Skip to main content
Acta Crystallographica Section E: Crystallographic Communications logoLink to Acta Crystallographica Section E: Crystallographic Communications
. 2015 May 16;71(Pt 6):o404–o405. doi: 10.1107/S2056989015009123

Crystal structure of 3β-acet­oxy­androsta-5,16-dien-17-yl tri­fluoro­methane­sulfon­ate

Shengjun Zhou a, Huaqi Huang b, Ting Zhang b, Dangfeng Wang b, Rongbin Huang b,*
PMCID: PMC4459318  PMID: 26090191

Abstract

The title compound, C22H29F3O5S [systematic name: (3S,8R,9S,10R,13S,14S)-10,13-dimethyl-17-(tri­fluoro­methylsulfon­yloxy)-2,3,4,7,8,9,10,11,12,13,14,15-dodeca­hydro-1H-cyclo­penta­[a]phenanthren-3-yl acetate], contains a fused four-ring steroidal system. Rings A and C adopt a chair conformation, while rings B and D adopt half-chair and envelope (with the fused CH atom as the flap) conformations, respectively. In the crystal, weak inter­molecular C—H⋯O inter­actions link the mol­ecules into layers parallel to the ab plane.

Keywords: crystal structure; chiral space group; 3β-acet­oxy­androsta-5,16-dien-17-yl tri­fluoro­methane­sulfonate; C—H⋯O inter­actions

Related literature  

For inhibition of the androgen signal axis in prostate cancer cells, see: Attard et al. (2009). For the use of the title compound as a synthetic precursor of an inhibitor of human cytochrome P45017α, see: Potter et al. (1995).graphic file with name e-71-0o404-scheme1.jpg

Experimental  

Crystal data  

  • C22H29F3O5S

  • M r = 462.51

  • Orthorhombic, Inline graphic

  • a = 8.0734 (10) Å

  • b = 9.9640 (12) Å

  • c = 27.6900 (15) Å

  • V = 2227.5 (4) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.20 mm−1

  • T = 173 K

  • 0.10 × 0.10 × 0.08 mm

Data collection  

  • Bruker SMART APEX 2000 diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996) T min = 0.980, T max = 0.984

  • 22017 measured reflections

  • 5098 independent reflections

  • 3185 reflections with I > 2σ(I)

  • R int = 0.058

Refinement  

  • R[F 2 > 2σ(F 2)] = 0.060

  • wR(F 2) = 0.189

  • S = 1.11

  • 5098 reflections

  • 280 parameters

  • H-atom parameters constrained

  • Δρmax = 0.27 e Å−3

  • Δρmin = −0.66 e Å−3

  • Absolute structure: Flack x determined using 934 quotients [(I +)−(I )]/[(I +)+(I )] (Parsons et al., 2013)

  • Absolute structure parameter: 0.02 (3)

Data collection: APEX2 (Bruker, 2004); cell refinement: SAINT (Bruker, 2004); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015); molecular graphics: PLATON (Spek, 2009) and Mercury (Macrae et al., 2008); software used to prepare material for publication: SHELXL2014 and publCIF (Westrip, 2010).

Supplementary Material

Crystal structure: contains datablock(s) I. DOI: 10.1107/S2056989015009123/cv5486sup1.cif

e-71-0o404-sup1.cif (657.5KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S2056989015009123/cv5486Isup2.hkl

e-71-0o404-Isup2.hkl (405.8KB, hkl)

Supporting information file. DOI: 10.1107/S2056989015009123/cv5486Isup3.cml

. DOI: 10.1107/S2056989015009123/cv5486fig1.tif

The mol­ecular structure of (I) showing the atomic labeling and 50% probability displacement ellipsoids.

CCDC reference: 1400503

Additional supporting information: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (, ).

DHA DH HA D A DHA
C1H1AO4i 0.97 2.56 3.485(6) 160
C21H21BO2ii 0.97 2.65 3.377(7) 133

Symmetry codes: (i) Inline graphic; (ii) Inline graphic.

