*
C5 0.2814 (4) 0.5813 (2) 0.1589 (2) 0.0230 (7)
C6 0.1072 (4) 0.6339 (2) 0.1931 (2) 0.0259 (7)
H6 0.0291 0.6039 0.2404 0.031*
C7 0.0460 (5) 0.7283 (2) 0.1598 (2) 0.0262 (7)
H7 −0.0732 0.7624 0.1843 0.031*
C8 0.2619 (5) 0.4263 (3) 0.3237 (2) 0.0355 (8)
H8A 0.3064 0.3576 0.3438 0.053*
H8B 0.1079 0.4275 0.3244 0.053*
H8C 0.3273 0.4872 0.3672 0.053*
C9 0.1964 (5) 0.3288 (3) 0.1066 (2) 0.0324 (8)
H9A 0.2346 0.3388 0.0421 0.049*
H9B 0.0442 0.3351 0.1115 0.049*
H9C 0.2334 0.2565 0.1213 0.049*
C10 0.6506 (4) 0.4247 (3) 0.1914 (2) 0.0361 (8)
H10A 0.7241 0.4701 0.2453 0.054*
H10B 0.6991 0.4480 0.1320 0.054*
H10C 0.6808 0.3484 0.1945 0.054*
Ge2 0.64145 (5) 1.05828 (3) 0.30054 (2) 0.02464 (10)
O3 0.7978 (3) 0.54301 (17) 0.43295 (15) 0.0338 (5)
O4 1.0933 (4) 0.6355 (2) 0.49737 (16) 0.0376 (6)
H4A 1.133 (7) 0.573 (4) 0.522 (3) 0.116 (19)*
C11 0.9143 (5) 0.6285 (3) 0.4488 (2) 0.0267 (7)
C12 0.8508 (5) 0.7298 (3) 0.4112 (2) 0.0250 (7)
C13 0.6552 (5) 0.7320 (2) 0.3641 (2) 0.0276 (7)
H13 0.5620 0.6686 0.3551 0.033*
C14 0.5962 (5) 0.8266 (2) 0.3304 (2) 0.0275 (7)
H14 0.4618 0.8271 0.2981 0.033*
C15 0.7279 (5) 0.9214 (2) 0.3421 (2) 0.0244 (7)
C16 0.9254 (5) 0.9163 (3) 0.3887 (2) 0.0306 (8)
H16 1.0205 0.9790 0.3968 0.037*
C17 0.9849 (5) 0.8226 (2) 0.4229 (2) 0.0278 (7)
H17 1.1195 0.8215 0.4549 0.033*
C18 0.4858 (5) 1.1327 (3) 0.4005 (2) 0.0401 (9)
H18A 0.3884 1.0801 0.4254 0.060*
H18B 0.4055 1.1890 0.3746 0.060*
H18C 0.5851 1.1665 0.4517 0.060*
C19 0.8925 (5) 1.1465 (3) 0.2791 (2) 0.0383 (9)
H19A 0.9715 1.1690 0.3398 0.057*
H19B 0.8517 1.2110 0.2503 0.057*
H19C 0.9813 1.1039 0.2365 0.057*
C20 0.4583 (5) 1.0264 (3) 0.1866 (2) 0.0404 (9)
H20A 0.5249 0.9760 0.1408 0.061*
H20B 0.4346 1.0940 0.1588 0.061*
H20C 0.3229 0.9932 0.2024 0.061*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
Ge1 0.02235 (19) 0.02012 (19) 0.02573 (19) 0.00270 (14) 0.00329 (14) 0.00304 (14)
