Skip to main content
Acta Crystallographica Section E: Crystallographic Communications logoLink to Acta Crystallographica Section E: Crystallographic Communications
. 2015 May 23;71(Pt 6):698–701. doi: 10.1107/S2056989015009664

Crystal structure of μ-cyanido-1:2κ2 N:C-dicyanido-1κC,2κC-bis­(quinolin-8-amine-1κ2 N,N′)-2-silver(I)-1-silver(II): rare occurrence of a mixed-valence AgI,II compound

Zouaoui Setifi a,b, Sylvain Bernès c,*, Olivier Pérez d, Fatima Setifi a,*, Djamil-Azzeddine Rouag b
PMCID: PMC4459308  PMID: 26090154

The title compound, [Ag2(CN)3(C9H8N2)2], is a mixed-valence disilver mol­ecular complex. The Ag+ ion has the expected linear coordination geometry, while the Ag2+ centre is six-coordinated with a distorted [AgN5C] octa­hedral geometry. This compound belongs to class 1 or class 2 complexes in the Robin–Day classification.

Keywords: crystal structure, silver, mixed valency, quinoline

Abstract

The title dinuclear complex, [Ag2(CN)3(C9H8N2)2], may be considered as an AgII compound with the corresponding metal site coordinated by two bidentate quinolin-8-amine mol­ecules, one cyanide group and one dicyanidoargentate(I) anion, [Ag(CN)2]. Since this latter ligand contains an AgI atom, the complex should be a class 1 or class 2 mixed-valence compound, according to the Robin–Day classification. The AgII atom is six-coordinated in a highly distorted octa­hedral geometry, while the AgI atom displays the expected linear geometry. In the crystal, the amino groups of the quinolin-8-amine ligands form N—H⋯N hydrogen bonds with the N atoms of the non-bridging cyanide ligands, forming a two-dimensional network parallel to (102). The terminal cyanide ligands are not engaged in polymeric bonds and the title compound is an authentic mol­ecular complex. The title mol­ecule is thus a rare example of a stable AgI,II complex, and the first mixed-valence AgI,II mol­ecular complex characterized by X-ray diffraction.

Chemical context  

The coordination chemistry of silver is clearly dominated by AgI complexes. The oxidation state AgII, with a paramagnetic 4d 9 electronic configuration, is however present in inorganic species like AgF2, a compound which readily decomposes in water, and is even able to oxidize SiCl4 (Grochala & Mazej, 2015). AgII is also stable in bimetallic perfluorinated compounds AgII M IVF6, with M = Pt, Pd, Ti, Rh, Sn and Pb. In these solids, the AgII sites are bonded to six F atoms, in an octa­hedral coordination geometry distorted by the Jahn–Teller effect. In contrast, AgO, precipitated from Ag in presence of K2S2O8 in a basic medium, is a diamagnetic mixed-valence AgI,III oxide, rather than a AgII compound (Housecroft & Sharpe, 2012). Some actual AgII coordination complexes may be formed in solution, for example [Ag(bpy)2]2+, which follows the Curie law with a magnetic moment close to the spin-only value expected for a d 9 system (Kandaiah et al., 2012).

Recently, polynitrile and cyanido­metallate anions have received considerable attention because of their importance in both coordination chemistry and in mol­ecular materials chemistry (Atmani et al., 2008; Benmansour et al., 2008, 2009, 2012; Setifi et al., 2013; Setifi, Lehchili et al., 2014; Setifi, Charles et al., 2014). In view of the possible roles of these versatile anionic ligands, we have been inter­ested in using them in combination with other chelating or bridging neutral co-ligands to explore their structural and electronic charac­teristics in the extensive field of mol­ecular materials exhib­iting the spin-crossover (SCO) phenomenon (Dupouy et al., 2008, 2009; Setifi et al., 2009; Setifi, Charles et al., 2014; Setifi, Milin et al., 2014). During the course of attempts to prepare such complexes, using the di­cyanido­argentate(I) anion, we isolated the title compound, whose structure is described here.graphic file with name e-71-00698-scheme1.jpg

Structural commentary  

The title complex (Fig. 1) is a binuclear silver compound placed in a general position, in which metallic sites present contrasting coordination environments. Ag1 is six-coordinated by two quinolin-8-amine bidentate ligands, one terminal cyanide ligand, and one bridging cyanide ligand. The quinoline ring system N1–C8 is slightly twisted, with a r.m.s. deviation of 0.04 Å, while the other, N11–C18, may be considered as planar (rms deviation: 0.01 Å). Quinoline ligands are arranged cis in the octa­hedral coordination polyhedron, and their mean planes make a dihedral angle of 58.71 (5)°. The amino groups bonded to C8 and C18 are trans to the cyanide ligands. The octa­hedral geometry around Ag1 is distorted, mainly because of bite angles for quinoline ligands, N1—Ag1—N9 = 69.59 (7)° and N11—Ag1—N19 = 71.29 (7)°. The coordination of the terminal cyanide ligand, C20 N21 is through the C atom, as determined from the structure refinement (see Refinement section). This orientation seems to be favored by the availability of atom N21 as an acceptor for hydrogen bonding with symmetry-related mol­ecules in the crystal (Table 1).