Acknowledgments

The work was supported financially by the Hangzhou Jiuyuan Gene Engineering Co. Ltd, Hangzhou, Zhejiang, China.

supplementary crystallographic information

S1. Structural commentary

The title compound, 3β-acet­oxy­androsta-5,16-dien-17-yl tri­fluoro­methane­sulfonate (I) (Fig. 1), is an inter­mediate of the synthesis of abiraterone acetate which is a pro-drug for 17-(pyridin-3- yl)androsta-5,16-dien-3P-ol, or abiraterone, a potent inhibitor of human cytochrome P45017α (steroidal 17α-hy­droxy­lase-C17,20-lyase) (Attard et al. 2009). 3β-Acet­oxy­androsta-5,16-dien-17-yl tri­fluoro­methane- sulfonate was first synthesized and charaterized by Potter et al. (1995), but structural data were not obtained. In this work, we obtained a single-crystal of (I) and present here its crystal structure.

The title molecule contains a fused four-ring steroidal system. The two saturated six-membered rings A and C adopt chair conformations,while ring B with one double bond adopts a half-chair conformation, and ring D with one double bond adopts an envelope conformation. The absolute structure of (I), which is crystallized in a chiral space group P212121, was reliably determined based on the value of Flack parameter [0.02 (3)]. In the crystal, weak inter­molecular C—H···O inter­actions link the molecules into layers parallel to ab plane.

S2. Synthesis and crystallization

3β-Acet­oxy­androsta-5,16-dien-17-yl tri­fluoro­methane­sulfonate was synthesized from de­hydro-epiandrosterone acetate via tri­fluoro­methane­sulfonic anhydride with an overall yield of 58% according to a literature method (Potter, 1995). Colourless crystals were obtained by evaporation from a hexane solution.

S3. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 1. Crystal data, data collection and structure refinement details are summarized in Table 1. All H-atoms bound to carbon were refined using a riding model with d(C—H) = 0.93 Å, for aromatic, 0.98 Å for C—H and 0.97 Å for CH2 with Uiso = 1.2Ueq (C). d(C—H) = 0.96 Å with Uiso = 1.5Ueq (C) for CH3 H atoms. The absolute structure could be determined reliably.

Figures

Fig. 1.

Fig. 1.

The molecular structure of (I) showing the atomic labeling and 50% probability displacement ellipsoids.

Crystal data

C22H29F3O5S F(000) = 976
Mr = 462.51 Dx = 1.379 Mg m3
Orthorhombic, P212121 Mo Kα radiation, λ = 0.71073 Å
a = 8.0734 (10) Å µ = 0.20 mm1
b = 9.9640 (12) Å T = 173 K
c = 27.6900 (15) Å Block, colourless
V = 2227.5 (4) Å3 0.10 × 0.10 × 0.08 mm
Z = 4

Data collection

Bruker SMART APEX 2000 diffractometer 5098 independent reflections
Radiation source: Enhance (Mo) X-ray Source 3185 reflections with I > 2σ(I)
Graphite monochromator Rint = 0.058
φ and ω scans θmax = 27.5°, θmin = 3.3°
Absorption correction: multi-scan (SADABS; Sheldrick, 1996) h = −10→10
Tmin = 0.980, Tmax = 0.984 k = −12→12
22017 measured reflections l = −34→35

Refinement

Refinement on F2 Hydrogen site location: inferred from neighbouring sites
Least-squares matrix: full H-atom parameters constrained
R[F2 > 2σ(F2)] = 0.060 w = 1/[σ2(Fo2) + (0.0997P)2] where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.189 (Δ/σ)max < 0.001
S = 1.11 Δρmax = 0.27 e Å3
5098 reflections Δρmin = −0.66 e Å3
280 parameters Absolute structure: Flack x determined using 934 quotients [(I+)-(I-)]/[(I+)+(I-)] (Parsons et al., 2013)
0 restraints Absolute structure parameter: 0.02 (3)

