Skip to main content
Acta Crystallographica Section E: Crystallographic Communications logoLink to Acta Crystallographica Section E: Crystallographic Communications
. 2015 May 23;71(Pt 6):684–686. doi: 10.1107/S2056989015009743

Crystal structure of tri­aqua­(4-cyano­benzoato-κ2 O,O′)(nicotinamide-κN 1)zinc 4-cyano­benzoate

Gülçin Şefiye Aşkın a, Hacali Necefoğlu b,c, Gamze Yılmaz Nayir b, Raziye Çatak Çelik d, Tuncer Hökelek a,*
PMCID: PMC4459300  PMID: 26090150

In the title salt, [Zn(C8H4NO2)(C6H6N2O)(H2O)3](C8H4NO2), inter­molecular O—H⋯O hydrogen bonds link two of the coordinating water mol­ecules to two free 4-cyano­benzoate anions. N—H⋯O, O—H⋯O and C—H⋯O hydrogen bonds link the mol­ecular components, enclosing Inline graphic(12), Inline graphic(8) and Inline graphic(9) ring motifs and forming layers parallel to (001).

Keywords: crystal structure, zinc, transition metal complexes, benzoic acid nicotinamide

Abstract

The asymmetric unit of the title salt, [Zn(C8H4NO2)(C6H6N2O)(H2O)3](C8H4NO2), contains one complex cation and one 4-cyano­benzoate (CNB) counter-anion. The ZnII atom in the cation is coordinated by one 4-cyano­benzoate ligand, one nicotinamide (NA) ligand and three water mol­ecules, the CNB anion thereby coordinating in a bidentate O,O′-mode through the carboxyl­ate group. The latter, together with one water O atom and the N atom of the NA ligand, form a distorted square-planar arrangement, while the considerably distorted octa­hedral coordination sphere of the ZnII atom is completed by the two O atoms of additional water mol­ecules in the axial positions. The dihedral angles between the planar carboxyl­ate groups and the adjacent benzene rings in the two anions are 10.25 (10) and 5.89 (14)°. Inter­molecular O—H⋯O hydrogen bonds link two of the coordinating water mol­ecules to two free CNB anions. In the crystal, further hydrogen-bonding inter­actions are present, namely N—H⋯O, O—H⋯O and C—H⋯O hydrogen bonds that link the mol­ecular components, enclosing R 2 2(12), R 3 3(8) and R 3 3(9) ring motifs and forming layers parallel to (001). π–π contacts between benzene rings [centroid-to-centroid distances = 3.791 (1) and 3.882 (1) Å] may further stabilize the crystal structure.

Chemical context  

As parts of our ongoing investigation on transition-metal complexes of nicotinamide (NA), one form of niacin (Krishnamachari, 1974), and/or the nicotinic acid derivative N,N-di­ethyl­nicotinamide (DENA), an important respiratory stimulant (Bigoli et al., 1972), the title compound was synthesized and its crystal structure is reported herein.graphic file with name e-71-00684-scheme1.jpg

Structural commentary  

The asymmetric unit of the crystal structure of the title salt, [Zn(C8H4O2N)(C6H6ON2)(H2O)3](C8H4O2N), is composed of one complex cation and one 4-cyano­benzoate (CNB) counter-anion. The ZnII atom is coordinated by one 4-cyano­benzoate (CNB) anion, one nicotinamide (NA) ligand and three water mol­ecules, the CNB anion and NA ligand coordinating in bidentate and monodentate modes, respectively (Fig. 1).

Figure 1.

Figure 1

The mol­ecular entities of the title salt, showing the atom-numbering scheme. Displacement ellipsoids are drawn at the 50% probability level. Inter­molecular O—H⋯O hydrogen bonds are shown as dashed lines.

In the cation, the four coordinating atoms (O1, O2, O5 and N2) around the Zn1 atom show a distorted square-planar arrangement, while the considerably distorted octa­hedral coordination environment of ZnII is completed by two additional water O atoms (O4 and O6) in the axial positions (Table 1, Fig. 1).

Table 1. Selected bond lengths ().

