Skip to main content
Acta Crystallographica Section E: Crystallographic Communications logoLink to Acta Crystallographica Section E: Crystallographic Communications
. 2015 May 30;71(Pt 6):o433–o434. doi: 10.1107/S2056989015010166

Crystal structure of (E)-3-allyl-2-sulfanyl­idene-5-[(thio­phen-2-yl)methyl­idene]thia­zolidin-4-one

Rahhal El Ajlaoui a,*, El Mostapha Rakib a, Souad Mojahidi a, Mohamed Saadi b, Lahcen El Ammari b
PMCID: PMC4459307  PMID: 26090212

Abstract

Mol­ecules of the title compound, C11H9NOS3, are built up by one thio­phene and one 2-thioxa­thia­zolidin-4-one ring which are connected by a methyl­ene bridge. In addition, there is an allyl substituent attached to nitro­gen. The two rings are almost coplanar, making a dihedral angle between them of 0.76 (11)°. The allyl group is oriented perpendicular to the mean plane through both ring systems. The crystal structure exhibits inversion dimers in which mol­ecules are linked by pairs of C—H⋯O hydrogen bonds. Additional π–π inter­actions between neighboring thio­phene and 2-thioxa­thia­zolidin-4-one rings [inter­centroid distance = 3.694 (2) Å] lead to the formation of a three-dimensional network.

Keywords: crystal structure, rhodanine derivative, 2-thioxa­thia­zolidin-4-one, hydrogen bonding, π–π inter­actions

Related literature  

For pharmacological activities such as anti­microbial and anti-inflammatory of aryl­idene derivatives of rhodanine (2-thioxo-1,3-thia­zolidin-4-one), see: Soltero-Higgin et al. (2004); Hu et al. (2004); Nasr & Said (2003); Johnson et al. (2001); Sortino et al. (2007); Insuasty et al. (2010); Tomasic & Masic (2009).graphic file with name e-71-0o433-scheme1.jpg

Experimental  

Crystal data  

  • C11H9NOS3

  • M r = 267.37

  • Triclinic, Inline graphic

  • a = 6.7342 (2) Å

  • b = 7.3762 (2) Å

  • c = 13.2917 (5) Å

  • α = 79.386 (2)°

  • β = 80.104 (2)°

  • γ = 68.908 (1)°

  • V = 601.44 (3) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.59 mm−1

  • T = 296 K

  • 0.37 × 0.35 × 0.28 mm

Data collection  

  • Bruker X8 APEX diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2009) T min = 0.700, T max = 0.746

  • 25223 measured reflections

  • 3514 independent reflections

  • 2557 reflections with I > 2σ(I)

  • R int = 0.042

Refinement  

  • R[F 2 > 2σ(F 2)] = 0.043

  • wR(F 2) = 0.111

  • S = 1.07

  • 3514 reflections

  • 145 parameters

  • H-atom parameters constrained

  • Δρmax = 0.35 e Å−3

  • Δρmin = −0.26 e Å−3

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEPIII (Burnett & Johnson, 1996) and ORTEP-3 for Windows (Farrugia, 2012); software used to prepare material for publication: PLATON (Spek, 2009) and publCIF (Westrip, 2010).

Supplementary Material

Crystal structure: contains datablock(s) I. DOI: 10.1107/S2056989015010166/im2466sup1.cif

e-71-0o433-sup1.cif (733.4KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S2056989015010166/im2466Isup2.hkl

e-71-0o433-Isup2.hkl (280.3KB, hkl)

Supporting information file. DOI: 10.1107/S2056989015010166/im2466Isup3.cml

. DOI: 10.1107/S2056989015010166/im2466fig1.tif

Mol­ecular structure of the title compound with displacement ellipsoids drawn at the 50% probability level. H atoms are represented as small circles of arbitrary radius.

. DOI: 10.1107/S2056989015010166/im2466fig2.tif

Partial crystal packing of the title compound showing hydrogen bonds and π–π inter­actions between mol­ecules.

CCDC reference: 1403058

Additional supporting information: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (, ).

DHA DH HA D A DHA
C3H3O1i 0.93 2.54 3.304(3) 140

Symmetry code: (i) Inline graphic.