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
S1 −0.10597 (18) 0.04595 (17) 0.06476 (4) 0.0579 (4)
C1 0.4181 (6) 0.0552 (5) 0.35593 (14) 0.0427 (11)
H1A 0.3017 0.0423 0.3632 0.051*
H1B 0.4598 −0.0284 0.3427 0.051*
C2 0.5109 (7) 0.0846 (6) 0.40342 (16) 0.0494 (13)
H2A 0.4642 0.1634 0.4189 0.059*
H2B 0.4999 0.0092 0.4253 0.059*
C3 0.6921 (6) 0.1085 (5) 0.39178 (16) 0.0449 (12)
H3 0.7385 0.0276 0.3769 0.054*
C4 0.7123 (7) 0.2252 (5) 0.35765 (16) 0.0468 (12)
H4A 0.8288 0.2381 0.3505 0.056*
H4B 0.6710 0.3064 0.3728 0.056*
C5 0.6179 (6) 0.1994 (5) 0.31113 (16) 0.0391 (10)
C6 0.6943 (6) 0.2032 (5) 0.26896 (16) 0.0425 (11)
H6 0.8077 0.2195 0.2694 0.051*
C7 0.6156 (6) 0.1838 (5) 0.22092 (16) 0.0408 (10)
H7A 0.6479 0.0972 0.2080 0.049*
H7B 0.6546 0.2526 0.1989 0.049*
C8 0.4257 (5) 0.1907 (5) 0.22442 (15) 0.0372 (10)
H8 0.3908 0.2846 0.2276 0.045*
C9 0.3643 (5) 0.1100 (4) 0.26848 (16) 0.0366 (10)
H9 0.4104 0.0195 0.2649 0.044*
C10 0.4335 (6) 0.1654 (4) 0.31691 (16) 0.0374 (10)
C11 0.1732 (6) 0.0929 (5) 0.26877 (16) 0.0420 (11)
H11A 0.1441 0.0284 0.2936 0.050*
H11B 0.1235 0.1781 0.2776 0.050*
C12 0.0973 (6) 0.0464 (5) 0.22079 (15) 0.0396 (10)
H12A 0.1297 −0.0456 0.2143 0.048*
H12B −0.0226 0.0498 0.2228 0.048*
C13 0.1568 (5) 0.1370 (5) 0.17978 (15) 0.0366 (10)
C14 0.3473 (5) 0.1296 (5) 0.17969 (16) 0.0376 (10)
H14 0.3725 0.0336 0.1819 0.045*
C15 0.3994 (7) 0.1698 (6) 0.12816 (16) 0.0500 (12)
H15A 0.4076 0.2665 0.1247 0.060*
H15B 0.5038 0.1288 0.1190 0.060*
C16 0.2568 (7) 0.1135 (6) 0.09945 (17) 0.0519 (13)
H16 0.2587 0.0952 0.0665 0.062*
C17 0.1287 (6) 0.0943 (5) 0.12839 (16) 0.0413 (11)
C18 −0.1421 (9) 0.2240 (8) 0.0518 (3) 0.081 (2)
C19 0.9433 (6) 0.1150 (6) 0.4372 (2) 0.0546 (13)
C20 1.0190 (8) 0.1479 (7) 0.4847 (2) 0.0683 (17)
H20A 0.9341 0.1767 0.5067 0.102*
H20B 1.0730 0.0697 0.4975 0.102*
H20C 1.0987 0.2185 0.4807 0.102*
C21 0.3391 (7) 0.2934 (5) 0.33312 (19) 0.0531 (13)
H21A 0.2236 0.2729 0.3368 0.080*
H21B 0.3830 0.3241 0.3634 0.080*
H21C 0.3523 0.3623 0.3092 0.080*
C22 0.0868 (7) 0.2809 (5) 0.18514 (18) 0.0481 (12)
H22A 0.1028 0.3114 0.2177 0.072*
H22B 0.1435 0.3400 0.1633 0.072*
H22C −0.0294 0.2806 0.1777 0.072*
O1 0.0134 (6) 0.0001 (5) 0.03104 (14) 0.0813 (15)
O2 −0.2654 (5) −0.0135 (5) 0.06899 (13) 0.0779 (14)
O3 −0.0360 (4) 0.0520 (4) 0.11675 (10) 0.0473 (8)
O4 1.0173 (5) 0.0759 (5) 0.40211 (14) 0.0753 (13)
O5 0.7779 (4) 0.1346 (4) 0.43747 (11) 0.0484 (8)
F1 −0.2250 (9) 0.2339 (7) 0.0126 (2) 0.181 (3)
F2 −0.2274 (6) 0.2797 (5) 0.0871 (2) 0.128 (2)
F3 −0.0052 (5) 0.2913 (4) 0.04760 (17) 0.0985 (15)

