Skip to main content
Acta Crystallographica Section E: Crystallographic Communications logoLink to Acta Crystallographica Section E: Crystallographic Communications
. 2015 May 13;71(Pt 6):o395–o396. doi: 10.1107/S2056989015008786

Crystal structure of 3-(3,4,5-tri­meth­oxy­phen­yl)-1,2,3,4-tetra­hydro­cyclo­penta[b]indole-2-carb­oxy­lic acid

Daniara Fernandes a, Deborah de Alencar Simoni b,*, Manoel T Rodrigues Jr a, Marilia S Santos a, Fernando Coelho a
PMCID: PMC4459319  PMID: 26090185

Abstract

In the title compound, C21H21NO5, obtained from a Morita–Baylis–Hillman adduct, the hydrogenated five-membered ring adopts a shallow envelope conformation, with the C atom bearing the carb­oxy­lic acid substituent deviating by 0.237 (1) Å from the mean plane of the other four atoms (r.m.s. deviation = 0.007 Å). The dihedral angle between the fused ring system (all atoms; r.m.s. deviation = 0.057 Å) and the pendant trimeth­oxy benzene ring is 66.65 (3)°. The C atoms of the meta-meth­oxy groups lie close to the plane of the benzene ring [deviations = 0.052 (1) and −0.083 (1) Å], whereas the C atom of the para-meth­oxy group is significantly displaced [deviation = −1.289 (1) Å]. In the crystal, carb­oxy­lic acid inversion dimers generate R 2 2(8) loops. The dimers are connected by N—H⋯O hydrogen bonds, forming [011] chains. A C—H⋯O inter­action is also observed.

Keywords: crystal strycture, indole skeleton, Morita–Baylis–Hillman adduct, hydrogen bonding

Related literature  

For compounds presenting an indole skeleton unit and examples of them, see: Xu et al. (2012); Humphrey & Kuethe (2006). For methods of synthesis of indoles, see: Jordan et al. (2011); Humphrey & Kuethe (2006). For the use of Morita–Baylis–Hillman adducts as building blocks for organic synthesis, see: Basavaiah & Veeraraghavaiah (2012); Coelho et al. (2002).graphic file with name e-71-0o395-scheme1.jpg

Experimental  

Crystal data  

  • C21H21NO5

  • M r = 367.39

  • Triclinic, Inline graphic

  • a = 7.203 (1) Å

  • b = 9.5844 (12) Å

  • c = 12.9957 (17) Å

  • α = 91.939 (5)°

  • β = 97.198 (6)°

  • γ = 91.716 (5)°

  • V = 889.1 (2) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.10 mm−1

  • T = 100 K

  • 0.34 × 0.17 × 0.13 mm

Data collection  

  • Bruker APEX CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2010) T min = 0.967, T max = 0.987

  • 100846 measured reflections

  • 7825 independent reflections

  • 6558 reflections with I > 2σ(I)

  • R int = 0.031

Refinement  

  • R[F 2 > 2σ(F 2)] = 0.038

  • wR(F 2) = 0.119

  • S = 0.94

  • 7825 reflections

  • 248 parameters

  • H-atom parameters constrained

  • Δρmax = 0.58 e Å−3

  • Δρmin = −0.27 e Å−3

Data collection: APEX2 (Bruker, 2010); cell refinement: SAINT (Bruker, 2010); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXLE (Hübschle et al., 2011); molecular graphics: Mercury (Macrae et al., 2006); software used to prepare material for publication: OLEX2 (Dolomanov et al., 2003) and publCIF (Westrip, 2010).

Supplementary Material

Crystal structure: contains datablock(s) I, New_Global_Publ_Block. DOI: 10.1107/S2056989015008786/hb7417sup1.cif

e-71-0o395-sup1.cif (2.8MB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S2056989015008786/hb7417Isup2.hkl

e-71-0o395-Isup2.hkl (621.3KB, hkl)

Supporting information file. DOI: 10.1107/S2056989015008786/hb7417Isup3.cdx

Supporting information file. DOI: 10.1107/S2056989015008786/hb7417Isup4.cml

. DOI: 10.1107/S2056989015008786/hb7417fig1.tif

The mol­ecular structure of the title compound with 50% probability displacement ellipsoids.

. DOI: 10.1107/S2056989015008786/hb7417fig2.tif

Crystal packing of the title compound, showing hydrogen-bonding inter­actions.

