Skip to main content
Acta Crystallographica Section E: Crystallographic Communications logoLink to Acta Crystallographica Section E: Crystallographic Communications
. 2015 May 23;71(Pt 6):o414–o415. doi: 10.1107/S2056989015009445

Crystal structure of (4E)-4-(8-meth­oxy-2H-chromen-2-yl­idene)-3-methyl-1-phenyl-1H-pyrazol-5(4H)-one

Muhammad Salim a, Munawar Ali Munawar a, Muhammad Nawaz Tahir b,*, Muhammad Shahid a, Khizar Iqbal Malik a
PMCID: PMC4459315  PMID: 26090198

Abstract

In the title compound, C20H16N2O3, the phenyl substituent attached to the pyrazole ring makes a dihedral angle of 4.87 (7)° with the rest of the mol­ecule. In the crystal, mol­ecules are connected into inversion dimers of the R 2 2(14) type by pairs of C—H⋯O inter­actions. π–π inter­actions exist between the benzene and pyrazole rings at a distance of 3.701 (1) Å. Similarly, π–π inter­actions are present at a centroid–centroid distance of 3.601 (1) Å between the oxygen-containing heterocyclic ring and meth­oxy substituted aromatic ring of a neighbouring mol­ecule. Additional C—H⋯π and C=O⋯π inter­actions are also observed.

Keywords: crystal structure, pyrazolone, π–π inter­actions

Related literature  

For related structures, see: Chaudhry et al. (2012); Holzer et al. (1999); Malik et al. (2009).graphic file with name e-71-0o414-scheme1.jpg

Experimental  

Crystal data  

  • C20H16N2O3

  • M r = 332.35

  • Monoclinic, Inline graphic

  • a = 28.179 (5) Å

  • b = 4.7108 (8) Å

  • c = 23.819 (5) Å

  • β = 92.957 (7)°

  • V = 3157.7 (10) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 0.10 mm−1

  • T = 296 K

  • 0.40 × 0.22 × 0.18 mm

Data collection  

  • Bruker Kappa APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2005) T min = 0.961, T max = 0.985

  • 13056 measured reflections

  • 3419 independent reflections

  • 2389 reflections with I > 2σ(I)

  • R int = 0.033

Refinement  

  • R[F 2 > 2σ(F 2)] = 0.042

  • wR(F 2) = 0.127

  • S = 1.06

  • 3419 reflections

  • 229 parameters

  • H-atom parameters constrained

  • Δρmax = 0.22 e Å−3

  • Δρmin = −0.16 e Å−3

Data collection: APEX2 (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012) and PLATON (Spek, 2009); software used to prepare material for publication: WinGX (Farrugia, 2012) and PLATON.

Supplementary Material

Crystal structure: contains datablock(s) global, I. DOI: 10.1107/S2056989015009445/im2465sup1.cif

e-71-0o414-sup1.cif (26.2KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S2056989015009445/im2465Isup2.hkl

e-71-0o414-Isup2.hkl (187.8KB, hkl)

Supporting information file. DOI: 10.1107/S2056989015009445/im2465Isup3.cml

. DOI: 10.1107/S2056989015009445/im2465fig1.tif

View of the title compound with the atom numbering scheme. Thermal ellipsoids are drawn at the 50% probability level. H-atoms are shown by small circles of arbitrary radii.

PLATON . DOI: 10.1107/S2056989015009445/im2465fig2.tif

Partial packing (PLATON; Spek, 2009) which shows that mol­ecules are dimerized due to C—H⋯O bondings.

CCDC reference: 1401584

Additional supporting information: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry and CH and CO interactions (, ).

Cg1 and Cg2 are the centroids of the N1/N2/C7C9 and C11C14/C19/O2 rings, respectively.

DHA DH HA D A DHA
C6H6O1 0.93 2.28 2.911(2) 124
C12H12O1 0.93 2.38 3.004(2) 124
C13H13O1i 0.93 2.53 3.2577(19) 136
C10H10A Cg1ii 0.96 2.79 3.6812(17) 155
C7O1Cg2iii 1.23(1) 3.65(1) 3.9797(18) 96(1)

Symmetry codes: (i) Inline graphic; (ii) Inline graphic; (iii) Inline graphic.

