Skip to main content
Acta Crystallographica Section E: Crystallographic Communications logoLink to Acta Crystallographica Section E: Crystallographic Communications
. 2015 May 20;71(Pt 6):o413. doi: 10.1107/S2056989015009299

Crystal structure of 3-(3,4-di­methyl­anilino)-2-benzo­furan-1(3H)-one

Muhammad Salim a, Muhammad Nawaz Tahir b,*, Muhammad Shahid a, Munawar Ali Munawar a
PMCID: PMC4459309  PMID: 26090197

Abstract

In the title compound, C16H15NO2, the 2-benzo­furan-1(3H)-one and 3,4-di­methyl­aniline fragments are oriented with a dihedral angle of 89.12 (5)°. N—H⋯O hydrogen-bond inter­actions join mol­ecules into C(6) chains propagating along the a axis. In addition, there are π–π stacking inter­actions between the 2-benzo­furan­one benzene rings [centroid–centroid dis­tance = 3.7870 (13) Å] and C—H⋯π inter­actions between one of the methyl groups and the 3,4-di­methyl­aniline benzene ring.

Keywords: crystal structure, 2-benzo­furan­one, hydrogen bonding

Related literature  

For related crystal structures, see: Li et al. (2009); Odabaşoğlu & Büyükgüngör (2006a ,b , 2007a ,b ). For graph-set notation, see: Bernstein et al. (1995).graphic file with name e-71-0o413-scheme1.jpg

Experimental  

Crystal data  

  • C16H15NO2

  • M r = 253.29

  • Orthorhombic, Inline graphic

  • a = 7.3386 (7) Å

  • b = 14.9133 (11) Å

  • c = 24.3322 (18) Å

  • V = 2663.0 (4) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 0.08 mm−1

  • T = 296 K

  • 0.38 × 0.23 × 0.16 mm

Data collection  

  • Bruker Kappa APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2005) T min = 0.970, T max = 0.988

  • 20839 measured reflections

  • 2906 independent reflections

  • 1660 reflections with I > 2σ(I)

  • R int = 0.042

Refinement  

  • R[F 2 > 2σ(F 2)] = 0.048

  • wR(F 2) = 0.144

  • S = 1.02

  • 2906 reflections

  • 174 parameters

  • H-atom parameters constrained

  • Δρmax = 0.27 e Å−3

  • Δρmin = −0.25 e Å−3

Data collection: APEX2 (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012) and PLATON (Spek, 2009); software used to prepare material for publication: WinGX (Farrugia, 2012) and PLATON.

Supplementary Material

Crystal structure: contains datablock(s) global, I. DOI: 10.1107/S2056989015009299/gk2634sup1.cif

e-71-0o413-sup1.cif (22.6KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S2056989015009299/gk2634Isup2.hkl

e-71-0o413-Isup2.hkl (159.8KB, hkl)

Supporting information file. DOI: 10.1107/S2056989015009299/gk2634Isup3.cml

. DOI: 10.1107/S2056989015009299/gk2634fig1.tif

Mol­ecular structure with the atom numbering scheme. The displacement ellipsoids are drawn at the 50% probability level. H-atoms are shown by small circles of arbitrary radii.

a via PLATON . DOI: 10.1107/S2056989015009299/gk2634fig2.tif

The chains of mol­ecules along the a axis via N—H⋯O hydrogen bond (PLATON; Spek, 2009).

CCDC reference: 1401225

Additional supporting information: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (, ).

Cg3 is the centroid of the C9C14

DHA DH HA D A DHA
N1H1O2i 0.86 2.31 3.025(2) 141
C15H15B Cg3ii 0.96 2.88 3.661(3) 139

Symmetry codes: (i) Inline graphic; (ii) Inline graphic.

Acknowledgments

The authors acknowledge the provision of funds for the purchase of diffractometer and encouragement by Dr Muhammad Akram Chaudhary, Vice Chancellor, University of Sargodha, Pakistan.

supplementary crystallographic information

S1. Comment

The crystal structures of 3-anilinoisobenzofuran-1(3H)-one (Odabaşoğlu & Büyükgüngör, 2006a), 3-(2,6-dimethylanilino)isobenzofuran-1(3H) -one (Odabaşoğlu & Büyükgüngör, 2006b), 3-(4-methylanilino)isobenzo furan-1(3H)-one (Odabaşoğlu & Büyükgüngör, 2007a), 3-(2- (hydroxymethyl)anilino)isobenzofuran-1(3H)-one (Odabaşoğlu & Büyükgüngör, 2007b), and 3-((3-oxo-1,3-dihydroisobenzofuran-1-yl)amino) benzoic acid Li et al., 2009) have been published which are related to the title compound (I, Fig. 1). The title compound was synthesized for the biological studies and for the preparation of further derivitives.