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
S1 0.0568 (8) 0.0737 (10) 0.0432 (6) −0.0149 (8) −0.0045 (6) 0.0026 (7)
C1 0.046 (3) 0.043 (3) 0.040 (2) −0.008 (2) 0.002 (2) 0.003 (2)
C2 0.056 (3) 0.058 (3) 0.034 (2) −0.011 (3) 0.006 (2) −0.002 (2)
C3 0.045 (3) 0.049 (3) 0.041 (2) −0.007 (2) 0.001 (2) −0.005 (2)
C4 0.052 (3) 0.041 (3) 0.047 (3) −0.006 (2) 0.002 (2) −0.004 (2)
C5 0.037 (2) 0.033 (2) 0.047 (2) −0.003 (2) 0.004 (2) −0.0006 (19)
C6 0.035 (2) 0.044 (3) 0.049 (3) −0.005 (2) 0.004 (2) −0.001 (2)
C7 0.029 (2) 0.042 (3) 0.051 (3) −0.002 (2) 0.006 (2) 0.003 (2)
C8 0.033 (2) 0.036 (2) 0.043 (2) −0.0019 (19) 0.0078 (19) −0.001 (2)
C9 0.034 (2) 0.031 (2) 0.044 (2) −0.0018 (19) 0.0051 (19) −0.0007 (19)
C10 0.035 (2) 0.034 (2) 0.043 (2) −0.0026 (19) 0.0037 (18) −0.0027 (19)
C11 0.036 (2) 0.048 (3) 0.042 (2) −0.004 (2) 0.005 (2) 0.000 (2)
C12 0.034 (2) 0.038 (2) 0.047 (2) −0.003 (2) 0.001 (2) 0.004 (2)
C13 0.039 (3) 0.036 (2) 0.035 (2) 0.000 (2) 0.0048 (18) 0.0005 (19)
C14 0.032 (2) 0.037 (2) 0.043 (2) 0.0008 (19) 0.0073 (18) −0.002 (2)
C15 0.043 (3) 0.061 (3) 0.046 (3) −0.004 (3) 0.012 (2) 0.000 (2)
C16 0.056 (3) 0.059 (3) 0.041 (3) −0.005 (3) 0.008 (2) −0.004 (2)
C17 0.043 (3) 0.040 (3) 0.041 (2) 0.000 (2) −0.002 (2) −0.0018 (19)
C18 0.059 (4) 0.092 (5) 0.093 (5) 0.002 (4) 0.004 (4) 0.046 (4)
C19 0.047 (3) 0.060 (3) 0.057 (3) −0.009 (3) 0.000 (3) 0.003 (3)
C20 0.066 (4) 0.083 (4) 0.057 (3) −0.017 (4) −0.011 (3) 0.006 (3)
C21 0.053 (3) 0.047 (3) 0.059 (3) 0.004 (3) 0.006 (2) −0.014 (2)
C22 0.052 (3) 0.038 (3) 0.054 (3) 0.003 (2) 0.008 (2) 0.003 (2)
O1 0.077 (3) 0.111 (4) 0.057 (2) −0.019 (3) 0.008 (2) −0.031 (2)
O2 0.064 (3) 0.112 (4) 0.058 (2) −0.044 (3) −0.007 (2) 0.005 (2)
O3 0.0452 (19) 0.063 (2) 0.0339 (15) −0.0105 (18) −0.0021 (13) 0.0028 (16)
O4 0.054 (2) 0.110 (4) 0.062 (2) 0.008 (3) 0.004 (2) −0.009 (2)
O5 0.046 (2) 0.060 (2) 0.0387 (17) −0.0038 (18) −0.0006 (15) −0.0044 (16)
F1 0.166 (6) 0.213 (7) 0.165 (5) −0.031 (5) −0.097 (5) 0.113 (5)
F2 0.093 (3) 0.092 (3) 0.200 (5) 0.032 (3) 0.061 (4) 0.049 (4)
F3 0.076 (3) 0.082 (3) 0.137 (4) 0.000 (2) 0.027 (3) 0.048 (3)

Geometric parameters (Å, º)