Figure 1.

Figure 1

The mol­ecular structure of the title complex, with displacement ellipsoids drawn at the 30% probability level.

Table 1. Hydrogen-bond geometry (, ).

DHA DH HA D A DHA
N9H9AN21i 0.79(3) 2.36(3) 3.143(4) 169(3)
N9H9BN21ii 0.85(3) 2.23(3) 3.075(3) 172(3)
N19H19AN21ii 0.77(3) 2.48(3) 3.205(4) 157(3)
N19H19BN25iii 0.90(3) 2.19(3) 3.087(4) 175(3)

Symmetry codes: (i) Inline graphic; (ii) Inline graphic; (iii) Inline graphic.

Metal site Ag2 has a linear coordination with two cyanide ligands. Both ligands are coordinated through their C atoms (C22 and C24), and the coordination angle C22—Ag2—C24 = 176.05 (11)°, close to the ideal angle of 180° expected for an sp hybridization of the metal. Site Ag2 may thus be confidently assigned to a AgI coordination site, and charge balance for the complex should then set the oxidation state for the octa­hedral metal as AgII, with a formal hybridization sp 3 d 2. The title complex is a mixed-valence compound, with valences localized on a single site. According to the Robin–Day classification (Day et al., 2008), this compound should thus be a class 1 or class 2 mixed-valence compound. The deep-red color of the crystals should be the result of the π*←4d(Ag) metal-to-ligand charge transfer, rather than a consequence of an inter­valence charge transfer of a class 2 complex. Indeed, porphyrinato–AgII compounds are generally purple or red compounds (e.g. Xu et al., 2007).

Cyanide ligand C22 N23 bridges metal sites Ag1 and Ag2, with oxidation states II and I respectively. The best structure refinement shows that this ligand is not disordered: the C atom is bonded to Ag+, and the N atom to the AgII atom. This orientation observed for the bridge is consistent with the Pearson’s HSAB principle (Pearson, 2005). The cyanide Lewis base is considered as a soft ligand, which preferentially forms covalent bonds with soft Lewis acid, like Ag+. However, the heteronuclear nature of this ligand induces an asymmetric character for the softness: based on the absolute electronegativity criterion, the C side of the cyanide ligand is expected to be softer than the N side. On the other hand, regarding the acid component of the coordination bonds, Ag+ is expected to be softer than Ag2+, due to the charge difference, which makes Ag+ more polarizable than Ag2+. The most stable acid–base inter­actions for the bridging mode of ligand C22 N23 is thus Ag+—C N—Ag2+, as observed in the X-ray-based structure refinement. From the reactivity point of view, the di­cyanido­argentate(I) anion, [Ag(CN)2], used as starting material, preserves the κC coordination mode for the cyanide groups in the product. This anion thus acts as a ligand to the oxidized AgII atom formed during the reaction. The same κC coordination is observed for the terminal cyanide group bonded to Ag2+, indicating that this fragment [Ag(CN)]+ is also produced from di­cyanido­argentate, probably prior to amino­quinoline coordination.

Supra­molecular features  

As described in the previous section, both terminal cyanide ligands are bonded to Ag1 and Ag2 as κC ligands, allowing the N terminus to act as acceptor sites for hydrogen bonding (Ramabhadran et al., 2014). Amino groups of amino­quinoline ligands are the donors for these contacts (Table 1), forming a two-dimensional supra­molecular network parallel to (102) (Fig. 2). Mol­ecules are aggregated through a centrosymmetric Inline graphic(8) ring, where the donor group is the terminal cyanide C20/N21 bonded to Ag1. The same cyanide ligand is engaged in Inline graphic(6) rings, where donors are from two different amino groups. This basic pattern of fused rings propagates in the [010] direction, via larger Inline graphic(10) rings. Finally, these rows of mol­ecules are connected in the crystal via the long arms Ag2—C24 N25, which take part in large Inline graphic(19) rings. The shortest metal⋯metal distance is observed in these rings involving Ag+ ions: Ag2⋯Ag2i = 3.9680 (3) Å [symmetry code (i): −x + 2, y + Inline graphic, −z + Inline graphic].

Figure 2.

Figure 2

Part of the crystal structure of the title complex, emphasizing the N—H⋯N hydrogen bonds (dashed red lines) forming R rings. The green mol­ecule corresponds to the asymmetric unit.

Although the resulting supra­molecular structure is compact, hydrogen bonds, with H⋯N contacts in the range 2.19 (3)–2.48 (3) Å, should be considered as inter­actions of moderate strength. The crystallized compound is an authentic mol­ecular complex, in which the terminal cyanide ligands are not engaged in polymeric bonds.