The benzofuran ring A (C1–C8/O1/O2) and the 3,4-dmethylaniline group B (C9–C16/N1) are planar with r. m. s. deviation of 0.0209 and 0.0101 Å, respectively. The dihedral angle between A/B fragments is 89.12 (5)°. Intermolecular hydrogen bond of N—H···O type generates C (6) chains (Bernstein et al., 1995) along the crystallographic a axis (Table 1, Fig. 2). The π–π interactions are observed between the 2-benzofuranone fragments [ Cg1—Cg2i 3.6204 (12) Å; Cg1—Cg1i 3.8138 (13) Å; Cg2—Cg2i 3.7870 (13) Å, Cg1 - centroid of C1/C2/C7/C8/O1, Cg2 - centroid of C2–C7); i = - 1/2 + x, y, 1/2 - z ]. In addition there are also C—H···π interactions (Table 1).

S2. Experimental

Equimolar quantities of 3,4-dimethylaniline (0.605 g. 5 mmol) and 2-formylbenzoic acid (0.751 g, 5 mmol) were stirred in methanol for 2 h. The solution was kept at room temperature for crystallization which afforded light brown needles after 48 h.

S3. Refinement

The H atoms were positioned geometrically (C–H = 0.93–0.96 Å, N—H= 0.86 Å) and refined as riding on their carriers with Uiso(H) = xUeq(C, N), where x = 1.5 for methyl and x =1.2 for other H-atoms.

Figures

Fig. 1.

Fig. 1.

Molecular structure with the atom numbering scheme. The displacement ellipsoids are drawn at the 50% probability level. H-atoms are shown by small circles of arbitrary radii.

Fig. 2.

Fig. 2.

The chains of molecules along the a axis via N—H···O hydrogen bond (PLATON; Spek, 2009).

Crystal data

C16H15NO2 Dx = 1.264 Mg m3
Mr = 253.29 Mo Kα radiation, λ = 0.71073 Å
Orthorhombic, Pbca Cell parameters from 4689 reflections
a = 7.3386 (7) Å θ = 1.4–27.0°
b = 14.9133 (11) Å µ = 0.08 mm1
c = 24.3322 (18) Å T = 296 K
V = 2663.0 (4) Å3 Needle, light brown
Z = 8 0.38 × 0.23 × 0.16 mm
F(000) = 1072

Data collection

Bruker Kappa APEXII CCD diffractometer 2906 independent reflections
Radiation source: fine-focus sealed tube 1660 reflections with I > 2σ(I)
Graphite monochromator Rint = 0.042
Detector resolution: 7.80 pixels mm-1 θmax = 27.0°, θmin = 2.7°
ω scans h = −5→9
Absorption correction: multi-scan (SADABS; Bruker, 2005) k = −19→18
Tmin = 0.970, Tmax = 0.988 l = −31→31
20839 measured reflections