Acknowledgments

The authors acknowledge the provision of funds for the purchase of the diffractometer and encouragement by Dr Muhammad Akram Chaudhary, Vice Chancellor, University of Sargodha, Pakistan.

supplementary crystallographic information

S1. Comment

The crystal structures of 5-methyl-2-phenyl-4-((E)-3-phenyl-2-hydroxy- prop-2-enylidene)-1,2-dihydro-3H-pyrazol-3-one (Holzer et al., 1999), (4Z)-4-((2E)-1-hydroxy-3-(4-methoxyphenyl)prop-2-en-1- ylidene)-3-methyl-1-phenyl-1H-pyrazol-5(4H)-one (Malik et al., 2009) and (4Z)-4-((2E)-1-hydroxy-3-(3-nitrophenyl)prop- 2-en-1-ylidene)-3-methyl-1-(4-methylphenyl)-1H-pyrazol-5(4H)-one (Chaudhry, et al., 2012) have been published which are related to the title compound (I, Fig. 1). No crystal structure has been found containing a 8-methoxy-2H-chromene subunit. (I) is synthesized for the biological studies etc.

In (I), the benzene ring A (C1–C6) and the (4E)-4-(8-methoxy-2H-chromen-2-ylidene)-5-methyl-2,4-dihydro-3H-pyrazol-3-one (C7 –C20/N1/N2/O1/O2/O3) part of the molecule are planar with r. m. s. deviations of 0.0053 and 0.0108 Å, respectively. The dihedral angle between A/B is 4.87 (7)°. The molecules are dimerized due to C—H···O interactions completing R22 (14) Molecules are connected to inversion dimers dimerized of the R22 (14) type by C—H···O interactions. There exist π–π interactions at a distance of 3.7011 (12) Å between the centeroids of Cg1—Cg3i and Cg3—Cg1ii [i = x, - 1 + y, z and ii = x, 1 + y, z], where Cg1 and Cg3 are the centroids of heterocyclic ring C (N1/N2/C7/C8/C9) and benzene ring A, respectively. Similarly, there exist π–π interaction at a distance of 3.6012 (11) Å between the centeroids of Cg2—Cg4ii and Cg4—Cg2i [i = x, - 1 + y, z and ii = x, 1 + y, z], where Cg2 and Cg4 are the centroids of heterocyclic ring D (C11—C14/C19/O2) and methoxy containing benzene ring E (C14—C19), respectively. There exist C—H···π and C=O···π interactions (Table 1).

S2. Experimental

For the preparation of title compound (I), a mixture of 4-acetyl-3-methyl-1-phenyl-5-hydroxy pyrazole (0.218 g, 1 mmoL), 2-methoxybenzaldehyde (0.205 g, 1.5 mmoL) was refluxed for 8 h in glacial acetic acid (15 ml) and concentrated sulfuric acid (0.2 ml). The reaction mixture was diluted with distilled water (60 ml). The precipitate was filtered, washed with methanol and dried. The crude product was purified by column chromatography using n-hexane and ethyl acetate mixtures as eluents. The product was recrystallized using n-hexane to afford red needles (yield = 63%, m.p. 503 K)

S3. Refinement

H-atoms were positioned geometrically (C–H = 0.93–0.96 Å) and refined as riding with Uiso(H) = xUeq(C, O), where x = 1.5 for methyl and x =1.2 for aromatic H-atoms.

Figures

Fig. 1.

Fig. 1.

View of the title compound with the atom numbering scheme. Thermal ellipsoids are drawn at the 50% probability level. H-atoms are shown by small circles of arbitrary radii.

Fig. 2.

Fig. 2.

Partial packing (PLATON; Spek, 2009) which shows that molecules are dimerized due to C—H···O bondings.

Crystal data

C20H16N2O3 F(000) = 1392
Mr = 332.35 Dx = 1.398 Mg m3
Monoclinic, C2/c Mo Kα radiation, λ = 0.71073 Å
a = 28.179 (5) Å Cell parameters from 2389 reflections
b = 4.7108 (8) Å θ = 2.9–27.0°
c = 23.819 (5) Å µ = 0.10 mm1
β = 92.957 (7)° T = 296 K
V = 3157.7 (10) Å3 Needle, red
Z = 8 0.40 × 0.22 × 0.18 mm

Data collection

Bruker Kappa APEXII CCD diffractometer 3419 independent reflections
Radiation source: fine-focus sealed tube 2389 reflections with I > 2σ(I)
Graphite monochromator Rint = 0.033
Detector resolution: 7.70 pixels mm-1 θmax = 27.0°, θmin = 2.9°
ω scans h = −35→35
Absorption correction: multi-scan (SADABS; Bruker, 2005) k = −6→5
Tmin = 0.961, Tmax = 0.985 l = −24→30
13056 measured reflections