Zn1O1 2.2724(12) Zn1O5 2.0132(11)
Zn1O2 2.1163(12) Zn1O6 2.1917(14)
Zn1O4 2.0917(13) Zn1N2 2.0545(12)

The near equality of the C1—O1 [1.2531 (18) Å], C1—O2 [1.2591 (19) Å] and C15—O7 [1.266 (2) Å], C15—O8 [1.237 (2) Å] bonds in the carboxyl­ate groups indicate delocalized bonding arrangements, rather than localized single and double bonds. The average Zn—O bond lengths are 2.19 (11) Å for benzoate oxygen atoms and 2.10 (9) Å for water oxygen atoms; the Zn—N bond length is 2.0545 (12) Å, close to the values in related structures. The Zn1 atom lies 0.0093 (2) Å above the planar (O1/O2/C1) carboxyl­ate group, with a bite angle of 59.48 (4)°. Corresponding O—Zn—O angles are 60.03 (6)° in [Zn(C9H10NO2)(C6H6N2O)·2H2O] (Hökelek et al., 2009a ), 59.02 (8)° in [Zn(C8H8NO2)(C6H6N2O)]·H2O (Hökelek et al., 2009b ) and 57.53 (5), 56.19 (5) and 59.04 (4)° in [Zn(C8H7O3)2(C6H6N2O)] (Hökelek et al., 2010).

The dihedral angles between the planar carboxyl­ate groups [(O1/O2/C1) and (O7/O8/C15)] and the adjacent benzene rings [A (C2–C7) and C (C16–C21)] are 10.25 (10) and 5.89 (14)°, respectively, while the benzene rings and benzene and pyridine [B (N2/C9—13)] rings are oriented at dihedral angles of A/C = 77.84 (6), A/B = 8.97 (5) and B/C = 71.43 (5)°.

Supra­molecular features  

In the crystal, N—H⋯Oc (c = carboxyl­ate), O—Hw⋯Oc (w = water), O—Hw⋯On (n = nicotinamide), O—Hw⋯Nn as well as C—Hn⋯Oc hydrogen bonds (Table 2) link the mol­ecular components, enclosing Inline graphic(12), Inline graphic(8) and Inline graphic(9) ring motifs (Bernstein et al., 1995), forming layers parallel to (001) (Fig. 2). Additional π–π contacts between the benzene rings, Cg1⋯Cg1i and Cg1⋯Cg3ii [symmetry codes: (i) 1 − x, −y, −z; (ii) 1 − x, −y, 1 − z, where Cg1 and Cg3 are the centroids of rings A and C, respectively], may further stabilize the structure, with centroid-to-centroid distances of 3.791 (1) Å and 3.882 (1) Å, respectively.

Table 2. Hydrogen-bond geometry (, ).

DHA DH HA D A DHA
N3H31O2i 0.82(2) 2.13(3) 2.914(2) 162(2)
N3H32O7i 0.92(3) 2.35(2) 3.261(2) 171(2)
O4H41O7ii 0.75(2) 2.04(2) 2.7890(17) 173(3)
O4H42O8 0.76(3) 1.89(3) 2.6547(18) 175(3)
O5H51O7 0.80(2) 1.83(2) 2.6264(17) 171(3)
O5H52O1iii 0.74(2) 2.05(2) 2.7610(17) 164(2)
O6H61O3iii 0.75(3) 2.05(3) 2.7993(19) 170(3)
O6H62N1iv 0.76(3) 2.17(3) 2.918(3) 170(3)
C11H11O7i 0.93 2.49 3.415(2) 177

Symmetry codes: (i) Inline graphic; (ii) Inline graphic; (iii) Inline graphic; (iv) Inline graphic.

Figure 2.

Figure 2

A partial packing diagram of the title complex. Inter­molecular N—H⋯O, O—H⋯O, O—H⋯N and C—H⋯O hydrogen bonds are shown as dashed lines, enclosing Inline graphic(12), Inline graphic(8) and Inline graphic(9) ring motifs. Non-bonding H atoms have been omitted for clarity.

Synthesis and crystallization  

The title compound was prepared by the reaction of ZnSO4·7H2O (1.44 g, 5 mmol) in H2O (30 ml) and nicotinamide (1.22 g, 50 mmol) in H2O (50 ml) with sodium 4-cyano­benzoate (1.69 g, 10 mmol) in H2O (100 ml). The mixture was filtered and set aside to crystallize at ambient temperature for several days, giving colourless single crystals.

Refinement  

The experimental details including the crystal data, data collection and refinement are summarized in Table 3. Atoms H31 and H32 (as part of the NH2 group) and H41, H42, H51, H52, H61 and H62 (as part of the water mol­ecules) were located in a difference Fourier map and were refined freely. The aromatic C-bound H atoms were positioned geometrically with C—H = 0.93 Å, and constrained to ride on their parent atoms, with U iso(H) = 1.2U eq(C).