O1 0.0510 (15) 0.0342 (14) 0.0335 (13) 0.0061 (12) 0.0093 (12) 0.0124 (11)
O2 0.0398 (14) 0.0324 (14) 0.0416 (14) 0.0141 (12) 0.0061 (12) 0.0108 (12)
C1 0.0287 (18) 0.0262 (19) 0.0240 (17) −0.0001 (14) −0.0020 (14) −0.0015 (14)
C2 0.0280 (17) 0.0190 (16) 0.0232 (16) −0.0010 (13) −0.0015 (13) 0.0000 (13)
C3 0.0338 (18) 0.033 (2) 0.0291 (18) 0.0054 (15) 0.0141 (15) 0.0104 (15)
C4 0.0319 (18) 0.0303 (19) 0.0329 (18) 0.0105 (15) 0.0142 (15) 0.0078 (15)
C5 0.0235 (16) 0.0242 (17) 0.0206 (16) −0.0005 (13) 0.0003 (13) 0.0012 (13)
C6 0.0297 (17) 0.0253 (18) 0.0240 (16) 0.0025 (14) 0.0102 (14) 0.0048 (14)
C7 0.0258 (16) 0.0241 (17) 0.0298 (17) 0.0061 (13) 0.0058 (14) 0.0042 (14)
C8 0.045 (2) 0.0308 (19) 0.0326 (19) 0.0042 (16) 0.0076 (16) 0.0084 (15)
C9 0.0279 (18) 0.0293 (19) 0.0386 (19) −0.0012 (14) 0.0035 (15) −0.0016 (15)
C10 0.0236 (17) 0.039 (2) 0.046 (2) 0.0056 (15) 0.0030 (15) 0.0063 (17)
Ge2 0.02168 (19) 0.0210 (2) 0.0313 (2) 0.00206 (14) −0.00119 (14) 0.00386 (15)
O3 0.0441 (14) 0.0212 (12) 0.0352 (13) 0.0003 (11) −0.0028 (11) 0.0024 (10)
O4 0.0411 (15) 0.0338 (15) 0.0379 (14) 0.0072 (12) −0.0082 (11) 0.0060 (12)
C11 0.0357 (19) 0.0264 (19) 0.0187 (16) 0.0078 (15) 0.0043 (14) 0.0010 (14)
C12 0.0315 (18) 0.0261 (18) 0.0173 (15) 0.0040 (14) 0.0043 (13) −0.0011 (13)
C13 0.0284 (17) 0.0234 (17) 0.0302 (18) −0.0018 (14) 0.0000 (14) 0.0020 (14)
C14 0.0237 (17) 0.0269 (18) 0.0320 (18) 0.0025 (14) −0.0028 (14) 0.0052 (14)
C15 0.0257 (17) 0.0225 (17) 0.0250 (17) 0.0037 (13) 0.0019 (13) 0.0018 (14)
C16 0.0299 (18) 0.0241 (18) 0.0363 (19) −0.0045 (14) −0.0038 (15) 0.0020 (15)
C17 0.0250 (17) 0.0258 (18) 0.0321 (18) 0.0041 (14) −0.0059 (14) 0.0030 (14)
C18 0.035 (2) 0.040 (2) 0.044 (2) 0.0114 (16) 0.0014 (17) −0.0034 (17)
C19 0.0310 (19) 0.032 (2) 0.054 (2) −0.0012 (15) 0.0039 (17) 0.0172 (17)
C20 0.042 (2) 0.040 (2) 0.039 (2) 0.0076 (17) −0.0100 (17) 0.0072 (17)