CCDC reference: 1063387

Additional supporting information: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (, ).

DHA DH HA D A DHA
O4H4O3i 0.84 1.84 2.6748(8) 176
N1H1O1ii 0.88 2.20 2.9041(8) 136
C12H12BO2iii 0.98 2.62 3.3905(11) 137

Symmetry codes: (i) Inline graphic; (ii) Inline graphic; (iii) Inline graphic.

Acknowledgments

The authors acknowledge the Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP 2013/07600-3 and 09/51602-5) for financial support and the Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq) for a research fellowship. MTRJr and MSS thank CNPq and Fapesp for fellowships.

supplementary crystallographic information

S1. Introduction

Indole skeleton is an aromatic heterocycle possessing a benzene ring fused to a pyrrole ring which exhibits a wide range of biological and pharmacological activities. Compounds presenting this moiety have been successfully synthesized and used in medicinal chemistry (Xu et al., 2012). In spite of the number of developed methods for the preparation of indoles (Xu et al., 2012; Humphrey and Kuethe, 2006), our inter­est to use Morita–Baylis–Hillman adducts as building blocks for organic synthesis resulted in a successful stereoselective strategy to obtain compounds of this class.

S2. Experimental

S2.1. Synthesis and crystallization

\ The synthesis of 3-(3,4,5-tri­meth­oxy­phenyl)-1,2,3,4-tetra­hydro­cyclo­penta­[b]indole-2-\ carb­oxy­lic acid started with a mixture of 1 mmol of (±)-methyl 2-[hy­droxy­(3,4,5-tri­meth­oxy­phenyl)-methyl]­acrylate (the Morita–Baylis–Hillman adduct), 1.2 mmol of indole and 1 mmol of 2-iodoxybenzoic acid, in aceto­nitrile (5 mL). This mixture was kept under reflux to give 1,3-di­carbonyl compound, which was further reduced by sodium tetra­hydro­borate, resulting in the corresponding β-hy­droxy-carbonyl.

This was then treated with tri­fluoro­methane­sulfonic acid and submitted to basic hydrolysis. The cyclo­penta­[b]indole, obtained with excellent diastereoselectivity (>99:1) and overall yield of 70%, was purified by flash chromatography (hexane/ethyl acetate (60:40)). 3-(3,4,5-tri­meth­oxy­phenyl)-1,2,3,4-tetra­hydro­cyclo­penta­[b]indole-2-\ carb­oxy­lic acid was dissolved in 10:1 (v/v) chloro­form/methanol mixture and kept in the freezer to allow slowly formation of irregular colorless single crystals.

S2.2. Refinement

The positions of hydrogen atoms bound to carbon atoms were idealized and calculated by riding model, with C—H bond lengths of 0.95, 0.98 and 0.99 Å for phenyl, methyl and methyl­ene, respectively. The isotropic displacement parameters values (Uiso(H)) were fixed at 1.5Ueq(C) for methyl H atoms and 1.2Ueq(C) for all other attached H atoms.

S3. Results and discussion

The molecules of the title compound present a tri­meth­oxy­phenyl ring bonded to a system of three rings, in which an indole skeleton unit is fused to a five-membered ring possessing a carb­oxy­lic unit (Fig. 1). It crystallized in P1 space group and has a conformational structure determined by intra and inter­molecular nonclassical (C—H—O) and inter­molecular (O—H—O and N—H—O) bonding (Table 1, Fig. 2).

All of the rings in the structure are almost planar, with r.m.s. of 0.010, 0.066, 0.006 and 0.006 Å for tri­meth­oxy­phenyl, five-membered, pyrrole and benzene rings, respectively. The three rings fused system is essentially planar (r.m.s. deviation of 0.057 Å) and make a plane-plane angle of 113.35° with the tri­meth­oxy­phenyl ring.

With respect to the pyrrole ring, the benzene ring and the five-membered ring make dihedral angles C14—C13—N1—C5 = 176.67 (7)° and C3—C4—C16—C17 = -175.72 (8)°, respectively. The dihedral angle between the five-membered ring and its tri­meth­oxy­phenyl substituent (C5—C6—C7—C8) is -164.79 (16)°, while that between the five-membered ring and the carb­oxy­lic unit (C16—C17—C18—O4) is -56.30 (8)°, which is consistent with the expected trans relative configuration of this isomer.

Figures

Fig. 1.