Refinement

Refinement on F2 Secondary atom site location: difference Fourier map
Least-squares matrix: full Hydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.042 H-atom parameters constrained
wR(F2) = 0.127 w = 1/[σ2(Fo2) + (0.0648P)2 + 0.6123P] where P = (Fo2 + 2Fc2)/3
S = 1.06 (Δ/σ)max < 0.001
3419 reflections Δρmax = 0.22 e Å3
229 parameters Δρmin = −0.16 e Å3
0 restraints Extinction correction: SHELXL2014 (Sheldrick, 2015), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methods Extinction coefficient: 0.0021 (4)

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
O1 0.06562 (4) 1.0410 (2) 0.06364 (5) 0.0601 (4)
O2 0.11680 (3) 0.3975 (2) −0.05229 (4) 0.0405 (3)
O3 0.16619 (4) 0.0352 (2) −0.10799 (5) 0.0504 (3)
N1 0.14466 (4) 0.9876 (2) 0.09568 (5) 0.0407 (3)
N2 0.18451 (4) 0.8288 (2) 0.08158 (6) 0.0417 (3)
C1 0.14967 (6) 1.1800 (3) 0.14142 (6) 0.0410 (4)
C2 0.19424 (6) 1.2193 (3) 0.16813 (7) 0.0501 (4)
H2 0.2202 1.1180 0.1563 0.060*
C3 0.19992 (7) 1.4086 (4) 0.21225 (8) 0.0575 (5)
H3 0.2298 1.4329 0.2301 0.069*
C4 0.16197 (8) 1.5617 (4) 0.23019 (8) 0.0593 (5)
H4 0.1661 1.6913 0.2595 0.071*
C5 0.11808 (7) 1.5206 (4) 0.20427 (8) 0.0619 (5)
H5 0.0923 1.6222 0.2164 0.074*
C6 0.11134 (7) 1.3295 (3) 0.16006 (7) 0.0541 (5)
H6 0.0812 1.3025 0.1431 0.065*
C7 0.10494 (5) 0.9304 (3) 0.06052 (7) 0.0410 (4)
C8 0.12183 (5) 0.7169 (3) 0.02175 (6) 0.0372 (4)
C9 0.17098 (5) 0.6713 (3) 0.03861 (7) 0.0370 (4)
C10 0.20563 (5) 0.4738 (3) 0.01377 (7) 0.0451 (4)
H10A 0.1932 0.2840 0.0139 0.068*
H10B 0.2352 0.4800 0.0356 0.068*
H10C 0.2108 0.5304 −0.0242 0.068*
C11 0.09468 (5) 0.5939 (3) −0.02107 (6) 0.0368 (4)
C12 0.04599 (5) 0.6554 (3) −0.03528 (7) 0.0455 (4)
H12 0.0304 0.7917 −0.0149 0.055*
C13 0.02230 (6) 0.5199 (3) −0.07759 (7) 0.0492 (4)
H13 −0.0096 0.5601 −0.0856 0.059*
C14 0.04580 (5) 0.3138 (3) −0.11063 (7) 0.0435 (4)
C15 0.02414 (6) 0.1660 (4) −0.15629 (8) 0.0562 (5)
H15 −0.0078 0.1959 −0.1664 0.067*
C16 0.05019 (7) −0.0228 (4) −0.18596 (8) 0.0583 (5)
H16 0.0357 −0.1184 −0.2164 0.070*
C17 0.09766 (6) −0.0735 (3) −0.17137 (7) 0.0490 (4)
H17 0.1146 −0.2024 −0.1921 0.059*