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.048 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.144 H-atom parameters constrained
S = 1.02 w = 1/[σ2(Fo2) + (0.0675P)2 + 0.3907P] where P = (Fo2 + 2Fc2)/3
2906 reflections (Δ/σ)max < 0.001
174 parameters Δρmax = 0.27 e Å3
0 restraints Δρmin = −0.25 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
O1 0.80336 (19) 0.14473 (8) 0.23068 (5) 0.0528 (4)
O2 0.8396 (2) 0.16231 (9) 0.32129 (5) 0.0614 (4)
N1 0.9466 (2) 0.15132 (10) 0.14175 (6) 0.0533 (5)
H1 1.0572 0.1688 0.1371 0.064*
C1 0.8541 (3) 0.19202 (12) 0.27513 (7) 0.0457 (5)
C2 0.9241 (3) 0.27938 (11) 0.25746 (7) 0.0424 (5)
C3 0.9848 (3) 0.35141 (12) 0.28845 (8) 0.0523 (5)
H3 0.9871 0.3488 0.3266 0.063*
C4 1.0416 (3) 0.42698 (13) 0.26083 (9) 0.0610 (6)
H4 1.0827 0.4765 0.2805 0.073*
C5 1.0381 (3) 0.42990 (13) 0.20393 (10) 0.0651 (6)
H5 1.0775 0.4815 0.1860 0.078*
C6 0.9774 (3) 0.35782 (12) 0.17306 (8) 0.0575 (6)
H6 0.9761 0.3602 0.1349 0.069*
C7 0.9189 (3) 0.28247 (11) 0.20076 (7) 0.0443 (5)
C8 0.8370 (3) 0.19769 (12) 0.17912 (7) 0.0472 (5)
H8 0.7199 0.2115 0.1617 0.057*
C9 0.8834 (3) 0.07697 (11) 0.11132 (7) 0.0463 (5)
C10 1.0086 (3) 0.01250 (12) 0.09499 (7) 0.0521 (5)
H10 1.1299 0.0189 0.1054 0.062*
C11 0.9584 (4) −0.06119 (12) 0.06359 (7) 0.0572 (6)
C12 0.7769 (4) −0.07110 (13) 0.04754 (7) 0.0618 (6)
C13 0.6529 (3) −0.00635 (14) 0.06404 (8) 0.0632 (6)
H13 0.5317 −0.0124 0.0535 0.076*
C14 0.7027 (3) 0.06721 (13) 0.09569 (7) 0.0553 (6)
H14 0.6161 0.1093 0.1063 0.066*
C15 1.1015 (4) −0.12910 (15) 0.04791 (10) 0.0846 (8)
H15A 1.2147 −0.1140 0.0654 0.127*
H15B 1.1175 −0.1289 0.0087 0.127*
H15C 1.0635 −0.1877 0.0596 0.127*
C16 0.7133 (4) −0.15104 (15) 0.01424 (10) 0.0953 (9)
H16A 0.5847 −0.1462 0.0076 0.143*
H16B 0.7378 −0.2052 0.0342 0.143*
H16C 0.7769 −0.1524 −0.0202 0.143*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
O1 0.0623 (10) 0.0370 (7) 0.0592 (8) −0.0047 (6) 0.0027 (7) −0.0033 (6)
O2 0.0646 (11) 0.0614 (9) 0.0581 (8) 0.0045 (7) 0.0074 (7) 0.0143 (7)
N1 0.0515 (11) 0.0518 (9) 0.0566 (9) −0.0076 (8) 0.0071 (8) −0.0179 (7)
C1 0.0457 (12) 0.0391 (10) 0.0524 (11) 0.0075 (9) 0.0045 (9) 0.0000 (9)
C2 0.0434 (12) 0.0356 (9) 0.0481 (10) 0.0067 (9) −0.0002 (9) −0.0037 (8)
C3 0.0577 (14) 0.0450 (11) 0.0542 (10) 0.0084 (10) −0.0029 (10) −0.0122 (9)
C4 0.0638 (16) 0.0385 (11) 0.0809 (15) −0.0005 (10) −0.0047 (12) −0.0147 (10)
C5 0.0725 (17) 0.0377 (11) 0.0851 (15) −0.0050 (11) 0.0028 (13) 0.0061 (10)
C6 0.0714 (16) 0.0458 (11) 0.0552 (11) −0.0007 (11) 0.0001 (11) 0.0060 (9)
C7 0.0481 (12) 0.0355 (9) 0.0493 (10) 0.0038 (9) −0.0016 (9) −0.0025 (8)
C8 0.0524 (13) 0.0405 (9) 0.0487 (10) 0.0021 (9) −0.0026 (9) −0.0040 (8)
C9 0.0561 (14) 0.0444 (10) 0.0385 (9) −0.0047 (10) 0.0014 (9) −0.0042 (8)
C10 0.0591 (14) 0.0495 (11) 0.0476 (10) 0.0010 (11) 0.0013 (10) −0.0049 (9)
C11 0.0845 (18) 0.0456 (11) 0.0417 (10) 0.0002 (12) 0.0104 (11) −0.0029 (8)
C12 0.0906 (19) 0.0489 (12) 0.0460 (10) −0.0145 (13) 0.0064 (12) −0.0084 (9)
C13 0.0706 (17) 0.0646 (13) 0.0543 (11) −0.0185 (13) −0.0032 (11) −0.0076 (10)
C14 0.0604 (15) 0.0512 (11) 0.0542 (11) −0.0034 (11) 0.0041 (10) −0.0084 (9)
C15 0.119 (2) 0.0601 (13) 0.0749 (14) 0.0175 (14) 0.0172 (16) −0.0143 (12)
C16 0.135 (3) 0.0685 (15) 0.0821 (15) −0.0301 (16) 0.0022 (17) −0.0282 (13)