Fig. 1.

The molecular structure of the title compound with 50% probability displacement ellipsoids.

Fig. 2.

Fig. 2.

Crystal packing of the title compound, showing hydrogen-bonding interactions.

Crystal data

C21H21NO5 Z = 2
Mr = 367.39 F(000) = 388
Triclinic, P1 Dx = 1.372 Mg m3
Hall symbol: -P 1 Mo Kα radiation, λ = 0.71073 Å
a = 7.203 (1) Å Cell parameters from 9708 reflections
b = 9.5844 (12) Å θ = 2.6–38°
c = 12.9957 (17) Å µ = 0.10 mm1
α = 91.939 (5)° T = 100 K
β = 97.198 (6)° Irregular, colourless
γ = 91.716 (5)° 0.34 × 0.17 × 0.13 mm
V = 889.1 (2) Å3

Data collection

Bruker APEX CCD diffractometer 7825 independent reflections
Radiation source: fine-focus sealed tube 6558 reflections with I > 2σ(I)
Detector resolution: 8.3333 pixels mm-1 Rint = 0.031
phi and ω scans θmax = 35.0°, θmin = 1.6°
Absorption correction: multi-scan (SADABS; Bruker, 2010) h = −11→11
Tmin = 0.967, Tmax = 0.987 k = −15→15
100846 measured reflections l = −20→20