C18 0.12003 (5) 0.0664 (3) −0.12619 (7) 0.0404 (4)
C19 0.09317 (5) 0.2600 (3) −0.09639 (6) 0.0373 (4)
C20 0.19362 (6) −0.1685 (4) −0.13639 (8) 0.0533 (5)
H20A 0.1797 −0.3531 −0.1328 0.080*
H20B 0.2255 −0.1704 −0.1201 0.080*
H20C 0.1942 −0.1191 −0.1754 0.080*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
O1 0.0403 (7) 0.0647 (7) 0.0753 (9) 0.0165 (6) 0.0028 (6) −0.0223 (7)
O2 0.0332 (6) 0.0421 (5) 0.0463 (7) 0.0051 (4) 0.0011 (5) −0.0075 (5)
O3 0.0370 (6) 0.0583 (7) 0.0556 (7) 0.0076 (5) 0.0004 (5) −0.0180 (6)
N1 0.0402 (7) 0.0393 (6) 0.0429 (8) 0.0073 (5) 0.0044 (6) −0.0023 (6)
N2 0.0404 (8) 0.0400 (6) 0.0450 (8) 0.0098 (5) 0.0040 (6) 0.0006 (6)
C1 0.0522 (10) 0.0341 (7) 0.0372 (9) 0.0036 (6) 0.0069 (7) 0.0040 (7)
C2 0.0550 (11) 0.0476 (9) 0.0477 (10) −0.0008 (7) 0.0044 (8) −0.0021 (8)
C3 0.0697 (13) 0.0533 (10) 0.0496 (11) −0.0105 (9) 0.0030 (9) −0.0022 (9)
C4 0.0898 (16) 0.0451 (9) 0.0432 (11) −0.0025 (9) 0.0052 (10) −0.0037 (8)
C5 0.0816 (15) 0.0547 (10) 0.0501 (11) 0.0199 (9) 0.0104 (10) −0.0039 (9)
C6 0.0592 (11) 0.0539 (9) 0.0491 (11) 0.0147 (8) 0.0022 (9) −0.0044 (9)
C7 0.0380 (9) 0.0383 (7) 0.0472 (10) 0.0053 (6) 0.0059 (7) 0.0001 (7)
C8 0.0347 (8) 0.0346 (7) 0.0427 (9) 0.0040 (6) 0.0070 (7) 0.0010 (7)
C9 0.0369 (8) 0.0331 (7) 0.0413 (9) 0.0045 (6) 0.0063 (7) 0.0037 (7)
C10 0.0390 (9) 0.0433 (8) 0.0531 (10) 0.0080 (6) 0.0040 (7) −0.0034 (7)
C11 0.0342 (8) 0.0340 (7) 0.0430 (9) 0.0046 (6) 0.0084 (7) 0.0028 (7)
C12 0.0368 (9) 0.0446 (8) 0.0554 (11) 0.0090 (7) 0.0066 (8) 0.0007 (8)
C13 0.0324 (9) 0.0537 (9) 0.0609 (11) 0.0080 (7) −0.0020 (8) 0.0042 (8)
C14 0.0364 (9) 0.0443 (8) 0.0493 (10) 0.0028 (6) −0.0020 (7) 0.0039 (7)
C15 0.0417 (10) 0.0619 (10) 0.0634 (12) 0.0029 (8) −0.0131 (9) 0.0000 (9)
C16 0.0561 (11) 0.0632 (11) 0.0541 (12) −0.0012 (9) −0.0139 (9) −0.0080 (9)
C17 0.0504 (10) 0.0507 (9) 0.0457 (10) 0.0016 (7) 0.0004 (8) −0.0065 (8)
C18 0.0358 (9) 0.0419 (8) 0.0434 (9) 0.0002 (6) 0.0017 (7) 0.0006 (7)
C19 0.0366 (8) 0.0362 (7) 0.0388 (9) −0.0014 (6) 0.0000 (7) 0.0013 (7)
C20 0.0453 (10) 0.0585 (10) 0.0565 (11) 0.0111 (8) 0.0060 (8) −0.0096 (9)