Database survey  

Complexes characterized by X-ray diffraction which include at least one Ag2+ ion are much less common than Ag+ complexes. An estimation using the field ‘NAME = silver(II)’ or ‘NAME = silver(I)’ in the current release of the CSD (version 5.36 with all updates; Groom & Allen, 2014), affords 63 and more than 8000 hits, respectively. Within AgI complexes, the occurrence of the di­cyanido­argentate ion is significant. It has been used not only as a counter-ion (e.g. Stork et al., 2005) but also as a ligand for numerous transition-metal ions, including Ag+ (Lin et al., 2005).

For non-polymeric compounds, the most common coordin­ation for Ag2+ is the square-planar [AgN4] arrangement, found in porphyrin derivatives and tetra-aza cyclic ligands (e.g. Xu et al., 2007). However, a few cases of six-coordinate Ag2+ species have been characterized, with N-donor ligands (Clark et al., 2009) and S-donor ligands (Shaw et al., 2006). Compounds with both Ag+ and Ag2+ ions which have been X-ray characterized seem to be very scarce. A 1D polymeric mixed-valent AgI/AgII polymer was obtained by reacting AgNO3, Na2S2O8 and pyrazine in a CH3CN/H2O mixture, and the presence of Ag2+ was confirmed by ESR (Sun et al., 2010). The two other cases retrieved from the CSD are ionic compounds, in which tetra­aza­cyclo­tetra­decane derivatives coordinate the Ag2+ ion in a square-planar geometry, while the Ag+ ion is present in the anionic polymeric part (Wang & Mak, 2001) or in an anionic cluster (Wang et al., 2002). The title complex is, as far we can see, the first non-polymeric and non-ionic mixed-valence AgI,II compound characterized by X-ray diffraction.

Synthesis and crystallization  

The title compound was obtained under solvothermal conditions from a mixture of iron(II) sulfate hepta­hydrate (28 mg, 0.1 mmol), quinolin-8-amine (30 mg, 0.2 mmol) and potassium di­cyanido­argentate (40 mg, 0.2 mmol) in water–ethanol (4:1 v/v, 20 ml). The mixture was transferred to a Teflon-lined autoclave and heated at 423 K for 48 h. The autoclave was then allowed to cool to ambient temperature. Deep-red crystals of the title compound were collected by filtration, washed with water and dried in air (yield 30%).

Refinement  

Crystal data, data collection and structure refinement details are summarized in Table 2. Special attention was paid to the accurate orientation for the three cyanide ligands in the asymmetric unit. For each C N group, two refinements were carried out with each possible orientation, and the best model was retained on the basis of R 1 and wR 2 factors, and ADP for the C and N sites. For example, wR 2 for all data rises from 8.78% to ca. 9.30% if one cyanide ligand bonded to Ag2 is inverted. No evidence for disordered cyanido groups was detected in the difference maps. All C-bonded H atoms were placed in calculated positions and refined as riding atoms, with C—H bond lengths fixed to 0.93 Å. Amino H atoms bonded to N9 and N19 were found in a difference map and refined freely. For all H atoms, isotropic displacement parameters were calculated as U iso(H) = 1.2U eq(carrier atom).

Table 2. Experimental details.

Crystal data
Chemical formula [Ag2(CN)3(C9H8N2)2]
M r 582.15
Crystal system, space group Monoclinic, P21/c
Temperature (K) 293
a, b, c () 13.5449(7), 6.9385(3), 22.3824(11)
() 94.767(2)
V (3) 2096.25(17)
Z 4
Radiation type Mo K
(mm1) 1.89
Crystal size (mm) 0.27 0.23 0.18
 
Data collection
Diffractometer Bruker APEXII CCD
Absorption correction Multi-scan (SADABS; Sheldrick, 2003)
T min, T max 0.615, 0.754
No. of measured, independent and observed [I > 2(I)] reflections 27103, 7113, 5226
R int 0.021
(sin /)max (1) 0.750
 
Refinement
R[F 2 > 2(F 2)], wR(F 2), S 0.034, 0.088, 1.02
No. of reflections 7113
No. of parameters 283
H-atom treatment H atoms treated by a mixture of independent and constrained refinement
max, min (e 3) 1.70, 0.56

Computer programs: APEX2 and SAINT (Bruker, 2009), SHELXS2014/7 (Sheldrick, 2008), SHELXL2014/7 (Sheldrick, 2015) and Mercury (Macrae et al., 2008).