Refinement

Refinement on F2 0 restraints
Least-squares matrix: full Hydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.038 H-atom parameters constrained
wR(F2) = 0.119 w = 1/[σ2(Fo2) + (0.079P)2 + 0.2107P] where P = (Fo2 + 2Fc2)/3
S = 0.94 (Δ/σ)max < 0.001
7825 reflections Δρmax = 0.58 e Å3
248 parameters Δρmin = −0.27 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
O1 0.67935 (8) 0.20458 (6) 0.61432 (4) 0.01701 (10)
O2 0.85593 (8) 0.13066 (7) 0.45301 (4) 0.02026 (11)
O3 0.52886 (8) 0.14039 (6) 0.07684 (5) 0.02004 (11)
O4 0.27178 (9) 0.00009 (6) 0.05008 (5) 0.02346 (12)
H4 0.3380 −0.0455 0.0131 0.035*
O5 0.36545 (8) 0.34406 (6) 0.59020 (4) 0.01927 (11)
N1 0.20865 (9) 0.57757 (6) 0.22742 (5) 0.01503 (10)
H1 0.2993 0.6285 0.2636 0.018*
C1 −0.33636 (10) 0.65445 (9) 0.10853 (6) 0.01960 (13)
H1A −0.4633 0.6671 0.0816 0.024*
C2 −0.25626 (10) 0.52708 (8) 0.09178 (6) 0.01735 (12)
H2 −0.3264 0.4538 0.0522 0.021*
C3 −0.07052 (9) 0.50802 (7) 0.13406 (5) 0.01394 (11)
C4 0.05337 (9) 0.39331 (7) 0.13915 (5) 0.01372 (11)
C5 0.21619 (9) 0.43919 (7) 0.19636 (5) 0.01331 (11)
C6 0.36676 (9) 0.33516 (7) 0.20740 (5) 0.01314 (11)
H6 0.4670 0.3624 0.1645 0.016*
C7 0.45411 (9) 0.30909 (7) 0.31710 (5) 0.01289 (11)
C8 0.62291 (9) 0.24015 (7) 0.33130 (5) 0.01407 (11)
H8 0.6873 0.2187 0.2736 0.017*
C9 0.69665 (9) 0.20293 (7) 0.43061 (5) 0.01429 (11)
C10 0.60455 (9) 0.23835 (7) 0.51579 (5) 0.01402 (11)
C11 0.58428 (11) 0.08561 (8) 0.65126 (6) 0.02034 (13)
H11A 0.4493 0.1005 0.6438 0.031*
H11B 0.6302 0.0737 0.7246 0.031*
H11C 0.6086 0.0016 0.6106 0.031*
C12 0.94999 (11) 0.08870 (10) 0.36769 (7) 0.02528 (16)
H12A 0.8643 0.0311 0.3179 0.038*
H12B 1.0587 0.0345 0.3927 0.038*
H12C 0.9918 0.1716 0.3337 0.038*
C13 0.03194 (10) 0.62141 (7) 0.19116 (5) 0.01434 (11)
C14 −0.04783 (11) 0.75053 (8) 0.20623 (6) 0.01750 (12)
H14 0.0223 0.8256 0.2437 0.021*
C15 −0.23267 (11) 0.76525 (8) 0.16470 (6) 0.01940 (13)
H15 −0.2905 0.8517 0.1743 0.023*
C16 0.06472 (10) 0.24706 (7) 0.09663 (5) 0.01538 (12)
H16A 0.0682 0.2448 0.0207 0.018*
H16B −0.0415 0.1870 0.1125 0.018*
C17 0.25541 (9) 0.20188 (7) 0.15655 (5) 0.01396 (11)
H17 0.2239 0.1432 0.2146 0.017*
C18 0.36696 (10) 0.11304 (7) 0.09044 (5) 0.01515 (12)
C19 0.36205 (9) 0.34551 (7) 0.40179 (5) 0.01444 (11)
H19 0.2477 0.3931 0.3918 0.017*
C20 0.43904 (10) 0.31162 (7) 0.50143 (5) 0.01433 (11)
C21 0.19448 (12) 0.41674 (9) 0.58029 (6) 0.02137 (14)
H21A 0.2090 0.5011 0.5411 0.032*
H21B 0.1631 0.4429 0.6494 0.032*
H21C 0.0939 0.3561 0.5435 0.032*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
O1 0.0210 (2) 0.0173 (2) 0.0115 (2) −0.00177 (18) −0.00212 (16) 0.00000 (16)
O2 0.0164 (2) 0.0267 (3) 0.0175 (2) 0.00815 (19) 0.00017 (17) −0.00044 (19)
O3 0.0183 (2) 0.0206 (3) 0.0210 (2) 0.00222 (19) 0.00369 (18) −0.00790 (19)
O4 0.0243 (3) 0.0181 (3) 0.0283 (3) −0.0019 (2) 0.0082 (2) −0.0119 (2)
O5 0.0259 (3) 0.0208 (3) 0.0124 (2) 0.0063 (2) 0.00682 (18) −0.00088 (18)
N1 0.0170 (2) 0.0125 (2) 0.0146 (2) 0.00230 (18) −0.00148 (18) −0.00317 (18)
C1 0.0167 (3) 0.0230 (3) 0.0192 (3) 0.0042 (2) 0.0019 (2) 0.0012 (2)
C2 0.0155 (3) 0.0197 (3) 0.0166 (3) 0.0007 (2) 0.0015 (2) 0.0002 (2)
C3 0.0151 (3) 0.0150 (3) 0.0116 (2) 0.0016 (2) 0.00173 (19) −0.0009 (2)
C4 0.0155 (3) 0.0137 (3) 0.0118 (2) 0.0010 (2) 0.00152 (19) −0.00208 (19)
C5 0.0160 (3) 0.0121 (3) 0.0115 (2) 0.0017 (2) 0.00085 (19) −0.00173 (19)
C6 0.0153 (2) 0.0127 (3) 0.0113 (2) 0.0017 (2) 0.00156 (19) −0.00173 (19)
C7 0.0147 (2) 0.0127 (3) 0.0111 (2) 0.0013 (2) 0.00167 (19) −0.00187 (19)
C8 0.0146 (2) 0.0153 (3) 0.0123 (2) 0.0017 (2) 0.00190 (19) −0.0019 (2)
C9 0.0136 (2) 0.0149 (3) 0.0139 (2) 0.0015 (2) 0.00027 (19) −0.0019 (2)
C10 0.0163 (3) 0.0142 (3) 0.0109 (2) −0.0002 (2) −0.00008 (19) −0.00137 (19)
C11 0.0230 (3) 0.0187 (3) 0.0195 (3) 0.0007 (2) 0.0022 (2) 0.0047 (2)
C12 0.0191 (3) 0.0344 (4) 0.0229 (3) 0.0105 (3) 0.0035 (3) −0.0029 (3)
C13 0.0168 (3) 0.0141 (3) 0.0120 (2) 0.0029 (2) 0.00133 (19) −0.00108 (19)
C14 0.0212 (3) 0.0152 (3) 0.0158 (3) 0.0046 (2) 0.0008 (2) −0.0018 (2)
C15 0.0206 (3) 0.0199 (3) 0.0181 (3) 0.0071 (2) 0.0024 (2) 0.0002 (2)
C16 0.0169 (3) 0.0139 (3) 0.0148 (3) 0.0006 (2) 0.0008 (2) −0.0035 (2)
C17 0.0176 (3) 0.0124 (3) 0.0119 (2) 0.0016 (2) 0.00258 (19) −0.00245 (19)
C18 0.0195 (3) 0.0134 (3) 0.0124 (2) 0.0028 (2) 0.0016 (2) −0.0023 (2)
C19 0.0163 (3) 0.0156 (3) 0.0117 (2) 0.0032 (2) 0.0025 (2) −0.0011 (2)
C20 0.0179 (3) 0.0139 (3) 0.0115 (2) 0.0014 (2) 0.0033 (2) −0.00188 (19)
C21 0.0257 (3) 0.0198 (3) 0.0208 (3) 0.0062 (3) 0.0110 (3) −0.0001 (2)