Geometric parameters (Å, º)

Ge1—C5 1.955 (3) Ge2—C15 1.955 (3)
Ge1—C8 1.942 (3) Ge2—C18 1.949 (3)
Ge1—C9 1.945 (3) Ge2—C19 1.938 (3)
Ge1—C10 1.939 (3) Ge2—C20 1.937 (3)
O1—C1 1.289 (3) O3—C11 1.250 (4)
O2—H2 0.93 (5) O4—H4A 0.93 (5)
O2—C1 1.256 (3) O4—C11 1.295 (4)
C1—C2 1.476 (4) C11—C12 1.486 (4)
C2—C3 1.383 (4) C12—C13 1.385 (4)
C2—C7 1.384 (4) C12—C17 1.381 (4)
C3—H3 0.9500 C13—H13 0.9500
C3—C4 1.368 (4) C13—C14 1.379 (4)
C4—H4 0.9500 C14—H14 0.9500
C4—C5 1.393 (4) C14—C15 1.393 (4)
C5—C6 1.398 (4) C15—C16 1.398 (4)
C6—H6 0.9500 C16—H16 0.9500
C6—C7 1.379 (4) C16—C17 1.374 (4)
C7—H7 0.9500 C17—H17 0.9500
C8—H8A 0.9800 C18—H18A 0.9800
C8—H8B 0.9800 C18—H18B 0.9800
C8—H8C 0.9800 C18—H18C 0.9800
C9—H9A 0.9800 C19—H19A 0.9800
C9—H9B 0.9800 C19—H19B 0.9800
C9—H9C 0.9800 C19—H19C 0.9800
C10—H10A 0.9800 C20—H20A 0.9800
C10—H10B 0.9800 C20—H20B 0.9800
C10—H10C 0.9800 C20—H20C 0.9800
C8—Ge1—C5 109.93 (12) C18—Ge2—C15 108.31 (13)
C8—Ge1—C9 109.99 (13) C19—Ge2—C15 108.52 (13)
C9—Ge1—C5 107.50 (13) C19—Ge2—C18 110.01 (15)
C10—Ge1—C5 109.30 (13) C20—Ge2—C15 108.88 (13)
C10—Ge1—C8 109.89 (14) C20—Ge2—C18 109.23 (14)
C10—Ge1—C9 110.19 (13) C20—Ge2—C19 111.81 (15)
C1—O2—H2 122 (3) C11—O4—H4A 116 (3)
O1—C1—C2 117.5 (3) O3—C11—O4 123.6 (3)
O2—C1—O1 123.2 (3) O3—C11—C12 120.3 (3)
O2—C1—C2 119.3 (3) O4—C11—C12 116.0 (3)
C3—C2—C1 120.8 (3) C13—C12—C11 120.0 (3)
C3—C2—C7 118.6 (3) C17—C12—C11 120.6 (3)
C7—C2—C1 120.6 (3) C17—C12—C13 119.3 (3)
C2—C3—H3 119.6 C12—C13—H13 120.1
C4—C3—C2 120.8 (3) C14—C13—C12 119.7 (3)
C4—C3—H3 119.6 C14—C13—H13 120.1
C3—C4—H4 119.1 C13—C14—H14 119.0
C3—C4—C5 121.7 (3) C13—C14—C15 122.0 (3)
C5—C4—H4 119.1 C15—C14—H14 119.0
C4—C5—Ge1 121.8 (2) C14—C15—Ge2 122.6 (2)
C4—C5—C6 116.8 (3) C14—C15—C16 117.0 (3)
C6—C5—Ge1 121.2 (2) C16—C15—Ge2 120.4 (2)
C5—C6—H6 119.3 C15—C16—H16 119.3
C7—C6—C5 121.5 (3) C17—C16—C15 121.4 (3)
C7—C6—H6 119.3 C17—C16—H16 119.3
C2—C7—H7 119.8 C12—C17—H17 119.7
C6—C7—C2 120.4 (3) C16—C17—C12 120.6 (3)
C6—C7—H7 119.8 C16—C17—H17 119.7
Ge1—C8—H8A 109.5 Ge2—C18—H18A 109.5
Ge1—C8—H8B 109.5 Ge2—C18—H18B 109.5
Ge1—C8—H8C 109.5 Ge2—C18—H18C 109.5
H8A—C8—H8B 109.5 H18A—C18—H18B 109.5
H8A—C8—H8C 109.5 H18A—C18—H18C 109.5
H8B—C8—H8C 109.5 H18B—C18—H18C 109.5
Ge1—C9—H9A 109.5 Ge2—C19—H19A 109.5
Ge1—C9—H9B 109.5 Ge2—C19—H19B 109.5
Ge1—C9—H9C 109.5 Ge2—C19—H19C 109.5
H9A—C9—H9B 109.5 H19A—C19—H19B 109.5
H9A—C9—H9C 109.5 H19A—C19—H19C 109.5
H9B—C9—H9C 109.5 H19B—C19—H19C 109.5
Ge1—C10—H10A 109.5 Ge2—C20—H20A 109.5
Ge1—C10—H10B 109.5 Ge2—C20—H20B 109.5
Ge1—C10—H10C 109.5 Ge2—C20—H20C 109.5
H10A—C10—H10B 109.5 H20A—C20—H20B 109.5
H10A—C10—H10C 109.5 H20A—C20—H20C 109.5
H10B—C10—H10C 109.5 H20B—C20—H20C 109.5
Ge1—C5—C6—C7 −173.3 (2) Ge2—C15—C16—C17 176.5 (2)
O1—C1—C2—C3 3.4 (4) O3—C11—C12—C13 4.5 (4)
O1—C1—C2—C7 −175.0 (3) O3—C11—C12—C17 −175.6 (3)
O2—C1—C2—C3 −176.0 (3) O4—C11—C12—C13 −175.5 (3)
O2—C1—C2—C7 5.6 (5) O4—C11—C12—C17 4.4 (4)
C1—C2—C3—C4 −176.4 (3) C11—C12—C13—C14 179.3 (3)
C1—C2—C7—C6 176.4 (3) C11—C12—C17—C16 −179.6 (3)
C2—C3—C4—C5 0.1 (5) C12—C13—C14—C15 −0.1 (5)
C3—C2—C7—C6 −2.0 (5) C13—C12—C17—C16 0.3 (4)
C3—C4—C5—Ge1 173.2 (2) C13—C14—C15—Ge2 −176.8 (2)
C3—C4—C5—C6 −2.1 (5) C13—C14—C15—C16 1.0 (4)
C4—C5—C6—C7 2.1 (4) C14—C15—C16—C17 −1.3 (4)
C5—C6—C7—C2 0.0 (5) C15—C16—C17—C12 0.7 (5)
C7—C2—C3—C4 2.0 (5) C17—C12—C13—C14 −0.6 (4)