S1—O1 1.418 (4) C11—H11A 0.9700
S1—O2 1.422 (4) C11—H11B 0.9700
S1—O3 1.547 (3) C12—C13 1.528 (6)
S1—C18 1.834 (7) C12—H12A 0.9700
C1—C2 1.542 (6) C12—H12B 0.9700
C1—C10 1.546 (6) C13—C17 1.502 (6)
C1—H1A 0.9700 C13—C14 1.539 (6)
C1—H1B 0.9700 C13—C22 1.549 (7)
C2—C3 1.517 (7) C14—C15 1.541 (6)
C2—H2A 0.9700 C14—H14 0.9800
C2—H2B 0.9700 C15—C16 1.507 (7)
C3—O5 1.465 (5) C15—H15A 0.9700
C3—C4 1.507 (7) C15—H15B 0.9700
C3—H3 0.9800 C16—C17 1.323 (7)
C4—C5 1.518 (6) C16—H16 0.9300
C4—H4A 0.9700 C17—O3 1.431 (6)
C4—H4B 0.9700 C18—F1 1.278 (8)
C5—C6 1.321 (6) C18—F3 1.298 (8)
C5—C10 1.535 (6) C18—F2 1.319 (9)
C6—C7 1.487 (6) C19—O4 1.206 (6)
C6—H6 0.9300 C19—O5 1.350 (6)
C7—C8 1.538 (6) C19—C20 1.487 (7)
C7—H7A 0.9700 C20—H20A 0.9600
C7—H7B 0.9700 C20—H20B 0.9600
C8—C14 1.519 (6) C20—H20C 0.9600
C8—C9 1.543 (6) C21—H21A 0.9600
C8—H8 0.9800 C21—H21B 0.9600
C9—C11 1.552 (6) C21—H21C 0.9600
C9—C10 1.554 (6) C22—H22A 0.9600
C9—H9 0.9800 C22—H22B 0.9600
C10—C21 1.552 (7) C22—H22C 0.9600
C11—C12 1.535 (6)
O1—S1—O2 122.4 (3) C12—C11—H11B 108.5
O1—S1—O3 112.1 (2) C9—C11—H11B 108.5
O2—S1—O3 105.7 (2) H11A—C11—H11B 107.5
O1—S1—C18 106.9 (3) C13—C12—C11 109.8 (4)
O2—S1—C18 106.0 (3) C13—C12—H12A 109.7
O3—S1—C18 101.7 (3) C11—C12—H12A 109.7
C2—C1—C10 114.9 (4) C13—C12—H12B 109.7
C2—C1—H1A 108.5 C11—C12—H12B 109.7
C10—C1—H1A 108.5 H12A—C12—H12B 108.2
C2—C1—H1B 108.5 C17—C13—C12 119.3 (4)
C10—C1—H1B 108.5 C17—C13—C14 97.8 (4)
H1A—C1—H1B 107.5 C12—C13—C14 106.7 (4)
C3—C2—C1 108.5 (4) C17—C13—C22 107.3 (4)
C3—C2—H2A 110.0 C12—C13—C22 111.2 (4)
C1—C2—H2A 110.0 C14—C13—C22 114.2 (4)
C3—C2—H2B 110.0 C8—C14—C13 113.3 (4)
C1—C2—H2B 110.0 C8—C14—C15 122.5 (4)
H2A—C2—H2B 108.4 C13—C14—C15 105.2 (4)
O5—C3—C4 110.7 (4) C8—C14—H14 104.7
O5—C3—C2 107.5 (4) C13—C14—H14 104.7
C4—C3—C2 111.0 (4) C15—C14—H14 104.7
O5—C3—H3 109.2 C16—C15—C14 100.5 (4)
C4—C3—H3 109.2 C16—C15—H15A 111.7
C2—C3—H3 109.2 C14—C15—H15A 111.7
C3—C4—C5 110.3 (4) C16—C15—H15B 111.7
C3—C4—H4A 109.6 C14—C15—H15B 111.7
C5—C4—H4A 109.6 H15A—C15—H15B 109.4
C3—C4—H4B 109.6 C17—C16—C15 109.4 (4)
C5—C4—H4B 109.6 C17—C16—H16 125.3
H4A—C4—H4B 108.1 C15—C16—H16 125.3
C6—C5—C4 120.7 (4) C16—C17—O3 129.2 (4)
C6—C5—C10 123.4 (4) C16—C17—C13 114.5 (4)
C4—C5—C10 115.8 (4) O3—C17—C13 115.9 (4)
C5—C6—C7 126.0 (4) F1—C18—F3 109.3 (6)
C5—C6—H6 117.0 F1—C18—F2 108.9 (7)
C7—C6—H6 117.0 F3—C18—F2 107.0 (7)
C6—C7—C8 111.3 (4) F1—C18—S1 108.9 (7)
C6—C7—H7A 109.4 F3—C18—S1 112.4 (5)
C8—C7—H7A 109.4 F2—C18—S1 110.1 (5)
C6—C7—H7B 109.4 O4—C19—O5 122.7 (5)
C8—C7—H7B 109.4 O4—C19—C20 125.5 (5)
H7A—C7—H7B 108.0 O5—C19—C20 111.7 (5)