Geometric parameters (Å, º)

O1—C10 1.3785 (8) C7—C8 1.3961 (9)
O1—C11 1.4396 (10) C8—C9 1.3949 (10)
O2—C9 1.3632 (9) C8—H8 0.9500
O2—C12 1.4229 (10) C9—C10 1.3974 (9)
O3—C18 1.2232 (9) C10—C20 1.3973 (10)
O4—C18 1.3206 (9) C11—H11A 0.9800
O4—H4 0.8400 C11—H11B 0.9800
O5—C20 1.3591 (8) C11—H11C 0.9800
O5—C21 1.4269 (10) C12—H12A 0.9800
N1—C5 1.3779 (9) C12—H12B 0.9800
N1—C13 1.3834 (9) C12—H12C 0.9800
N1—H1 0.8800 C13—C14 1.3980 (10)
C1—C2 1.3879 (11) C14—C15 1.3857 (11)
C1—C15 1.4078 (11) C14—H14 0.9500
C1—H1A 0.9500 C15—H15 0.9500
C2—C3 1.4009 (10) C16—C17 1.5719 (10)
C2—H2 0.9500 C16—H16A 0.9900
C3—C13 1.4271 (10) C16—H16B 0.9900
C3—C4 1.4347 (9) C17—C18 1.5078 (9)
C4—C5 1.3601 (9) C17—H17 1.0000
C4—C16 1.4975 (10) C19—C20 1.3961 (9)
C5—C6 1.4921 (9) C19—H19 0.9500
C6—C7 1.5164 (9) C21—H21A 0.9800
C6—C17 1.5686 (10) C21—H21B 0.9800
C6—H6 1.0000 C21—H21C 0.9800
C7—C19 1.3942 (9)
C10—O1—C11 112.48 (6) H11A—C11—H11C 109.5
C9—O2—C12 116.77 (6) H11B—C11—H11C 109.5
C18—O4—H4 109.5 O2—C12—H12A 109.5
C20—O5—C21 117.21 (6) O2—C12—H12B 109.5
C5—N1—C13 107.21 (6) H12A—C12—H12B 109.5
C5—N1—H1 126.4 O2—C12—H12C 109.5
C13—N1—H1 126.4 H12A—C12—H12C 109.5
C2—C1—C15 121.12 (7) H12B—C12—H12C 109.5
C2—C1—H1A 119.4 N1—C13—C14 129.41 (7)
C15—C1—H1A 119.4 N1—C13—C3 108.66 (6)
C1—C2—C3 119.10 (7) C14—C13—C3 121.91 (6)
C1—C2—H2 120.5 C15—C14—C13 117.73 (7)
C3—C2—H2 120.5 C15—C14—H14 121.1
C2—C3—C13 118.90 (6) C13—C14—H14 121.1
C2—C3—C4 135.29 (7) C14—C15—C1 121.22 (7)
C13—C3—C4 105.75 (6) C14—C15—H15 119.4
C5—C4—C3 107.07 (6) C1—C15—H15 119.4
C5—C4—C16 112.09 (6) C4—C16—C17 101.36 (5)
C3—C4—C16 140.65 (6) C4—C16—H16A 111.5
C4—C5—N1 111.28 (6) C17—C16—H16A 111.5
C4—C5—C6 115.13 (6) C4—C16—H16B 111.5
N1—C5—C6 133.48 (6) C17—C16—H16B 111.5
C5—C6—C7 116.44 (5) H16A—C16—H16B 109.3
C5—C6—C17 100.20 (5) C18—C17—C6 113.56 (6)
C7—C6—C17 111.15 (5) C18—C17—C16 113.05 (5)
C5—C6—H6 109.5 C6—C17—C16 109.05 (5)
C7—C6—H6 109.5 C18—C17—H17 106.9
C17—C6—H6 109.5 C6—C17—H17 106.9
C19—C7—C8 120.56 (6) C16—C17—H17 106.9
C19—C7—C6 120.63 (6) O3—C18—O4 123.34 (6)
C8—C7—C6 118.70 (6) O3—C18—C17 124.14 (6)
C9—C8—C7 119.72 (6) O4—C18—C17 112.51 (6)
C9—C8—H8 120.1 C7—C19—C20 119.54 (6)
C7—C8—H8 120.1 C7—C19—H19 120.2
O2—C9—C8 124.76 (6) C20—C19—H19 120.2
O2—C9—C10 115.23 (6) O5—C20—C19 125.19 (6)
C8—C9—C10 120.01 (6) O5—C20—C10 114.64 (6)
O1—C10—C20 119.89 (6) C19—C20—C10 120.17 (6)
O1—C10—C9 120.14 (6) O5—C21—H21A 109.5
C20—C10—C9 119.94 (6) O5—C21—H21B 109.5
O1—C11—H11A 109.5 H21A—C21—H21B 109.5
O1—C11—H11B 109.5 O5—C21—H21C 109.5
H11A—C11—H11B 109.5 H21A—C21—H21C 109.5
O1—C11—H11C 109.5 H21B—C21—H21C 109.5