Geometric parameters (Å, º)

O1—C7 1.2299 (17) C8—C9 1.438 (2)
O2—C11 1.3584 (17) C9—C10 1.4931 (19)
O2—C19 1.3766 (17) C10—H10A 0.9600
O3—C18 1.3578 (18) C10—H10B 0.9600
O3—C20 1.4244 (18) C10—H10C 0.9600
N1—C7 1.389 (2) C11—C12 1.426 (2)
N1—N2 1.4046 (16) C12—C13 1.341 (2)
N1—C1 1.419 (2) C12—H12 0.9300
N2—C9 1.3048 (19) C13—C14 1.433 (2)
C1—C6 1.382 (2) C13—H13 0.9300
C1—C2 1.390 (2) C14—C19 1.384 (2)
C2—C3 1.381 (2) C14—C15 1.404 (2)
C2—H2 0.9300 C15—C16 1.372 (2)
C3—C4 1.376 (3) C15—H15 0.9300
C3—H3 0.9300 C16—C17 1.385 (2)
C4—C5 1.367 (3) C16—H16 0.9300
C4—H4 0.9300 C17—C18 1.385 (2)
C5—C6 1.391 (2) C17—H17 0.9300
C5—H5 0.9300 C18—C19 1.401 (2)
C6—H6 0.9300 C20—H20A 0.9600
C7—C8 1.462 (2) C20—H20B 0.9600
C8—C11 1.371 (2) C20—H20C 0.9600
C11—O2—C19 121.38 (11) C9—C10—H10C 109.5
C18—O3—C20 117.11 (12) H10A—C10—H10C 109.5
C7—N1—N2 112.43 (12) H10B—C10—H10C 109.5
C7—N1—C1 129.21 (13) O2—C11—C8 116.14 (13)
N2—N1—C1 118.35 (12) O2—C11—C12 118.14 (14)
C9—N2—N1 106.59 (12) C8—C11—C12 125.72 (14)
C6—C1—C2 119.19 (15) C13—C12—C11 121.15 (15)
C6—C1—N1 121.59 (15) C13—C12—H12 119.4
C2—C1—N1 119.22 (14) C11—C12—H12 119.4
C3—C2—C1 120.04 (16) C12—C13—C14 120.59 (14)
C3—C2—H2 120.0 C12—C13—H13 119.7
C1—C2—H2 120.0 C14—C13—H13 119.7
C4—C3—C2 120.87 (18) C19—C14—C15 118.31 (15)
C4—C3—H3 119.6 C19—C14—C13 117.17 (14)
C2—C3—H3 119.6 C15—C14—C13 124.52 (15)
C5—C4—C3 118.99 (17) C16—C15—C14 119.84 (16)
C5—C4—H4 120.5 C16—C15—H15 120.1
C3—C4—H4 120.5 C14—C15—H15 120.1
C4—C5—C6 121.25 (18) C15—C16—C17 121.19 (16)
C4—C5—H5 119.4 C15—C16—H16 119.4
C6—C5—H5 119.4 C17—C16—H16 119.4
C1—C6—C5 119.64 (18) C16—C17—C18 120.50 (16)
C1—C6—H6 120.2 C16—C17—H17 119.7
C5—C6—H6 120.2 C18—C17—H17 119.7
O1—C7—N1 125.57 (15) O3—C18—C17 125.90 (14)
O1—C7—C8 130.78 (15) O3—C18—C19 116.25 (13)
N1—C7—C8 103.65 (12) C17—C18—C19 117.84 (14)
C11—C8—C9 129.57 (13) O2—C19—C14 121.56 (13)
C11—C8—C7 124.98 (13) O2—C19—C18 116.12 (13)
C9—C8—C7 105.45 (13) C14—C19—C18 122.31 (14)
N2—C9—C8 111.87 (13) O3—C20—H20A 109.5
N2—C9—C10 119.63 (13) O3—C20—H20B 109.5
C8—C9—C10 128.50 (14) H20A—C20—H20B 109.5
C9—C10—H10A 109.5 O3—C20—H20C 109.5
C9—C10—H10B 109.5 H20A—C20—H20C 109.5
H10A—C10—H10B 109.5 H20B—C20—H20C 109.5
C7—N1—N2—C9 −0.36 (16) C19—O2—C11—C12 −0.2 (2)
C1—N1—N2—C9 −179.67 (12) C9—C8—C11—O2 0.7 (2)
C7—N1—C1—C6 5.1 (2) C7—C8—C11—O2 −179.45 (13)
N2—N1—C1—C6 −175.68 (14) C9—C8—C11—C12 −179.11 (15)
C7—N1—C1—C2 −174.84 (15) C7—C8—C11—C12 0.8 (2)
N2—N1—C1—C2 4.3 (2) O2—C11—C12—C13 1.2 (2)
C6—C1—C2—C3 −0.8 (2) C8—C11—C12—C13 −179.03 (15)
N1—C1—C2—C3 179.12 (14) C11—C12—C13—C14 −1.5 (2)
C1—C2—C3—C4 −0.4 (3) C12—C13—C14—C19 0.8 (2)
C2—C3—C4—C5 1.1 (3) C12—C13—C14—C15 −178.71 (16)
C3—C4—C5—C6 −0.6 (3) C19—C14—C15—C16 −1.0 (3)
C2—C1—C6—C5 1.4 (2) C13—C14—C15—C16 178.53 (16)
N1—C1—C6—C5 −178.61 (14) C14—C15—C16—C17 0.7 (3)
C4—C5—C6—C1 −0.7 (3) C15—C16—C17—C18 0.0 (3)
N2—N1—C7—O1 −179.78 (15) C20—O3—C18—C17 −2.8 (2)
C1—N1—C7—O1 −0.6 (3) C20—O3—C18—C19 177.68 (14)
N2—N1—C7—C8 0.35 (16) C16—C17—C18—O3 −179.84 (15)
C1—N1—C7—C8 179.58 (13) C16—C17—C18—C19 −0.3 (2)
O1—C7—C8—C11 0.0 (3) C11—O2—C19—C14 −0.5 (2)
N1—C7—C8—C11 179.86 (14) C11—O2—C19—C18 178.69 (12)
O1—C7—C8—C9 179.92 (17) C15—C14—C19—O2 179.76 (14)
N1—C7—C8—C9 −0.22 (15) C13—C14—C19—O2 0.2 (2)
N1—N2—C9—C8 0.20 (16) C15—C14—C19—C18 0.6 (2)
N1—N2—C9—C10 −179.44 (12) C13—C14—C19—C18 −178.94 (14)
C11—C8—C9—N2 179.93 (14) O3—C18—C19—O2 0.4 (2)
C7—C8—C9—N2 0.02 (17) C17—C18—C19—O2 −179.14 (13)
C11—C8—C9—C10 −0.5 (3) O3—C18—C19—C14 179.59 (14)
C7—C8—C9—C10 179.61 (14) C17—C18—C19—C14 0.0 (2)
C19—O2—C11—C8 −179.97 (12)