Acknowledgments

The authors thank the Unit of Support for Technical and Scientific Research (UATRS, CNRST) for the X-ray measurements and the University Sultan Moulay Slimane, Beni-Mellal, Morocco, for financial support.

supplementary crystallographic information

S1. Comment

Rhodanine (2-thioxo-1,3-thiazolidin-4-one) is the key structural feature of a very important group of heterocyclic compounds for drug discovery programs. Arylidene derivatives of rhodanine have attracted great interest for synthetic organic chemists due to the broad biological activities of this class of compounds including antimicrobial (Sortino et al.; 2007, Hu et al., 2004), anti-inflammatory (Nasr & Said, 2003; Johnson et al. 2001), and antifungal (Sortino et al., 2007; Insuasty et al., 2010) properties. Additionally, rhodanine derivatives may potentially be used in the treatment of diabetes, obesity, Alzheimer's disease, cystic fibrosis, thrombocytopenia, cancer, sleep, mood and central nervous system disorders as well as chronic inflammation (Tomasic & Masic, 2009).

The two five-membered rings (C1–C4, S1 and C6– C8, N1, S2) forming the molecule are almost coplanar, with a maximum deviation of -0.023 (2) Å for C7 (Fig.1). The allyl group is oriented perpendicular to the mean plane through the thioxothiazolidine cycle as indicated by the torsion angle C10–C9–N1–C7 of 90.2 (3)°.

The cohesion of the crystal structure is ensured by C3–H3···O1 hydrogen bonds between molecules forming a dimers and π–π interactions between heterocycles [intercentroid distance = 3.69 (2) Å], forming a three-dimensional network as shown in Fig.2 and Table 1.

S2. Experimental

To a solution of 3-allyl-2-thioxo-1,3-thiazolidin-4-one (1.15 mmol, 0.2 g) in 10 ml of THF methyl-2-(thiophen-2-ylmethylene)-5-oxopyrazolidin-2-ium-1-ide (1.38 mmol) was added. The mixture was refluxed for 8 h and was monitored by TLC. After the reaction was completed only one yellow spot (TLC Rf = 0.3, hexane/ethyl acetate 1:9) was generated cleanly. The solvent was evaporated in vacuo. The crude product was purified on silica using hexane: ethyl acetate (1/9) as eluent. The product was obtained as a yellow crystal solid (Yield: 55%, m.p.: 403 K).

S3. Refinement

H atoms were located from the difference Fourier map and treated as riding with C–H = 0.97 Å and C–H = 0.93 Å for methylene and aromatic, respectively. All hydrogen atoms were included into the refinement with Uiso(H) = 1.2 Ueq of the parent carbon atom.

Figures

Fig. 1.

Fig. 1.

Molecular structure of the title compound with displacement ellipsoids drawn at the 50% probability level. H atoms are represented as small circles of arbitrary radius.

Fig. 2.

Fig. 2.

Partial crystal packing of the title compound showing hydrogen bonds and π–π interactions between molecules.

Crystal data

C11H9NOS3 Z = 2
Mr = 267.37 F(000) = 276
Triclinic, P1 Dx = 1.476 Mg m3
a = 6.7342 (2) Å Mo Kα radiation, λ = 0.71073 Å
b = 7.3762 (2) Å Cell parameters from 3514 reflections
c = 13.2917 (5) Å θ = 3.0–30.0°
α = 79.386 (2)° µ = 0.59 mm1
β = 80.104 (2)° T = 296 K
γ = 68.908 (1)° Block, yellow
V = 601.44 (3) Å3 0.37 × 0.35 × 0.28 mm

Data collection

Bruker X8 APEX diffractometer 3514 independent reflections
Radiation source: fine-focus sealed tube 2557 reflections with I > 2σ(I)
Graphite monochromator Rint = 0.042
φ and ω scans θmax = 30.0°, θmin = 3.0°
Absorption correction: multi-scan (SADABS; Bruker, 2009) h = −9→9
Tmin = 0.700, Tmax = 0.746 k = −10→10
25223 measured reflections l = −18→18