Geometric parameters (Å, º)

O1—C1 1.344 (2) C8—H8 0.9800
O1—C8 1.503 (2) C9—C14 1.387 (3)
O2—C1 1.212 (2) C9—C10 1.388 (3)
N1—C8 1.397 (2) C10—C11 1.388 (3)
N1—C9 1.412 (2) C10—H10 0.9300
N1—H1 0.8600 C11—C12 1.395 (3)
C1—C2 1.465 (3) C11—C15 1.509 (3)
C2—C7 1.381 (2) C12—C13 1.386 (3)
C2—C3 1.386 (2) C12—C16 1.515 (3)
C3—C4 1.377 (3) C13—C14 1.389 (3)
C3—H3 0.9300 C13—H13 0.9300
C4—C5 1.385 (3) C14—H14 0.9300
C4—H4 0.9300 C15—H15A 0.9600
C5—C6 1.385 (3) C15—H15B 0.9600
C5—H5 0.9300 C15—H15C 0.9600
C6—C7 1.379 (2) C16—H16A 0.9600
C6—H6 0.9300 C16—H16B 0.9600
C7—C8 1.496 (2) C16—H16C 0.9600
C1—O1—C8 110.53 (13) C14—C9—C10 118.79 (17)
C8—N1—C9 122.76 (17) C14—C9—N1 122.70 (17)
C8—N1—H1 118.6 C10—C9—N1 118.48 (19)
C9—N1—H1 118.6 C9—C10—C11 122.0 (2)
O2—C1—O1 121.98 (17) C9—C10—H10 119.0
O2—C1—C2 128.89 (17) C11—C10—H10 119.0
O1—C1—C2 109.12 (15) C10—C11—C12 119.4 (2)
C7—C2—C3 121.78 (16) C10—C11—C15 119.1 (2)
C7—C2—C1 108.25 (15) C12—C11—C15 121.5 (2)
C3—C2—C1 129.96 (17) C13—C12—C11 118.15 (18)
C4—C3—C2 117.78 (18) C13—C12—C16 120.0 (2)
C4—C3—H3 121.1 C11—C12—C16 121.8 (2)
C2—C3—H3 121.1 C12—C13—C14 122.5 (2)
C3—C4—C5 120.53 (18) C12—C13—H13 118.7
C3—C4—H4 119.7 C14—C13—H13 118.7
C5—C4—H4 119.7 C9—C14—C13 119.1 (2)
C6—C5—C4 121.57 (19) C9—C14—H14 120.4
C6—C5—H5 119.2 C13—C14—H14 120.4
C4—C5—H5 119.2 C11—C15—H15A 109.5
C7—C6—C5 117.87 (18) C11—C15—H15B 109.5
C7—C6—H6 121.1 H15A—C15—H15B 109.5
C5—C6—H6 121.1 C11—C15—H15C 109.5
C6—C7—C2 120.46 (16) H15A—C15—H15C 109.5
C6—C7—C8 129.93 (16) H15B—C15—H15C 109.5
C2—C7—C8 109.55 (15) C12—C16—H16A 109.5
N1—C8—C7 114.58 (17) C12—C16—H16B 109.5
N1—C8—O1 112.19 (14) H16A—C16—H16B 109.5
C7—C8—O1 102.49 (13) C12—C16—H16C 109.5
N1—C8—H8 109.1 H16A—C16—H16C 109.5
C7—C8—H8 109.1 H16B—C16—H16C 109.5
O1—C8—H8 109.1
C8—O1—C1—O2 −179.85 (17) C2—C7—C8—N1 −123.94 (17)
C8—O1—C1—C2 0.2 (2) C6—C7—C8—O1 −179.40 (19)
O2—C1—C2—C7 178.4 (2) C2—C7—C8—O1 −2.2 (2)
O1—C1—C2—C7 −1.6 (2) C1—O1—C8—N1 124.55 (17)
O2—C1—C2—C3 −2.8 (4) C1—O1—C8—C7 1.1 (2)
O1—C1—C2—C3 177.13 (18) C8—N1—C9—C14 30.1 (3)
C7—C2—C3—C4 −0.4 (3) C8—N1—C9—C10 −151.93 (17)
C1—C2—C3—C4 −179.03 (19) C14—C9—C10—C11 0.0 (3)
C2—C3—C4—C5 −0.2 (3) N1—C9—C10—C11 −178.05 (16)
C3—C4—C5—C6 0.2 (3) C9—C10—C11—C12 0.3 (3)
C4—C5—C6—C7 0.4 (3) C9—C10—C11—C15 −179.31 (18)
C5—C6—C7—C2 −1.0 (3) C10—C11—C12—C13 −0.3 (3)
C5—C6—C7—C8 176.0 (2) C15—C11—C12—C13 179.33 (18)
C3—C2—C7—C6 1.0 (3) C10—C11—C12—C16 −178.75 (18)
C1—C2—C7—C6 179.92 (18) C15—C11—C12—C16 0.9 (3)
C3—C2—C7—C8 −176.51 (17) C11—C12—C13—C14 0.0 (3)
C1—C2—C7—C8 2.4 (2) C16—C12—C13—C14 178.46 (19)
C9—N1—C8—C7 −171.10 (16) C10—C9—C14—C13 −0.3 (3)
C9—N1—C8—O1 72.6 (2) N1—C9—C14—C13 177.65 (16)
C6—C7—C8—N1 58.8 (3) C12—C13—C14—C9 0.3 (3)