C14—C8—C7 110.3 (4) C19—C20—H20A 109.5
C14—C8—C9 107.6 (4) C19—C20—H20B 109.5
C7—C8—C9 110.3 (4) H20A—C20—H20B 109.5
C14—C8—H8 109.6 C19—C20—H20C 109.5
C7—C8—H8 109.6 H20A—C20—H20C 109.5
C9—C8—H8 109.6 H20B—C20—H20C 109.5
C8—C9—C11 112.4 (4) C10—C21—H21A 109.5
C8—C9—C10 112.4 (3) C10—C21—H21B 109.5
C11—C9—C10 113.1 (4) H21A—C21—H21B 109.5
C8—C9—H9 106.1 C10—C21—H21C 109.5
C11—C9—H9 106.1 H21A—C21—H21C 109.5
C10—C9—H9 106.1 H21B—C21—H21C 109.5
C5—C10—C1 107.9 (4) C13—C22—H22A 109.5
C5—C10—C21 109.0 (4) C13—C22—H22B 109.5
C1—C10—C21 110.0 (4) H22A—C22—H22B 109.5
C5—C10—C9 109.7 (4) C13—C22—H22C 109.5
C1—C10—C9 108.8 (4) H22A—C22—H22C 109.5
C21—C10—C9 111.4 (4) H22B—C22—H22C 109.5
C12—C11—C9 115.2 (4) C17—O3—S1 124.1 (3)
C12—C11—H11A 108.5 C19—O5—C3 116.0 (4)
C9—C11—H11A 108.5
C10—C1—C2—C3 −56.8 (6) C9—C8—C14—C13 61.6 (5)
C1—C2—C3—O5 −179.3 (4) C7—C8—C14—C15 −50.3 (6)
C1—C2—C3—C4 59.5 (6) C9—C8—C14—C15 −170.6 (4)
O5—C3—C4—C5 −178.0 (4) C17—C13—C14—C8 169.8 (4)
C2—C3—C4—C5 −58.7 (5) C12—C13—C14—C8 −66.4 (5)
C3—C4—C5—C6 −123.9 (5) C22—C13—C14—C8 56.8 (5)
C3—C4—C5—C10 54.4 (6) C17—C13—C14—C15 33.5 (5)
C4—C5—C6—C7 −178.1 (5) C12—C13—C14—C15 157.3 (4)
C10—C5—C6—C7 3.8 (8) C22—C13—C14—C15 −79.6 (5)
C5—C6—C7—C8 13.3 (7) C8—C14—C15—C16 −164.6 (4)
C6—C7—C8—C14 −162.7 (4) C13—C14—C15—C16 −33.4 (5)
C6—C7—C8—C9 −44.0 (5) C14—C15—C16—C17 19.7 (6)
C14—C8—C9—C11 −49.8 (5) C15—C16—C17—O3 175.0 (5)
C7—C8—C9—C11 −170.1 (4) C15—C16—C17—C13 2.1 (6)
C14—C8—C9—C10 −178.7 (4) C12—C13—C17—C16 −136.8 (5)
C7—C8—C9—C10 61.0 (5) C14—C13—C17—C16 −22.7 (5)
C6—C5—C10—C1 129.6 (5) C22—C13—C17—C16 95.7 (5)
C4—C5—C10—C1 −48.6 (5) C12—C13—C17—O3 49.2 (6)
C6—C5—C10—C21 −111.0 (5) C14—C13—C17—O3 163.4 (4)
C4—C5—C10—C21 70.8 (5) C22—C13—C17—O3 −78.2 (5)
C6—C5—C10—C9 11.2 (6) O1—S1—C18—F1 72.5 (6)
C4—C5—C10—C9 −167.0 (4) O2—S1—C18—F1 −59.5 (6)
C2—C1—C10—C5 50.1 (5) O3—S1—C18—F1 −169.8 (5)
C2—C1—C10—C21 −68.7 (5) O1—S1—C18—F3 −48.9 (6)
C2—C1—C10—C9 169.0 (4) O2—S1—C18—F3 179.2 (5)
C8—C9—C10—C5 −42.9 (5) O3—S1—C18—F3 68.9 (6)
C11—C9—C10—C5 −171.4 (4) O1—S1—C18—F2 −168.1 (5)
C8—C9—C10—C1 −160.7 (4) O2—S1—C18—F2 59.9 (6)
C11—C9—C10—C1 70.7 (5) O3—S1—C18—F2 −50.4 (6)
C8—C9—C10—C21 77.8 (5) C16—C17—O3—S1 −12.4 (7)
C11—C9—C10—C21 −50.7 (5) C13—C17—O3—S1 160.5 (3)
C8—C9—C11—C12 48.0 (6) O1—S1—O3—C17 38.7 (5)
C10—C9—C11—C12 176.5 (4) O2—S1—O3—C17 174.3 (4)
C9—C11—C12—C13 −51.9 (6) C18—S1—O3—C17 −75.2 (4)
C11—C12—C13—C17 167.1 (4) O4—C19—O5—C3 −1.4 (8)
C11—C12—C13—C14 57.8 (5) C20—C19—O5—C3 178.3 (4)
C11—C12—C13—C22 −67.2 (5) C4—C3—O5—C19 −79.5 (5)
C7—C8—C14—C13 −178.1 (4) C2—C3—O5—C19 159.1 (4)