Table 3. Experimental details.

Crystal data
Chemical formula [Zn(C8H4NO2)(C6H6N2O)(H2O)3](C8H4NO2)
M r 533.81
Crystal system, space group Triclinic, P Inline graphic
Temperature (K) 296
a, b, c () 6.0858(2), 8.7031(3), 22.2357(6)
, , () 81.882(2), 87.806(3), 88.007(3)
V (3) 1164.55(6)
Z 2
Radiation type Mo K
(mm1) 1.11
Crystal size (mm) 0.45 0.36 0.25
 
Data collection
Diffractometer Bruker SMART BREEZE CCD
Absorption correction Multi-scan (SADABS; Bruker, 2012)
T min, T max 0.625, 0.758
No. of measured, independent and observed [I > 2(I)] reflections 27167, 5839, 5450
R int 0.034
(sin /)max (1) 0.670
 
Refinement
R[F 2 > 2(F 2)], wR(F 2), S 0.030, 0.080, 1.05
No. of reflections 5839
No. of parameters 348
H-atom treatment H atoms treated by a mixture of independent and constrained refinement
max, min (e 3) 0.35, 0.33

Computer programs: APEX2 and SAINT (Bruker, 2012), SHELXS97 and SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows and WinGX (Farrugia, 2012) and PLATON (Spek, 2009).

Supplementary Material

Crystal structure: contains datablock(s) I, global. DOI: 10.1107/S2056989015009743/wm5158sup1.cif

e-71-00684-sup1.cif (32.3KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S2056989015009743/wm5158Isup2.hkl

e-71-00684-Isup2.hkl (280KB, hkl)

CCDC reference: 1401948

Additional supporting information: crystallographic information; 3D view; checkCIF report

Acknowledgments

The authors acknowledge the Aksaray University, Science and Technology Application and Research Center, Aksaray, Turkey, for the use of the Bruker SMART BREEZE CCD diffractometer (purchased under grant No. 2010K120480 of the State of Planning Organization).

supplementary crystallographic information

Crystal data

[Zn(C8H4NO2)(C6H6N2O)(H2O)3](C8H4NO2) Z = 2
Mr = 533.81 F(000) = 548
Triclinic, P1 Dx = 1.522 Mg m3
Hall symbol: -P 1 Mo Kα radiation, λ = 0.71073 Å
a = 6.0858 (2) Å Cell parameters from 9885 reflections
b = 8.7031 (3) Å θ = 2.4–28.4°
c = 22.2357 (6) Å µ = 1.11 mm1
α = 81.882 (2)° T = 296 K
β = 87.806 (3)° Prism, translucent light colourless
γ = 88.007 (3)° 0.45 × 0.36 × 0.25 mm
V = 1164.55 (6) Å3

Data collection

Bruker SMART BREEZE CCD diffractometer 5839 independent reflections
Radiation source: fine-focus sealed tube 5450 reflections with I > 2σ(I)
Graphite monochromator Rint = 0.034
φ and ω scans θmax = 28.4°, θmin = 1.9°
Absorption correction: multi-scan (SADABS; Bruker, 2012) h = −7→8
Tmin = 0.625, Tmax = 0.758 k = −11→11
27167 measured reflections l = −29→29

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.030 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.080 H atoms treated by a mixture of independent and constrained refinement
S = 1.05 w = 1/[σ2(Fo2) + (0.0394P)2 + 0.4376P] where P = (Fo2 + 2Fc2)/3
5839 reflections (Δ/σ)max = 0.001
348 parameters Δρmax = 0.35 e Å3
0 restraints Δρmin = −0.33 e Å3