Hydrogen-bond geometry (Å, º)

Cg3 is the centroid of the C9—C14

D—H···A D—H H···A D···A D—H···A
N1—H1···O2i 0.86 2.31 3.025 (2) 141
C15—H15B···Cg3ii 0.96 2.88 3.661 (3) 139

Symmetry codes: (i) x+1/2, y, −z+1/2; (ii) −x+2, −y, −z.

Footnotes

Supporting information for this paper is available from the IUCr electronic archives (Reference: GK2634).

References

  1. Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.
  2. Bruker (2005). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.
  3. Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.
  4. Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.
  5. Li, W., Yin, H., Wen, L., Li, K. & Fan, W. (2009). Acta Cryst. E65, o2579. [DOI] [PMC free article] [PubMed]
  6. Odabaşoğlu, M. & Büyükgüngör, O. (2006a). Acta Cryst. E62, o2943–o2944.
  7. Odabaşoğlu, M. & Büyükgüngör, O. (2006b). Acta Cryst. E62, o4140–o4141.
  8. Odabaşoğlu, M. & Büyükgüngör, O. (2007a). Acta Cryst. E63, o1999–o2001.
  9. Odabaşoğlu, M. & Büyükgüngör, O. (2007b). Acta Cryst. E63, o2159–o2161.
  10. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  11. Sheldrick, G. M. (2015). Acta Cryst. C71, 3–8.
  12. Spek, A. L. (2009). Acta Cryst. D65, 148–155. [DOI] [PMC free article] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) global, I. DOI: 10.1107/S2056989015009299/gk2634sup1.cif

e-71-0o413-sup1.cif (22.6KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S2056989015009299/gk2634Isup2.hkl

e-71-0o413-Isup2.hkl (159.8KB, hkl)

Supporting information file. DOI: 10.1107/S2056989015009299/gk2634Isup3.cml

. DOI: 10.1107/S2056989015009299/gk2634fig1.tif

Mol­ecular structure with the atom numbering scheme. The displacement ellipsoids are drawn at the 50% probability level. H-atoms are shown by small circles of arbitrary radii.

a via PLATON . DOI: 10.1107/S2056989015009299/gk2634fig2.tif

The chains of mol­ecules along the a axis via N—H⋯O hydrogen bond (PLATON; Spek, 2009).

CCDC reference: 1401225

Additional supporting information: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Crystallographic Communications are provided here courtesy of International Union of Crystallography

RESOURCES