Supplementary Material

Crystal structure: contains datablock(s) I, global. DOI: 10.1107/S2056989015009664/lh5764sup1.cif

e-71-00698-sup1.cif (937.9KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S2056989015009664/lh5764Isup2.hkl

e-71-00698-Isup2.hkl (565.2KB, hkl)

CCDC reference: 1401857

Additional supporting information: crystallographic information; 3D view; checkCIF report

Acknowledgments

The authors acknowledge the Algerian Ministry of Higher Education and Scientific Research, the Algerian Directorate General for Scientific Research and Technological Development and Ferhat Abbas Sétif 1 University for financial support.

supplementary crystallographic information

Crystal data

[Ag2(CN)3(C9H8N2)2] F(000) = 1140
Mr = 582.15 Dx = 1.845 Mg m3
Monoclinic, P21/c Mo Kα radiation, λ = 0.71073 Å
a = 13.5449 (7) Å Cell parameters from 9889 reflections
b = 6.9385 (3) Å θ = 3.1–30.7°
c = 22.3824 (11) Å µ = 1.89 mm1
β = 94.767 (2)° T = 293 K
V = 2096.25 (17) Å3 Prism, deep-red
Z = 4 0.27 × 0.23 × 0.18 mm

Data collection

Bruker APEXII CCD diffractometer 5226 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tube Rint = 0.021
φ & ω scans θmax = 32.2°, θmin = 4.2°
Absorption correction: multi-scan (SADABS; Sheldrick, 2003) h = −20→17
Tmin = 0.615, Tmax = 0.754 k = −7→10
27103 measured reflections l = −33→32
7113 independent reflections

Refinement

Refinement on F2 0 constraints
Least-squares matrix: full Hydrogen site location: mixed
R[F2 > 2σ(F2)] = 0.034 H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.088 w = 1/[σ2(Fo2) + (0.043P)2 + 0.5603P] where P = (Fo2 + 2Fc2)/3
S = 1.02 (Δ/σ)max = 0.001
7113 reflections Δρmax = 1.70 e Å3
283 parameters Δρmin = −0.56 e Å3
0 restraints

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
Ag1 0.66686 (2) 0.78323 (2) 0.41853 (2) 0.03575 (6)
Ag2 0.97403 (2) 0.95903 (4) 0.28877 (2) 0.05800 (8)
N1 0.58984 (15) 0.6944 (3) 0.32264 (9) 0.0372 (4)
C2 0.6314 (2) 0.7024 (4) 0.27131 (12) 0.0487 (6)
H2A 0.7001 0.7094 0.2722 0.058*
C3 0.5762 (3) 0.7006 (4) 0.21569 (13) 0.0593 (8)
H3A 0.6080 0.7002 0.1804 0.071*
C4 0.4768 (3) 0.6994 (4) 0.21363 (13) 0.0584 (8)
H4A 0.4397 0.7024 0.1768 0.070*
C4A 0.4286 (2) 0.6937 (3) 0.26690 (12) 0.0470 (6)
C5 0.3257 (2) 0.6965 (4) 0.26830 (17) 0.0631 (9)
H5A 0.2852 0.7052 0.2327 0.076*
C6 0.2850 (2) 0.6865 (4) 0.32116 (19) 0.0682 (9)
H6A 0.2166 0.6928 0.3218 0.082*
C7 0.3441 (2) 0.6670 (4) 0.37504 (15) 0.0552 (7)
H7A 0.3142 0.6564 0.4109 0.066*
C8 0.44478 (18) 0.6633 (3) 0.37580 (11) 0.0382 (5)
C8A 0.48939 (18) 0.6834 (3) 0.32138 (11) 0.0360 (5)
N9 0.50821 (17) 0.6373 (3) 0.42895 (10) 0.0400 (5)
H9A 0.481 (2) 0.675 (4) 0.4567 (14) 0.048*
H9B 0.525 (2) 0.519 (4) 0.4314 (13) 0.048*
N11 0.74947 (17) 0.7366 (3) 0.51431 (9) 0.0445 (5)
C12 0.7454 (2) 0.8572 (4) 0.55930 (13) 0.0617 (8)
H12A 0.7000 0.9578 0.5554 0.074*
C13 0.8057 (3) 0.8419 (5) 0.61242 (14) 0.0682 (9)
H13A 0.8014 0.9322 0.6428 0.082*
C14 0.8705 (2) 0.6948 (4) 0.61937 (14) 0.0597 (8)
H14A 0.9111 0.6831 0.6548 0.072*
C14A 0.87684 (19) 0.5588 (4) 0.57329 (12) 0.0448 (6)
C15 0.9406 (2) 0.4006 (4) 0.57738 (15) 0.0590 (8)
H15A 0.9829 0.3824 0.6118 0.071*
C16 0.9414 (3) 0.2742 (4) 0.53187 (18) 0.0708 (10)
H16A 0.9836 0.1684 0.5354 0.085*
C17 0.8793 (2) 0.3000 (4) 0.47926 (14) 0.0560 (7)
H17A 0.8815 0.2114 0.4482 0.067*
C18 0.81619 (17) 0.4517 (3) 0.47276 (11) 0.0379 (5)
C18A 0.81318 (16) 0.5856 (3) 0.52035 (10) 0.0362 (5)
N19 0.75194 (17) 0.4838 (3) 0.41939 (10) 0.0404 (5)
H19A 0.716 (2) 0.397 (4) 0.4210 (12) 0.048*
H19B 0.788 (2) 0.478 (4) 0.3873 (14) 0.048*
C20 0.6010 (2) 1.0782 (4) 0.44098 (11) 0.0431 (6)
N21 0.5709 (2) 1.2156 (4) 0.45109 (12) 0.0620 (7)
C22 0.8639 (2) 0.9377 (4) 0.34572 (14) 0.0525 (7)
N23 0.8017 (2) 0.9129 (4) 0.37489 (12) 0.0607 (6)
C24 1.0814 (2) 0.9611 (4) 0.23044 (13) 0.0497 (6)
N25 1.1367 (2) 0.9559 (4) 0.19515 (12) 0.0620 (7)