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
Zn1 0.90164 (3) 0.228852 (18) 0.220630 (8) 0.02931 (6)
O1 0.58663 (19) 0.18054 (14) 0.17586 (6) 0.0398 (3)
O2 0.89148 (19) 0.04418 (14) 0.16835 (6) 0.0386 (3)
O3 0.1991 (2) 0.64093 (14) 0.17635 (6) 0.0425 (3)
O4 0.8145 (2) 0.08998 (17) 0.30208 (6) 0.0456 (3)
H41 0.698 (4) 0.078 (3) 0.3136 (11) 0.051 (7)*
H42 0.887 (4) 0.079 (3) 0.3298 (12) 0.060 (7)*
O5 1.21393 (19) 0.21434 (14) 0.24815 (6) 0.0346 (2)
H51 1.258 (4) 0.162 (3) 0.2779 (11) 0.057 (7)*
H52 1.298 (4) 0.209 (2) 0.2238 (9) 0.035 (5)*
O6 1.0470 (3) 0.36922 (16) 0.14029 (6) 0.0442 (3)
H61 1.087 (4) 0.447 (3) 0.1457 (11) 0.052 (7)*
H62 0.983 (4) 0.379 (3) 0.1113 (12) 0.060 (8)*
O7 1.38028 (19) 0.02307 (15) 0.33815 (5) 0.0413 (3)
O8 1.0769 (2) 0.0341 (2) 0.39584 (6) 0.0620 (4)
N1 0.1949 (5) −0.3612 (3) −0.03004 (10) 0.0940 (9)
N2 0.7668 (2) 0.42834 (14) 0.24805 (6) 0.0315 (3)
N3 0.2052 (3) 0.83017 (18) 0.23482 (8) 0.0454 (4)
H31 0.101 (4) 0.872 (3) 0.2162 (11) 0.058 (7)*
H32 0.269 (4) 0.879 (3) 0.2633 (11) 0.057 (6)*
N4 1.7600 (4) −0.5182 (3) 0.61042 (11) 0.0876 (8)
C1 0.6926 (2) 0.07134 (17) 0.15590 (7) 0.0292 (3)
C2 0.5848 (2) −0.02630 (17) 0.11607 (6) 0.0294 (3)
C3 0.3787 (3) 0.0185 (2) 0.09399 (8) 0.0381 (3)
H3 0.3076 0.1079 0.1044 0.046*
C4 0.2796 (3) −0.0701 (2) 0.05652 (8) 0.0469 (4)
H4 0.1420 −0.0405 0.0413 0.056*
C5 0.3867 (3) −0.2038 (2) 0.04169 (8) 0.0470 (4)
C6 0.5917 (4) −0.2502 (2) 0.06388 (9) 0.0473 (4)
H6 0.6618 −0.3402 0.0538 0.057*
C7 0.6911 (3) −0.16065 (19) 0.10140 (8) 0.0371 (3)
H7 0.8286 −0.1905 0.1167 0.045*
C8 0.2809 (5) −0.2932 (3) 0.00172 (10) 0.0665 (7)
C9 0.8671 (3) 0.4895 (2) 0.29107 (8) 0.0417 (4)
H9 0.9926 0.4393 0.3078 0.050*
C10 0.7913 (3) 0.6238 (3) 0.31145 (10) 0.0558 (5)
H10 0.8666 0.6654 0.3407 0.067*
C11 0.6017 (3) 0.6963 (2) 0.28798 (9) 0.0491 (5)
H11 0.5467 0.7867 0.3017 0.059*
C12 0.4942 (2) 0.63340 (16) 0.24389 (7) 0.0299 (3)
C13 0.5853 (3) 0.50013 (16) 0.22481 (7) 0.0303 (3)
H13 0.5169 0.4585 0.1943 0.036*
C14 0.2868 (3) 0.70160 (16) 0.21562 (7) 0.0317 (3)
C15 1.2702 (3) −0.0089 (2) 0.38754 (7) 0.0346 (3)
C16 1.3816 (3) −0.11192 (18) 0.43897 (7) 0.0318 (3)
C17 1.2673 (3) −0.1557 (2) 0.49338 (8) 0.0423 (4)
H17 1.1254 −0.1161 0.4993 0.051*
C18 1.3630 (3) −0.2582 (2) 0.53905 (8) 0.0503 (5)
H18 1.2857 −0.2876 0.5755 0.060*
C19 1.5746 (3) −0.3167 (2) 0.53011 (8) 0.0446 (4)
C20 1.6928 (3) −0.2701 (2) 0.47640 (9) 0.0445 (4)
H20 1.8358 −0.3079 0.4708 0.053*
C21 1.5961 (3) −0.1669 (2) 0.43142 (8) 0.0379 (3)
H21 1.6757 −0.1340 0.3957 0.046*
C22 1.6768 (4) −0.4285 (3) 0.57586 (10) 0.0600 (6)