Refinement

Refinement on F2 0 restraints
Least-squares matrix: full Hydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.043 H-atom parameters constrained
wR(F2) = 0.111 w = 1/[σ2(Fo2) + (0.0384P)2 + 0.3716P] where P = (Fo2 + 2Fc2)/3
S = 1.07 (Δ/σ)max < 0.001
3514 reflections Δρmax = 0.35 e Å3
145 parameters Δρmin = −0.26 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
C1 0.1345 (4) 0.1860 (4) 0.70306 (19) 0.0518 (6)
H1 −0.0046 0.2033 0.7342 0.062*
C2 0.3105 (4) 0.0861 (4) 0.75114 (18) 0.0523 (6)
H2 0.3058 0.0267 0.8192 0.063*
C3 0.5018 (4) 0.0808 (3) 0.68783 (17) 0.0428 (5)
H3 0.6372 0.0182 0.7094 0.051*
C4 0.4669 (3) 0.1785 (3) 0.59025 (16) 0.0350 (4)
C5 0.6327 (3) 0.1940 (3) 0.50925 (16) 0.0358 (4)
H5 0.7718 0.1321 0.5264 0.043*
C6 0.6167 (3) 0.2849 (3) 0.41203 (16) 0.0341 (4)
C7 0.8086 (3) 0.2828 (3) 0.33909 (16) 0.0366 (4)
C8 0.5339 (3) 0.4692 (3) 0.23605 (17) 0.0399 (5)
C9 0.9117 (4) 0.4146 (4) 0.15934 (19) 0.0491 (6)
H9A 0.8550 0.5408 0.1181 0.059*
H9B 1.0355 0.4141 0.1876 0.059*
C10 0.9801 (6) 0.2599 (5) 0.0927 (2) 0.0743 (9)
H10 0.8740 0.2392 0.0646 0.089*
C11 1.1737 (7) 0.1513 (6) 0.0701 (3) 0.1111 (16)
H11A 1.2845 0.1674 0.0967 0.133*
H11B 1.2038 0.0562 0.0272 0.133*
N1 0.7483 (3) 0.3913 (3) 0.24437 (13) 0.0382 (4)
O1 0.9933 (2) 0.2023 (3) 0.35541 (13) 0.0515 (4)
S1 0.19548 (9) 0.27676 (9) 0.57905 (5) 0.04606 (16)
S2 0.38596 (8) 0.41472 (8) 0.35129 (4) 0.03895 (14)
S3 0.41977 (12) 0.59688 (12) 0.13403 (5) 0.0646 (2)

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
C1 0.0437 (13) 0.0519 (14) 0.0552 (15) −0.0171 (11) 0.0135 (11) −0.0117 (11)
C2 0.0583 (15) 0.0566 (14) 0.0374 (12) −0.0213 (12) 0.0061 (11) −0.0020 (10)
C3 0.0425 (12) 0.0437 (12) 0.0389 (11) −0.0123 (10) −0.0042 (9) −0.0028 (9)
C4 0.0343 (10) 0.0315 (10) 0.0392 (11) −0.0108 (8) −0.0029 (8) −0.0065 (8)
C5 0.0316 (10) 0.0343 (10) 0.0406 (11) −0.0101 (8) −0.0032 (8) −0.0054 (8)
C6 0.0304 (9) 0.0340 (10) 0.0377 (10) −0.0111 (8) −0.0022 (8) −0.0060 (8)
C7 0.0337 (10) 0.0393 (11) 0.0389 (11) −0.0156 (9) −0.0002 (8) −0.0077 (9)
C8 0.0402 (11) 0.0412 (11) 0.0394 (11) −0.0151 (9) −0.0030 (9) −0.0063 (9)
C9 0.0447 (13) 0.0555 (14) 0.0469 (13) −0.0242 (11) 0.0066 (10) −0.0024 (10)
C10 0.084 (2) 0.086 (2) 0.0568 (17) −0.0438 (19) 0.0266 (15) −0.0216 (15)
C11 0.133 (4) 0.086 (3) 0.067 (2) 0.002 (2) 0.025 (2) −0.0083 (19)
N1 0.0360 (9) 0.0424 (9) 0.0370 (9) −0.0165 (8) 0.0006 (7) −0.0051 (7)
O1 0.0298 (8) 0.0662 (11) 0.0532 (10) −0.0130 (7) −0.0035 (7) −0.0032 (8)
S1 0.0340 (3) 0.0453 (3) 0.0515 (3) −0.0083 (2) −0.0008 (2) −0.0031 (2)
S2 0.0291 (2) 0.0432 (3) 0.0410 (3) −0.0101 (2) −0.0029 (2) −0.0024 (2)
S3 0.0557 (4) 0.0842 (5) 0.0448 (4) −0.0184 (4) −0.0133 (3) 0.0101 (3)

Geometric parameters (Å, º)