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
Ag1 0.03820 (10) 0.03710 (10) 0.03135 (10) 0.00115 (7) −0.00073 (7) −0.00062 (7)
Ag2 0.04638 (14) 0.07771 (16) 0.05085 (14) −0.00800 (10) 0.00974 (10) 0.00022 (10)
N1 0.0449 (11) 0.0354 (10) 0.0311 (10) 0.0019 (8) 0.0019 (8) −0.0006 (7)
C2 0.0625 (17) 0.0462 (14) 0.0379 (14) 0.0028 (12) 0.0082 (12) −0.0016 (11)
C3 0.101 (3) 0.0448 (15) 0.0322 (14) 0.0020 (15) 0.0083 (15) −0.0017 (11)
C4 0.096 (3) 0.0372 (14) 0.0383 (15) 0.0027 (14) −0.0184 (15) −0.0002 (11)
C4A 0.0630 (17) 0.0279 (11) 0.0464 (15) 0.0007 (10) −0.0183 (13) −0.0006 (10)
C5 0.0601 (19) 0.0490 (16) 0.074 (2) 0.0009 (13) −0.0320 (17) 0.0012 (14)
C6 0.0419 (17) 0.0603 (19) 0.099 (3) −0.0001 (13) −0.0157 (18) 0.0021 (17)
C7 0.0449 (15) 0.0506 (14) 0.071 (2) −0.0012 (12) 0.0079 (14) 0.0014 (14)
C8 0.0390 (13) 0.0296 (10) 0.0455 (14) 0.0001 (9) −0.0001 (10) 0.0012 (9)
C8A 0.0457 (13) 0.0225 (9) 0.0383 (13) 0.0021 (8) −0.0057 (10) −0.0014 (8)
N9 0.0472 (12) 0.0381 (11) 0.0355 (11) 0.0048 (9) 0.0083 (9) 0.0019 (9)
N11 0.0491 (13) 0.0469 (11) 0.0359 (11) 0.0087 (9) −0.0062 (9) −0.0054 (9)
C12 0.074 (2) 0.0592 (17) 0.0497 (17) 0.0210 (15) −0.0114 (15) −0.0173 (14)
C13 0.089 (2) 0.0686 (19) 0.0438 (17) 0.0094 (18) −0.0156 (16) −0.0194 (15)
C14 0.068 (2) 0.0594 (17) 0.0474 (17) 0.0005 (14) −0.0217 (14) −0.0051 (13)
C14A 0.0402 (13) 0.0473 (14) 0.0450 (15) −0.0041 (10) −0.0074 (11) 0.0028 (11)
C15 0.0513 (17) 0.0565 (16) 0.065 (2) 0.0051 (13) −0.0196 (14) 0.0039 (15)
C16 0.064 (2) 0.0536 (17) 0.091 (3) 0.0210 (14) −0.0199 (18) −0.0047 (17)
C17 0.0556 (17) 0.0464 (15) 0.0643 (19) 0.0098 (12) −0.0041 (14) −0.0121 (13)
C18 0.0334 (12) 0.0390 (12) 0.0408 (13) −0.0025 (9) 0.0003 (10) 0.0000 (9)
C18A 0.0316 (11) 0.0386 (11) 0.0376 (13) −0.0018 (9) −0.0010 (9) 0.0017 (9)
N19 0.0422 (12) 0.0432 (11) 0.0359 (11) −0.0028 (8) 0.0041 (9) −0.0047 (9)
C20 0.0539 (15) 0.0388 (13) 0.0365 (13) −0.0039 (11) 0.0025 (11) 0.0045 (10)
N21 0.0785 (19) 0.0514 (14) 0.0581 (16) 0.0082 (13) 0.0184 (14) 0.0060 (12)
C22 0.0526 (17) 0.0500 (15) 0.0553 (18) −0.0087 (12) 0.0074 (14) −0.0033 (12)
N23 0.0626 (16) 0.0563 (14) 0.0659 (17) −0.0120 (12) 0.0221 (13) −0.0064 (12)
C24 0.0423 (15) 0.0592 (16) 0.0470 (16) 0.0007 (12) −0.0004 (13) 0.0082 (12)
N25 0.0548 (15) 0.0745 (17) 0.0581 (17) 0.0054 (12) 0.0119 (13) 0.0138 (12)

Geometric parameters (Å, º)