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
Zn1 0.02640 (10) 0.02670 (9) 0.03590 (11) 0.00369 (6) −0.00771 (7) −0.00734 (7)
O1 0.0353 (6) 0.0404 (6) 0.0465 (7) 0.0023 (5) −0.0002 (5) −0.0171 (5)
O2 0.0304 (6) 0.0382 (6) 0.0498 (7) 0.0022 (5) −0.0125 (5) −0.0126 (5)
O3 0.0435 (7) 0.0344 (6) 0.0514 (7) 0.0022 (5) −0.0162 (6) −0.0087 (5)
O4 0.0294 (7) 0.0607 (8) 0.0418 (7) −0.0051 (6) −0.0061 (6) 0.0118 (6)
O5 0.0247 (5) 0.0420 (6) 0.0354 (6) 0.0037 (5) −0.0037 (5) 0.0001 (5)
O6 0.0579 (8) 0.0391 (7) 0.0365 (7) −0.0094 (6) −0.0098 (6) −0.0044 (5)
O7 0.0318 (6) 0.0549 (7) 0.0333 (6) 0.0080 (5) −0.0017 (5) 0.0055 (5)
O8 0.0332 (7) 0.1071 (13) 0.0398 (7) 0.0214 (7) −0.0021 (5) 0.0051 (7)
N1 0.135 (2) 0.0930 (17) 0.0616 (13) −0.0520 (16) −0.0348 (14) −0.0149 (12)
N2 0.0299 (6) 0.0296 (6) 0.0357 (7) 0.0044 (5) −0.0043 (5) −0.0070 (5)
N3 0.0446 (9) 0.0346 (7) 0.0583 (10) 0.0146 (6) −0.0166 (8) −0.0113 (7)
N4 0.0892 (16) 0.0843 (15) 0.0815 (15) −0.0089 (13) −0.0451 (13) 0.0280 (12)
C1 0.0297 (7) 0.0299 (7) 0.0277 (7) −0.0022 (5) −0.0016 (5) −0.0031 (5)
C2 0.0284 (7) 0.0334 (7) 0.0267 (7) −0.0051 (6) −0.0011 (5) −0.0043 (5)
C3 0.0307 (8) 0.0458 (9) 0.0380 (8) −0.0017 (7) −0.0046 (6) −0.0049 (7)
C4 0.0367 (9) 0.0646 (12) 0.0392 (9) −0.0136 (8) −0.0115 (7) −0.0005 (8)
C5 0.0598 (12) 0.0532 (10) 0.0296 (8) −0.0268 (9) −0.0066 (8) −0.0038 (7)
C6 0.0640 (12) 0.0378 (9) 0.0433 (9) −0.0094 (8) −0.0034 (8) −0.0138 (7)
C7 0.0378 (9) 0.0358 (8) 0.0389 (8) −0.0015 (6) −0.0039 (7) −0.0086 (6)
C8 0.0899 (17) 0.0679 (14) 0.0446 (11) −0.0359 (13) −0.0173 (11) −0.0057 (10)
C9 0.0352 (9) 0.0491 (9) 0.0435 (9) 0.0117 (7) −0.0118 (7) −0.0156 (7)
C10 0.0502 (11) 0.0651 (12) 0.0609 (12) 0.0198 (9) −0.0255 (9) −0.0379 (10)
C11 0.0477 (10) 0.0479 (10) 0.0580 (11) 0.0169 (8) −0.0167 (9) −0.0292 (9)
C12 0.0306 (7) 0.0262 (6) 0.0324 (7) 0.0019 (5) −0.0020 (6) −0.0028 (5)
C13 0.0314 (7) 0.0262 (6) 0.0338 (7) 0.0008 (5) −0.0052 (6) −0.0056 (5)
C14 0.0323 (8) 0.0248 (6) 0.0369 (8) 0.0010 (5) −0.0034 (6) −0.0007 (5)
C15 0.0281 (7) 0.0446 (8) 0.0308 (7) 0.0026 (6) −0.0058 (6) −0.0048 (6)
C16 0.0306 (7) 0.0363 (7) 0.0292 (7) −0.0011 (6) −0.0064 (6) −0.0055 (6)
C17 0.0365 (9) 0.0542 (10) 0.0354 (8) 0.0005 (7) −0.0010 (7) −0.0041 (7)
C18 0.0545 (11) 0.0608 (12) 0.0331 (9) −0.0055 (9) −0.0020 (8) 0.0031 (8)
C19 0.0488 (10) 0.0434 (9) 0.0407 (9) −0.0062 (8) −0.0185 (8) 0.0028 (7)
C20 0.0351 (9) 0.0472 (9) 0.0496 (10) 0.0035 (7) −0.0121 (7) 0.0003 (8)
C21 0.0334 (8) 0.0428 (8) 0.0362 (8) 0.0003 (7) −0.0040 (6) −0.0007 (7)
C22 0.0617 (13) 0.0613 (13) 0.0544 (12) −0.0092 (10) −0.0247 (10) 0.0090 (10)