C1—C2 1.347 (4) C7—O1 1.208 (2)
C1—S1 1.701 (3) C7—N1 1.400 (3)
C1—H1 0.9300 C8—N1 1.364 (3)
C2—C3 1.405 (3) C8—S3 1.638 (2)
C2—H2 0.9300 C8—S2 1.743 (2)
C3—C4 1.377 (3) C9—C10 1.468 (4)
C3—H3 0.9300 C9—N1 1.468 (3)
C4—C5 1.433 (3) C9—H9A 0.9700
C4—S1 1.729 (2) C9—H9B 0.9700
C5—C6 1.344 (3) C10—C11 1.278 (5)
C5—H5 0.9300 C10—H10 0.9300
C6—C7 1.473 (3) C11—H11A 0.9300
C6—S2 1.749 (2) C11—H11B 0.9300
C2—C1—S1 112.36 (18) N1—C8—S3 126.87 (17)
C2—C1—H1 123.8 N1—C8—S2 110.96 (16)
S1—C1—H1 123.8 S3—C8—S2 122.17 (13)
C1—C2—C3 113.0 (2) C10—C9—N1 113.0 (2)
C1—C2—H2 123.5 C10—C9—H9A 109.0
C3—C2—H2 123.5 N1—C9—H9A 109.0
C4—C3—C2 112.6 (2) C10—C9—H9B 109.0
C4—C3—H3 123.7 N1—C9—H9B 109.0
C2—C3—H3 123.7 H9A—C9—H9B 107.8
C3—C4—C5 124.61 (19) C11—C10—C9 125.3 (4)
C3—C4—S1 110.43 (16) C11—C10—H10 117.4
C5—C4—S1 124.96 (16) C9—C10—H10 117.4
C6—C5—C4 129.47 (19) C10—C11—H11A 120.0
C6—C5—H5 115.3 C10—C11—H11B 120.0
C4—C5—H5 115.3 H11A—C11—H11B 120.0
C5—C6—C7 121.35 (19) C8—N1—C7 116.63 (17)
C5—C6—S2 128.78 (16) C8—N1—C9 122.99 (19)
C7—C6—S2 109.86 (15) C7—N1—C9 120.37 (18)
O1—C7—N1 123.06 (19) C1—S1—C4 91.64 (11)
O1—C7—C6 126.9 (2) C8—S2—C6 92.49 (10)
N1—C7—C6 110.02 (17)

Hydrogen-bond geometry (Å, º)

D—H···A D—H H···A D···A D—H···A
C3—H3···O1i 0.93 2.54 3.304 (3) 140

Symmetry code: (i) −x+2, −y, −z+1.

Footnotes

Supporting information for this paper is available from the IUCr electronic archives (Reference: IM2466).

References

  1. Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.
  2. Burnett, M. N. & Johnson, C. K. (1996). ORTEPIII. Report ORNL-6895. Oak Ridge National Laboratory, Tennessee, USA.
  3. Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.
  4. Hu, Y., Helm, J. S., Chen, L., Ginsberg, C., Gross, B., Kraybill, B., Tiyanont, K., Fang, X., Wu, T. & Walker, S. (2004). Chem. Biol. 11, 703–711. [DOI] [PubMed]
  5. Insuasty, B., Gutie’rrez, A., Quiroga, J., Abonia, R., Nogueras, M., Cobo, J., Svetaz, L., Raimondi, M. & Zacchino, S. (2010). Arch. Pharm. 343, 48–53. [DOI] [PubMed]
  6. Johnson, A. R., Marletta, M. A. & Dyer, R. D. (2001). Biochemistry, 40, 7736–7745. [DOI] [PubMed]
  7. Nasr, M. N. A. & Said, S. A. (2003). Arch. Pharm. Pharm. Med. Chem. 336, 551–559. [DOI] [PubMed]
  8. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  9. Soltero-Higgin, M., Carlson, E. E., Phillips, J. H. & Kiessling, L. L. (2004). J. Am. Chem. Soc. 126, 10532–10533. [DOI] [PubMed]
  10. Sortino, M., Delgado, P., Juárez, S., Quiroga, J., Abonía, R., Insuasty, B., Nogueras, M., Rodero, L., Garibotto, F. M., Enriz, R. D. & Zacchino, S. A. (2007). Bioorg. Med. Chem. 15, 484–494. [DOI] [PubMed]
  11. Spek, A. L. (2009). Acta Cryst. D65, 148–155. [DOI] [PMC free article] [PubMed]
  12. Tomasić, T. & Masic, L. P. (2009). Curr. Med. Chem. 16, 1596–1629. [DOI] [PubMed]
  13. Westrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) I. DOI: 10.1107/S2056989015010166/im2466sup1.cif

e-71-0o433-sup1.cif (733.4KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S2056989015010166/im2466Isup2.hkl

e-71-0o433-Isup2.hkl (280.3KB, hkl)

Supporting information file. DOI: 10.1107/S2056989015010166/im2466Isup3.cml

. DOI: 10.1107/S2056989015010166/im2466fig1.tif

Mol­ecular structure of the title compound with displacement ellipsoids drawn at the 50% probability level. H atoms are represented as small circles of arbitrary radius.

. DOI: 10.1107/S2056989015010166/im2466fig2.tif

Partial crystal packing of the title compound showing hydrogen bonds and π–π inter­actions between mol­ecules.

CCDC reference: 1403058

Additional supporting information: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Crystallographic Communications are provided here courtesy of International Union of Crystallography

RESOURCES