Ag1—C20 2.305 (3) N9—H9A 0.79 (3)
Ag1—N23 2.323 (3) N9—H9B 0.85 (3)
Ag1—N11 2.357 (2) N11—C12 1.314 (3)
Ag1—N19 2.375 (2) N11—C18A 1.357 (3)
Ag1—N1 2.3878 (19) C12—C13 1.389 (4)
Ag1—N9 2.404 (2) C12—H12A 0.9300
Ag2—C24 2.033 (3) C13—C14 1.347 (4)
Ag2—C22 2.047 (3) C13—H13A 0.9300
N1—C2 1.322 (3) C14—C14A 1.406 (4)
N1—C8A 1.361 (3) C14—H14A 0.9300
C2—C3 1.398 (4) C14A—C15 1.395 (4)
C2—H2A 0.9300 C14A—C18A 1.419 (3)
C3—C4 1.343 (5) C15—C16 1.345 (5)
C3—H3A 0.9300 C15—H15A 0.9300
C4—C4A 1.407 (4) C16—C17 1.400 (4)
C4—H4A 0.9300 C16—H16A 0.9300
C4A—C5 1.397 (4) C17—C18 1.357 (3)
C4A—C8A 1.415 (3) C17—H17A 0.9300
C5—C6 1.347 (5) C18—C18A 1.417 (3)
C5—H5A 0.9300 C18—N19 1.436 (3)
C6—C7 1.397 (5) N19—H19A 0.77 (3)
C6—H6A 0.9300 N19—H19B 0.90 (3)
C7—C8 1.363 (4) C20—N21 1.069 (3)
C7—H7A 0.9300 C22—N23 1.121 (4)
C8—C8A 1.411 (4) C24—N25 1.133 (4)
C8—N9 1.420 (3)
C20—Ag1—N23 94.56 (9) C8—N9—Ag1 110.41 (15)
C20—Ag1—N11 94.96 (8) C8—N9—H9A 109 (2)
N23—Ag1—N11 96.04 (9) Ag1—N9—H9A 114 (2)
C20—Ag1—N19 166.25 (8) C8—N9—H9B 108.5 (19)
N23—Ag1—N19 86.81 (9) Ag1—N9—H9B 100.1 (19)
N11—Ag1—N19 71.29 (7) H9A—N9—H9B 114 (3)
C20—Ag1—N1 106.09 (8) C12—N11—C18A 118.8 (2)
N23—Ag1—N1 91.27 (8) C12—N11—Ag1 124.28 (18)
N11—Ag1—N1 157.10 (7) C18A—N11—Ag1 116.52 (16)
N19—Ag1—N1 87.54 (7) N11—C12—C13 123.3 (3)
C20—Ag1—N9 89.30 (9) N11—C12—H12A 118.4
N23—Ag1—N9 160.78 (9) C13—C12—H12A 118.4
N11—Ag1—N9 102.39 (8) C14—C13—C12 119.2 (3)
N19—Ag1—N9 93.89 (8) C14—C13—H13A 120.4
N1—Ag1—N9 69.59 (7) C12—C13—H13A 120.4
C24—Ag2—C22 176.05 (11) C13—C14—C14A 120.2 (3)
C2—N1—C8A 118.8 (2) C13—C14—H14A 119.9
C2—N1—Ag1 125.78 (18) C14A—C14—H14A 119.9
C8A—N1—Ag1 113.24 (15) C15—C14A—C14 123.7 (3)
N1—C2—C3 122.6 (3) C15—C14A—C18A 119.2 (2)
N1—C2—H2A 118.7 C14—C14A—C18A 117.1 (2)
C3—C2—H2A 118.7 C16—C15—C14A 120.5 (3)
C4—C3—C2 119.4 (3) C16—C15—H15A 119.8
C4—C3—H3A 120.3 C14A—C15—H15A 119.8
C2—C3—H3A 120.3 C15—C16—C17 120.8 (3)
C3—C4—C4A 120.4 (3) C15—C16—H16A 119.6
C3—C4—H4A 119.8 C17—C16—H16A 119.6
C4A—C4—H4A 119.8 C18—C17—C16 121.2 (3)