Geometric parameters (Å, º)

Zn1—O1 2.2724 (12) C5—C4 1.388 (3)
Zn1—O2 2.1163 (12) C5—C6 1.385 (3)
Zn1—O4 2.0917 (13) C5—C8 1.444 (3)
Zn1—O5 2.0132 (11) C6—H6 0.9300
Zn1—O6 2.1917 (14) C7—C6 1.387 (2)
Zn1—N2 2.0545 (12) C7—H7 0.9300
Zn1—C1 2.5276 (15) C9—C10 1.372 (2)
O1—C1 1.2531 (18) C9—H9 0.9300
O2—C1 1.2591 (19) C10—H10 0.9300
O3—C14 1.230 (2) C11—C10 1.380 (3)
O4—H41 0.75 (3) C11—H11 0.9300
O4—H42 0.77 (3) C12—C11 1.384 (2)
O5—H51 0.80 (3) C12—C13 1.382 (2)
O5—H52 0.74 (2) C12—C14 1.498 (2)
O6—H61 0.75 (3) C13—H13 0.9300
O6—H62 0.76 (3) C14—N3 1.327 (2)
O7—C15 1.266 (2) C15—O8 1.237 (2)
N1—C8 1.136 (3) C15—C16 1.516 (2)
N2—C9 1.335 (2) C16—C17 1.384 (2)
N2—C13 1.3351 (19) C16—C21 1.387 (2)
N3—H31 0.82 (3) C17—C18 1.385 (3)
N3—H32 0.91 (3) C17—H17 0.9300
N4—C22 1.136 (3) C18—H18 0.9300
C1—C2 1.494 (2) C19—C18 1.386 (3)
C2—C3 1.388 (2) C19—C22 1.447 (3)
C2—C7 1.390 (2) C20—C19 1.388 (3)
C3—C4 1.380 (2) C20—H20 0.9300
C3—H3 0.9300 C21—C20 1.381 (2)
C4—H4 0.9300 C21—H21 0.9300
O2—Zn1—O1 59.48 (4) C5—C4—H4 120.2
O4—Zn1—O1 92.90 (5) C4—C5—C8 118.5 (2)
O5—Zn1—O1 162.17 (5) C6—C5—C4 121.15 (16)
O6—Zn1—O1 95.68 (5) C6—C5—C8 120.4 (2)
N2—Zn1—O1 91.98 (5) C5—C6—C7 119.12 (18)
O5—Zn1—O2 102.69 (5) C5—C6—H6 120.4
O4—Zn1—O2 93.77 (6) C7—C6—H6 120.4
N2—Zn1—O2 150.78 (5) C2—C7—H7 120.1
O5—Zn1—O4 87.85 (6) C6—C7—C2 119.86 (17)
N2—Zn1—O4 93.81 (6) C6—C7—H7 120.1
O2—Zn1—O6 87.82 (5) N1—C8—C5 178.7 (3)
O4—Zn1—O6 170.83 (6) N2—C9—C10 122.20 (16)
O5—Zn1—O6 82.99 (6) N2—C9—H9 118.9
N2—Zn1—O6 89.13 (5) C10—C9—H9 118.9
O5—Zn1—N2 105.76 (5) C9—C10—C11 119.10 (17)
O1—Zn1—C1 29.66 (4) C9—C10—H10 120.5
O2—Zn1—C1 29.82 (5) C11—C10—H10 120.5
O4—Zn1—C1 93.91 (5) C10—C11—C12 119.40 (16)
O5—Zn1—C1 132.51 (5) C10—C11—H11 120.3
O6—Zn1—C1 91.96 (5) C12—C11—H11 120.3
N2—Zn1—C1 121.41 (5) C11—C12—C14 123.93 (14)
C1—O1—Zn1 86.53 (9) C13—C12—C11 117.67 (14)
C1—O2—Zn1 93.49 (9) C13—C12—C14 118.40 (14)
Zn1—O4—H41 123.9 (18) N2—C13—C12 123.08 (14)
Zn1—O4—H42 122.6 (19) N2—C13—H13 118.5
H42—O4—H41 107 (3) C12—C13—H13 118.5
Zn1—O5—H51 126.1 (17) O3—C14—N3 122.30 (15)
Zn1—O5—H52 114.8 (16) O3—C14—C12 121.07 (14)
H52—O5—H51 107 (2) N3—C14—C12 116.63 (15)
Zn1—O6—H61 115.0 (18) O7—C15—C16 117.31 (14)
Zn1—O6—H62 118 (2) O8—C15—O7 124.46 (15)
H61—O6—H62 110 (3) O8—C15—C16 118.19 (15)
C9—N2—Zn1 118.11 (11) C17—C16—C15 120.11 (14)
C13—N2—Zn1 123.38 (10) C17—C16—C21 119.38 (15)
C9—N2—C13 118.51 (13) C21—C16—C15 120.49 (14)
C14—N3—H31 115.4 (17) C16—C17—C18 120.40 (17)
C14—N3—H32 123.8 (15) C16—C17—H17 119.8