Hydrogen-bond geometry (Å, º)

D—H···A D—H H···A D···A D—H···A
O4—H4···O3i 0.84 1.84 2.6748 (8) 176
N1—H1···O1ii 0.88 2.20 2.9041 (8) 136
C12—H12B···O2iii 0.98 2.62 3.3905 (11) 137

Symmetry codes: (i) −x+1, −y, −z; (ii) −x+1, −y+1, −z+1; (iii) −x+2, −y, −z+1.

Footnotes

Supporting information for this paper is available from the IUCr electronic archives (Reference: HB7417).

References

  1. Basavaiah, D. & Veeraraghavaiah, G. (2012). Chem. Soc. Rev. 41, 68–78. [DOI] [PubMed]
  2. Bruker (2010). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.
  3. Coelho, F., Almeida, W. P., Veronese, D., Mateus, C. R., Lopes, E. C. S., Rossi, R. C., Silveira, G. P. C. & Pavam, C. H. (2002). Tetrahedron, 58, 7437–7447.
  4. Dolomanov, O. V., Blake, A. J., Champness, N. R. & Schröder, M. (2003). J. Appl. Cryst. 36, 1283–1284.
  5. Hübschle, C. B., Sheldrick, G. M. & Dittrich, B. (2011). J. Appl. Cryst. 44, 1281–1284. [DOI] [PMC free article] [PubMed]
  6. Humphrey, G. R. & Kuethe, J. T. (2006). Chem. Rev. 106, 2875–2911. [DOI] [PubMed]
  7. Jordan, J. A., Gribble, G. W. & Badenock, J. C. (2011). Tetrahedron Lett. 52, 6772–6774.
  8. Macrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453–457.
  9. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  10. Westrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.
  11. Xu, B., Guo, Z. L., Jin, W. Y., Wang, Z. P., Peng, Y. G. & Guo, Q. X. (2012). Angew. Chem. Int. Ed. 51, 1059–1062. [DOI] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) I, New_Global_Publ_Block. DOI: 10.1107/S2056989015008786/hb7417sup1.cif

e-71-0o395-sup1.cif (2.8MB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S2056989015008786/hb7417Isup2.hkl

e-71-0o395-Isup2.hkl (621.3KB, hkl)

Supporting information file. DOI: 10.1107/S2056989015008786/hb7417Isup3.cdx

Supporting information file. DOI: 10.1107/S2056989015008786/hb7417Isup4.cml

. DOI: 10.1107/S2056989015008786/hb7417fig1.tif

The mol­ecular structure of the title compound with 50% probability displacement ellipsoids.

. DOI: 10.1107/S2056989015008786/hb7417fig2.tif

Crystal packing of the title compound, showing hydrogen-bonding inter­actions.

CCDC reference: 1063387

Additional supporting information: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Crystallographic Communications are provided here courtesy of International Union of Crystallography

RESOURCES