C5—C4A—C4 123.6 (3) C18—C17—H17A 119.4
C5—C4A—C8A 119.4 (3) C16—C17—H17A 119.4
C4—C4A—C8A 117.0 (3) C17—C18—C18A 119.1 (2)
C6—C5—C4A 120.0 (3) C17—C18—N19 122.9 (2)
C6—C5—H5A 120.0 C18A—C18—N19 118.1 (2)
C4A—C5—H5A 120.0 N11—C18A—C18 119.3 (2)
C5—C6—C7 121.1 (3) N11—C18A—C14A 121.5 (2)
C5—C6—H6A 119.4 C18—C18A—C14A 119.2 (2)
C7—C6—H6A 119.4 C18—N19—Ag1 113.75 (15)
C8—C7—C6 120.8 (3) C18—N19—H19A 100 (2)
C8—C7—H7A 119.6 Ag1—N19—H19A 112 (2)
C6—C7—H7A 119.6 C18—N19—H19B 109.0 (19)
C7—C8—C8A 119.2 (2) Ag1—N19—H19B 108.9 (17)
C7—C8—N9 123.2 (3) H19A—N19—H19B 113 (3)
C8A—C8—N9 117.6 (2) N21—C20—Ag1 179.5 (3)
N1—C8A—C8 119.1 (2) N23—C22—Ag2 174.7 (3)
N1—C8A—C4A 121.6 (2) C22—N23—Ag1 163.6 (2)
C8—C8A—C4A 119.2 (2) N25—C24—Ag2 175.2 (3)
C8A—N1—C2—C3 0.2 (3) C18A—N11—C12—C13 2.2 (5)
Ag1—N1—C2—C3 −161.74 (19) Ag1—N11—C12—C13 −170.2 (3)
N1—C2—C3—C4 3.0 (4) N11—C12—C13—C14 −1.4 (6)
C2—C3—C4—C4A −2.1 (4) C12—C13—C14—C14A 0.1 (6)
C3—C4—C4A—C5 178.5 (3) C13—C14—C14A—C15 −178.8 (3)
C3—C4—C4A—C8A −1.9 (3) C13—C14—C14A—C18A 0.3 (5)
C4—C4A—C5—C6 178.6 (3) C14—C14A—C15—C16 178.7 (3)
C8A—C4A—C5—C6 −1.0 (4) C18A—C14A—C15—C16 −0.4 (5)
C4A—C5—C6—C7 −2.1 (5) C14A—C15—C16—C17 0.9 (6)
C5—C6—C7—C8 2.0 (5) C15—C16—C17—C18 −0.6 (5)
C6—C7—C8—C8A 1.3 (4) C16—C17—C18—C18A −0.2 (4)
C6—C7—C8—N9 −177.8 (3) C16—C17—C18—N19 179.5 (3)
C2—N1—C8A—C8 176.2 (2) C12—N11—C18A—C18 178.3 (3)
Ag1—N1—C8A—C8 −19.6 (2) Ag1—N11—C18A—C18 −8.7 (3)
C2—N1—C8A—C4A −4.4 (3) C12—N11—C18A—C14A −1.7 (4)
Ag1—N1—C8A—C4A 159.72 (16) Ag1—N11—C18A—C14A 171.31 (18)
C7—C8—C8A—N1 175.0 (2) C17—C18—C18A—N11 −179.4 (3)
N9—C8—C8A—N1 −5.8 (3) N19—C18—C18A—N11 0.9 (3)
C7—C8—C8A—C4A −4.3 (3) C17—C18—C18A—C14A 0.6 (4)
N9—C8—C8A—C4A 174.9 (2) N19—C18—C18A—C14A −179.2 (2)
C5—C4A—C8A—N1 −175.2 (2) C15—C14A—C18A—N11 179.7 (3)
C4—C4A—C8A—N1 5.2 (3) C14—C14A—C18A—N11 0.5 (4)
C5—C4A—C8A—C8 4.2 (3) C15—C14A—C18A—C18 −0.3 (4)
C4—C4A—C8A—C8 −175.4 (2) C14—C14A—C18A—C18 −179.5 (2)
C7—C8—N9—Ag1 −153.5 (2) C17—C18—N19—Ag1 −172.6 (2)
C8A—C8—N9—Ag1 27.4 (2) C18A—C18—N19—Ag1 7.2 (3)