H31—N3—H32 120 (2) C18—C17—H17 119.8
O1—C1—Zn1 63.82 (8) C17—C18—C19 119.64 (17)
O2—C1—Zn1 56.69 (8) C17—C18—H18 120.2
C2—C1—Zn1 175.80 (11) C19—C18—H18 120.2
O1—C1—O2 120.51 (14) C18—C19—C20 120.37 (16)
O1—C1—C2 120.21 (14) C18—C19—C22 121.19 (19)
O2—C1—C2 119.28 (13) C20—C19—C22 118.43 (19)
C3—C2—C1 119.43 (14) C19—C20—H20 120.3
C3—C2—C7 120.58 (15) C21—C20—C19 119.37 (17)
C7—C2—C1 119.99 (14) C21—C20—H20 120.3
C2—C3—H3 120.2 C16—C21—H21 119.6
C4—C3—C2 119.68 (17) C20—C21—C16 120.76 (16)
C4—C3—H3 120.2 C20—C21—H21 119.6
C3—C4—C5 119.60 (17) N4—C22—C19 178.0 (3)
C3—C4—H4 120.2
O2—Zn1—O1—C1 −0.14 (9) C9—N2—C13—C12 −1.1 (2)
O4—Zn1—O1—C1 −92.81 (10) O1—C1—C2—C3 9.5 (2)
O5—Zn1—O1—C1 −0.8 (2) O1—C1—C2—C7 −170.49 (14)
O6—Zn1—O1—C1 83.95 (10) O2—C1—C2—C3 −169.34 (14)
N2—Zn1—O1—C1 173.27 (9) O2—C1—C2—C7 10.6 (2)
O1—Zn1—O2—C1 0.14 (8) C1—C2—C3—C4 179.15 (15)
O4—Zn1—O2—C1 91.28 (10) C7—C2—C3—C4 −0.8 (2)
O5—Zn1—O2—C1 179.92 (9) C1—C2—C7—C6 −179.31 (15)
O6—Zn1—O2—C1 −97.77 (10) C3—C2—C7—C6 0.7 (2)
N2—Zn1—O2—C1 −13.46 (16) C2—C3—C4—C5 0.5 (3)
O1—Zn1—N2—C9 163.71 (13) C6—C5—C4—C3 0.1 (3)
O1—Zn1—N2—C13 −16.72 (13) C8—C5—C4—C3 −179.13 (17)
O2—Zn1—N2—C9 175.39 (12) C4—C5—C6—C7 −0.2 (3)
O2—Zn1—N2—C13 −5.04 (19) C8—C5—C6—C7 178.95 (17)
O4—Zn1—N2—C9 70.67 (14) C2—C7—C6—C5 −0.1 (3)
O4—Zn1—N2—C13 −109.76 (13) N2—C9—C10—C11 1.8 (4)
O5—Zn1—N2—C9 −18.17 (14) C12—C11—C10—C9 −0.9 (4)
O5—Zn1—N2—C13 161.40 (12) C13—C12—C11—C10 −0.8 (3)
O6—Zn1—N2—C9 −100.64 (14) C14—C12—C11—C10 179.55 (19)
O6—Zn1—N2—C13 78.93 (13) C11—C12—C13—N2 1.9 (2)
C1—Zn1—N2—C9 167.60 (12) C14—C12—C13—N2 −178.46 (14)
C1—Zn1—N2—C13 −12.83 (15) C11—C12—C14—O3 179.62 (17)
O1—Zn1—C1—O2 −179.76 (15) C11—C12—C14—N3 0.1 (3)
O2—Zn1—C1—O1 179.76 (15) C13—C12—C14—O3 0.0 (2)
O4—Zn1—C1—O1 88.99 (10) C13—C12—C14—N3 −179.54 (15)
O4—Zn1—C1—O2 −90.77 (10) O7—C15—C16—C17 −177.65 (16)
O5—Zn1—C1—O1 179.65 (9) O7—C15—C16—C21 0.4 (2)
O5—Zn1—C1—O2 −0.11 (12) O8—C15—C16—C17 0.1 (3)
O6—Zn1—C1—O1 −98.06 (10) O8—C15—C16—C21 178.16 (18)
O6—Zn1—C1—O2 82.18 (10) C15—C16—C17—C18 175.64 (17)
N2—Zn1—C1—O1 −7.89 (11) C21—C16—C17—C18 −2.4 (3)
N2—Zn1—C1—O2 172.35 (9) C15—C16—C21—C20 −175.12 (16)
Zn1—O1—C1—O2 0.23 (14) C17—C16—C21—C20 3.0 (3)
Zn1—O1—C1—C2 −178.65 (12) C16—C17—C18—C19 0.1 (3)
Zn1—O2—C1—O1 −0.25 (15) C20—C19—C18—C17 1.7 (3)
Zn1—O2—C1—C2 178.64 (11) C22—C19—C18—C17 −177.64 (19)
Zn1—N2—C9—C10 178.82 (17) C21—C20—C19—C18 −1.2 (3)
C13—N2—C9—C10 −0.8 (3) C21—C20—C19—C22 178.15 (18)
Zn1—N2—C13—C12 179.33 (11) C16—C21—C20—C19 −1.1 (3)