Hydrogen-bond geometry (Å, º)

D—H···A D—H H···A D···A D—H···A
C1—H1A···O4i 0.97 2.56 3.485 (6) 160
C21—H21B···O2ii 0.97 2.65 3.377 (7) 133

Symmetry codes: (i) x−1, y, z; (ii) −x, y+1/2, −z+1/2.

Footnotes

Supporting information for this paper is available from the IUCr electronic archives (Reference: CV5486).

References

  1. Attard, G., Reid, A. H. M., A’Hern, R., Parker, C., Oommen, N. B., Folkerd, E., Messiou, C., Molife, L. R., Maier, G., Thompson, E., Olmos, D., Sinha, R., Lee, G., Dowsett, M., Kaye, S. B., Dearnaley, D., Kheoh, T., Molina, A. & de Bono, J. S. (2009). J. Clin. Oncol. 27, 3742–3748. [DOI] [PMC free article] [PubMed]
  2. Bruker (2004). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.
  3. Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470.
  4. Parsons, S., Flack, H. D. & Wagner, T. (2013). Acta Cryst. B69, 249–259. [DOI] [PMC free article] [PubMed]
  5. Potter, G. A., Barrie, S. E., Jarman, M. & Rowlands, M. G. (1995). J. Med. Chem. 38, 2463–2471. [DOI] [PubMed]
  6. Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.
  7. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  8. Sheldrick, G. M. (2015). Acta Cryst. C71, 3–8.
  9. Spek, A. L. (2009). Acta Cryst. D65, 148–155. [DOI] [PMC free article] [PubMed]
  10. Westrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) I. DOI: 10.1107/S2056989015009123/cv5486sup1.cif

e-71-0o404-sup1.cif (657.5KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S2056989015009123/cv5486Isup2.hkl

e-71-0o404-Isup2.hkl (405.8KB, hkl)

Supporting information file. DOI: 10.1107/S2056989015009123/cv5486Isup3.cml

. DOI: 10.1107/S2056989015009123/cv5486fig1.tif

The mol­ecular structure of (I) showing the atomic labeling and 50% probability displacement ellipsoids.

CCDC reference: 1400503

Additional supporting information: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Crystallographic Communications are provided here courtesy of International Union of Crystallography

RESOURCES