Hydrogen-bond geometry (Å, º)

D—H···A D—H H···A D···A D—H···A
N9—H9A···N21i 0.79 (3) 2.36 (3) 3.143 (4) 169 (3)
N9—H9B···N21ii 0.85 (3) 2.23 (3) 3.075 (3) 172 (3)
N19—H19A···N21ii 0.77 (3) 2.48 (3) 3.205 (4) 157 (3)
N19—H19B···N25iii 0.90 (3) 2.19 (3) 3.087 (4) 175 (3)

Symmetry codes: (i) −x+1, −y+2, −z+1; (ii) x, y−1, z; (iii) −x+2, y−1/2, −z+1/2.

References

  1. Atmani, C., Setifi, F., Benmansour, S., Triki, S., Marchivie, M., Salaün, J.-Y. & Gómez-García, C. J. (2008). Inorg. Chem. Commun. 11, 921–924.
  2. Benmansour, S., Setifi, F., Gómez-García, C. J., Triki, S. & Coronado, E. (2008). Inorg. Chim. Acta, 361, 3856–3862.
  3. Benmansour, S., Setifi, F., Triki, S. & Gómez-García, C. J. (2012). Inorg. Chem. 51, 2359–2365. [DOI] [PubMed]
  4. Benmansour, S., Setifi, F., Triki, S., Thétiot, F., Sala-Pala, J., Gómez-García, C. J. & Colacio, E. (2009). Polyhedron, 28, 1308–1314.
  5. Bruker (2009). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.
  6. Clark, I. J., Crispini, A., Donnelly, P. S., Engelhardt, L. M., Harrowfield, J. M., Jeong, S.-H., Kim, Y., Koutsantonis, G. A., Lee, Y. H., Lengkeek, N. A., Mocerino, M., Nealon, G. L., Ogden, M. I., Park, Y. C., Pettinari, C., Polanzan, L., Rukmini, E., Sargeson, A. M., Skelton, B. W., Sobolev, A. N., Thuéry, P. & White, A. H. (2009). Aust. J. Chem. 62, 1246–1260.
  7. Day, P., Hush, N. S. & Clark, R. J. H. (2008). Philos. Trans. R. Soc. London A, 366, 5–14. [DOI] [PubMed]
  8. Dupouy, G., Marchivie, M., Triki, S., Sala-Pala, J., Gómez-García, C. J., Pillet, S., Lecomte, C. & Létard, J.-F. (2009). Chem. Commun. pp. 3404–3406. [DOI] [PubMed]
  9. Dupouy, G., Marchivie, M., Triki, S., Sala-Pala, J., Salaün, J.-Y., Gómez-García, C. J. & Guionneau, P. (2008). Inorg. Chem. 47, 8921–8931. [DOI] [PubMed]
  10. Grochala, W. & Mazej, Z. (2015). Philos. Trans. Roy. Soc. A: Math. Phys. Engineering Sci. 373, 20140179. [DOI] [PubMed]
  11. Groom, C. R. & Allen, F. H. (2014). Angew. Chem. Int. Ed. 53, 662–671. [DOI] [PubMed]
  12. Housecroft, C. E. & Sharpe, A. G. (2012). Inorg. Chem. 4th ed., ch. 22. Harlow: Pearson.
  13. Kandaiah, S., Huebner, R. & Jansen, M. (2012). Polyhedron, 48, 68–71.
  14. Lin, Y.-Y., Lai, S.-W., Che, C.-M., Fu, W.-F., Zhou, Z.-Y. & Zhu, N. (2005). Inorg. Chem. 44, 1511–1524. [DOI] [PubMed]
  15. Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470.
  16. Pearson, R. G. (2005). J. Chem. Sci. 117, 369–377.
  17. Ramabhadran, R. O., Hua, Y., Flood, A. H. & Raghavachari, K. (2014). J. Phys. Chem. A, 118, 7418–7423. [DOI] [PubMed]
  18. Setifi, F., Benmansour, S., Marchivie, M., Dupouy, G., Triki, S., Sala-Pala, J., Salaün, J.-Y., Gómez-García, C. J., Pillet, S., Lecomte, C. & Ruiz, E. (2009). Inorg. Chem. 48, 1269–1271. [DOI] [PubMed]
  19. Setifi, F., Charles, C., Houille, S., Thétiot, T., Triki, S., Gómez-García, C. J. & Pillet, S. (2014). Polyhedron, 61, 242–247.
  20. Setifi, Z., Domasevitch, K. V., Setifi, F., Mach, P., Ng, S. W., Petříček, V. & Dušek, M. (2013). Acta Cryst. C69, 1351–1356. [DOI] [PubMed]
  21. Setifi, Z., Lehchili, F., Setifi, F., Beghidja, A., Ng, S. W. & Glidewell, C. (2014). Acta Cryst. C70, 338–341. [DOI] [PubMed]
  22. Setifi, F., Milin, E., Charles, C., Thétiot, F., Triki, S. & Gómez-García, C. J. (2014). Inorg. Chem. 53, 97–104. [DOI] [PubMed]
  23. Shaw, J. L., Wolowska, J., Collison, D., Howard, J. A. K., McInnes, E. J. L., McMaster, J., Blake, A. J., Wilson, C. & Schröder, M. (2006). J. Am. Chem. Soc. 128, 13827–13839. [DOI] [PubMed]
  24. Sheldrick, G. M. (2003). SADABS. University of Göttingen, Germany.
  25. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  26. Sheldrick, G. M. (2015). Acta Cryst. C71, 3–8.
  27. Stork, J. R., Rios, D., Pham, D., Bicocca, V., Olmstead, M. M. & Balch, A. L. (2005). Inorg. Chem. 44, 3466–3472. [DOI] [PubMed]
  28. Sun, D., Yang, C.-F., Xu, H.-R., Zhao, H.-X., Wei, Z.-H., Zhang, N., Yu, L.-J., Huang, R.-B. & Zheng, L.-S. (2010). Chem. Commun 46, 8168–8170. [DOI] [PubMed]
  29. Wang, Q.-M., Lee, H. K. & Mak, T. C. W. (2002). New J. Chem 26, 513–515.
  30. Wang, Q.-M. & Mak, T. C. W. (2001). Chem. Commun. pp. 807–808.
  31. Xu, Y.-J., Yang, X.-X., Cao, H. & Zhao, H.-B. (2007). Acta Cryst. E63, m1437.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) I, global. DOI: 10.1107/S2056989015009664/lh5764sup1.cif

e-71-00698-sup1.cif (937.9KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S2056989015009664/lh5764Isup2.hkl

e-71-00698-Isup2.hkl (565.2KB, hkl)

CCDC reference: 1401857

Additional supporting information: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Crystallographic Communications are provided here courtesy of International Union of Crystallography

RESOURCES