Hydrogen-bond geometry (Å, º)

D—H···A D—H H···A D···A D—H···A
N3—H31···O2i 0.82 (2) 2.13 (3) 2.914 (2) 162 (2)
N3—H32···O7i 0.92 (3) 2.35 (2) 3.261 (2) 171 (2)
O4—H41···O7ii 0.75 (2) 2.04 (2) 2.7890 (17) 173 (3)
O4—H42···O8 0.76 (3) 1.89 (3) 2.6547 (18) 175 (3)
O5—H51···O7 0.80 (2) 1.83 (2) 2.6264 (17) 171 (3)
O5—H52···O1iii 0.74 (2) 2.05 (2) 2.7610 (17) 164 (2)
O6—H61···O3iii 0.75 (3) 2.05 (3) 2.7993 (19) 170 (3)
O6—H62···N1iv 0.76 (3) 2.17 (3) 2.918 (3) 170 (3)
C11—H11···O7i 0.93 2.49 3.415 (2) 177

Symmetry codes: (i) x−1, y+1, z; (ii) x−1, y, z; (iii) x+1, y, z; (iv) −x+1, −y, −z.

References

  1. Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.
  2. Bigoli, F., Braibanti, A., Pellinghelli, M. A. & Tiripicchio, A. (1972). Acta Cryst. B28, 962–966.
  3. Bruker (2012). APEX2, SAINT and SADABS. Bruker AXS Inc. Madison, Wisconsin, USA.
  4. Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.
  5. Hökelek, T., Dal, H., Tercan, B., Aybirdi, Ö. & Necefoğlu, H. (2009a). Acta Cryst. E65, m651–m652. [DOI] [PMC free article] [PubMed]
  6. Hökelek, T., Dal, H., Tercan, B., Aybirdi, Ö. & Necefoğlu, H. (2009b). Acta Cryst. E65, m1365–m1366. [DOI] [PMC free article] [PubMed]
  7. Hökelek, T., Saka, G., Tercan, B., Tenlik, E. & Necefoğlu, H. (2010). Acta Cryst. E66, m1135–m1136. [DOI] [PMC free article] [PubMed]
  8. Krishnamachari, K. A. V. R. (1974). Am. J. Clin. Nutr. 27, 108–111. [DOI] [PubMed]
  9. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  10. Spek, A. L. (2009). Acta Cryst. D65, 148–155. [DOI] [PMC free article] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) I, global. DOI: 10.1107/S2056989015009743/wm5158sup1.cif

e-71-00684-sup1.cif (32.3KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S2056989015009743/wm5158Isup2.hkl

e-71-00684-Isup2.hkl (280KB, hkl)

CCDC reference: 1401948

Additional supporting information: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Crystallographic Communications are provided here courtesy of International Union of Crystallography

RESOURCES