Hydrogen-bond geometry (Å, º)

Cg1 and Cg2 are the centroids of the N1/N2/C7–C9 and C11–C14/C19/O2 rings, respectively.

D—H···A D—H H···A D···A D—H···A
C6—H6···O1 0.93 2.28 2.911 (2) 124
C12—H12···O1 0.93 2.38 3.004 (2) 124
C13—H13···O1i 0.93 2.53 3.2577 (19) 136
C10—H10A···Cg1ii 0.96 2.79 3.6812 (17) 155
C7—O1···Cg2iii 1.23 (1) 3.65 (1) 3.9797 (18) 96 (1)

Symmetry codes: (i) −x, −y+2, −z; (ii) x, y−1, z; (iii) x, y+1, z.

Footnotes

Supporting information for this paper is available from the IUCr electronic archives (Reference: IM2465).

References

  1. Bruker (2005). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.
  2. Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.
  3. Chaudhry, F., Tahir, M. N., Khan, M. A., Ather, A. Q. & Asif, N. (2012). Acta Cryst. E68, o2044. [DOI] [PMC free article] [PubMed]
  4. Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.
  5. Holzer, W., Mereiter, K. & Plagens, B. (1999). Heterocycles, 50, 799–818.
  6. Malik, K. I., Munawar, M. A., Khan, M. A., Nadeem, S. & Mukhtar-ul-Hassan (2009). Acta Cryst. E65, o3046. [DOI] [PMC free article] [PubMed]
  7. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  8. Sheldrick, G. M. (2015). Acta Cryst. C71, 3–8.
  9. Spek, A. L. (2009). Acta Cryst. D65, 148–155. [DOI] [PMC free article] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) global, I. DOI: 10.1107/S2056989015009445/im2465sup1.cif

e-71-0o414-sup1.cif (26.2KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S2056989015009445/im2465Isup2.hkl

e-71-0o414-Isup2.hkl (187.8KB, hkl)

Supporting information file. DOI: 10.1107/S2056989015009445/im2465Isup3.cml

. DOI: 10.1107/S2056989015009445/im2465fig1.tif

View of the title compound with the atom numbering scheme. Thermal ellipsoids are drawn at the 50% probability level. H-atoms are shown by small circles of arbitrary radii.

PLATON . DOI: 10.1107/S2056989015009445/im2465fig2.tif

Partial packing (PLATON; Spek, 2009) which shows that mol­ecules are dimerized due to C—H⋯O bondings.

CCDC reference: 1401584

Additional supporting information: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Crystallographic Communications are provided here courtesy of International Union of Crystallography

RESOURCES