Hydrogen-bond geometry (Å, º)

D—H···A D—H H···A D···A D—H···A
O2—H2···O1i 0.93 (5) 1.71 (5) 2.626 (3) 170 (5)
O4—H4A···O3ii 0.93 (5) 1.70 (5) 2.635 (3) 179 (4)

Symmetry codes: (i) −x, −y+2, −z; (ii) −x+2, −y+1, −z+1.

References

  1. Agilent (2014). CrysAlis PRO. Agilent Technologies UK Ltd, Yarnton, England.
  2. Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.
  3. Haberecht, M. C., Vitze, H., Lerner, H.-W. & Bolte, M. (2004). Acta Cryst. E60, o329–o330.
  4. Jeffrey, G. A. (1997). In An Introduction to Hydrogen Bonding. Oxford University Press.
  5. Längle, D., Marquardt, V., Heider, E., Vigante, B., Duburs, G., Luntena, I., Flötgen, D., Golz, C., Strohmann, C., Koch, O. & Schade, D. (2015). Eur. J. Med. Chem. 95, 249–266. [DOI] [PubMed]
  6. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  7. Sheldrick, G. M. (2015). Acta Cryst. C71, 3–8.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) I. DOI: 10.1107/S2056989015009160/wm5155sup1.cif

e-71-00687-sup1.cif (487.6KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S2056989015009160/wm5155Isup2.hkl

e-71-00687-Isup2.hkl (380.5KB, hkl)

Supporting information file. DOI: 10.1107/S2056989015009160/wm5155Isup3.cml

CCDC reference: 1400647

Additional supporting information: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Crystallographic Communications are provided here courtesy of International Union of Crystallography

RESOURCES