Skip to main content
Acta Crystallographica Section E: Crystallographic Communications logoLink to Acta Crystallographica Section E: Crystallographic Communications
. 2015 May 13;71(Pt 6):609–617. doi: 10.1107/S2056989015008233

Crystal structures of five (2-chloro­quinolin-3-yl)methyl ethers: supra­molecular assembly in one and two dimensions mediated by hydrogen bonding and π–π stacking

Haliwana B V Sowmya a, Tholappanavara H Suresha Kumara a,b, Nagendrappa Gopalpur a, Jerry P Jasinski c,*, Sean P Millikan c, Hemmige S Yathirajan d, Christopher Glidewell e
PMCID: PMC4459322  PMID: 26090133

Five closely related (2-chloro­quinlin-3-yl)methyl ethers all exhibit different patterns of direction-specific inter­molecular inter­actions, leading to the formation of different types of chain in four of them and sheets in the fifth.

Keywords: crystal structure, 2-chloro­quinolines, mol­ecular conformation, hydrogen bonding, π–π stacking inter­actions

Abstract

In the mol­ecules of the title compounds, methyl 5-bromo-2-[(2-chloro­quinolin-3-yl)meth­oxy]benzoate, C18H13BrClNO3, (I), methyl 5-bromo-2-[(2-chloro-6-methyl­quinolin-3-yl)meth­oxy]benzoate, C19H15BrClNO3, (II), methyl 2-[(2-chloro-6-methyl­quinolin-3-yl)meth­oxy]benzoate, C19H16ClNO3, (III), which crystallizes with Z′ = 4 in space group P212121, and 2-chloro-3-[(naphthalen-1-yl­oxy)meth­yl]quinoline, C20H14ClNO, (IV), the non-H atoms are nearly coplanar, but in {5-[(2-chloro­quinolin-3-yl)meth­oxy]-4-(hy­droxy­meth­yl)-6-methyl­pyridin-3-yl}methanol, C18H17ClN2O3, (V), the planes of the quinoline unit and of the unfused pyridine ring are almost parallel, although not coplanar. The mol­ecules of (I) are linked by two independent π–π stacking inter­actions to form chains, but there are no hydrogen bonds present in the structure. In (II), the mol­ecules are weakly linked into chains by a single type of π–π stacking inter­action. In (III), three of the four independent mol­ecules are linked by π–π stacking inter­actions but the other mol­ecule does not participate in such inter­actions. Weak C—H⋯O hydrogen bonds link the mol­ecules into three types of chains, two of which contain just one type of independent mol­ecule while the third type of chain contains two types of mol­ecule. The mol­ecules of (IV) are linked into chains by a C—H⋯π(arene) hydrogen bond, but π–π stacking inter­actions are absent. In (V), there is an intra­molecular O—H⋯O hydrogen bond, and mol­ecules are linked into sheets by a combination of O—H⋯N hydrogen bonds and π–π stacking inter­actions.

Chemical context  

The quinoline nucleus occurs in a number of natural compounds, such as the Cinchona alkaloids, and many of these are pharmacologically active substances displaying a broad range of biological activity. Quinoline itself has been found to possess anti­malarial, anti-bacterial, anti­fungal, anthelminthic, cardiotonic, anti­convulsant, anti-inflammatory and analgesic activity (Marella et al., 2013). The synthesis, reactions and biological applications of 2-chloro­quinoline-3-carbaldehydes have been reviewed (Abdel-Wahab et al., 2012), and the structure of a simple reduction product (2-chloro­quinolin-3-yl)methanol, derived from the parent 2-chloro­quinoline-3-carbaldehyde, has been reported (Hathwar et al., 2010). The structures of two related esters, [(2-chloro­quinolin-3-yl)methyl acetate and (2-chloro-6-methyl­quinolin-3-yl)methyl acetate], have also been reported recently along with a study of their radical-scavenging and anti­microbial activities (Tabassum et al., 2014). Here we report the structures of five related ethers, namely methyl 5-bromo-2-[(2-chloro­quinolin-3-yl)meth­oxy]benzoate, (I) (Fig. 1), methyl 5-bromo-2-[(2-chloro-6-methyl­quinolin-3-yl)meth­oxy]benzoate, (II) (Fig. 2), methyl 2-[(2-chloro-6-methyl­quinolin-3-yl)meth­oxy]benzoate, (III) (Figs. 3–6 ), 2-chloro-3-[(naphthalen-1-yl­oxy)meth­yl]quinoline (IV) (Fig. 7) and {5-[(2-chloro­quinolin-3-yl)methoxy]-4-(hy­droxy­meth­yl)-6-methylpyridin-3-yl}methanol, (V) (Fig. 8). Compounds (I)–(V) are all of general type QCH2OR, where Q represents a 2-chloro­quinolin-3-yl unit, which carries a 6-methyl substituent in compounds (II) and (III), although not in compounds (I), (IV) and (V), and where R represents a meth­oxy­carbonyl­phenyl unit in compounds (I)–(III), a 1-naphthyl unit in compound (IV), and a multiply-substituted pyridyl unit in compound (V). Compound (I)–(V) were all prepared by reaction of the corresponding chloro­methyl compounds QCH2Cl with the appropriate hy­droxy compound ROH under basic conditions, with yields ranging from 86 to 97%.graphic file with name e-71-00609-scheme1.jpg

Figure 1.

Figure 1

The mol­ecular structure of compound (I) showing the atom-labelling scheme. Displacement ellipsoids are drawn at the 30% probability level.

Figure 2.

Figure 2

The mol­ecular structure of compound (II) showing the atom-labelling scheme. Displacement ellipsoids are drawn at the 30% probability level.

Figure 3.

Figure 3

The structure of a type 1 mol­ecule of compound (III), showing the atom-labelling scheme. Displacement ellipsoids are drawn at the 30% probability level.

Figure 4.

Figure 4

The structure of a type 2 mol­ecule of compound (III), showing the atom-labelling scheme. Displacement ellipsoids are drawn at the 30% probability level.

Figure 5.

Figure 5

The structure of a type 3 mol­ecule of compound (III), showing the atom-labelling scheme. Displacement ellipsoids are drawn at the 30% probability level.

Figure 6.

Figure 6

The structure of a type 4 mol­ecule of compound (III), showing the atom-labelling scheme. Displacement ellipsoids are drawn at the 30% probability level.

Figure 7.

Figure 7

The mol­ecular structure of compound (IV) showing the atom-labelling scheme. Displacement ellipsoids are drawn at the 30% probability level.

Figure 8.

Figure 8

The mol­ecular structure of compound (V) showing the atom-labelling scheme. Displacement ellipsoids are drawn at the 30% probability level.

Structural commentary  

As noted above, the mol­ecular constitutions of compounds (I)–(III) are very similar: those of compounds (I) and (II) differ only in the presence of a 6-methyl substituent in (II) which is absent from (I), while those of compounds (II) and (III) differ only in the presence of a bromo substituent in (II) which is absent from (III). Despite these close similarities, compounds (I)–(III) all crystallize in different space groups, P21/n and Pbca, respectively, for (I) and (II), both with Z′ = 1, and P212121 with Z′ = 4 for (III). A search for possible additional crystallographic symmetry in compound (III) found none: comparison of the atomic coordinates for the Cl atoms within the selected asymmetric unit shows that while the x-coordinates of atoms Cl12 and Cl32 differ by ca 0.5 and their z-coordinates are almost identical, the y-coordinates of these two atoms differ by ca 0.13; similarly the x-coordinates of atoms Cl22 and Cl42 again differ by ca 0.5 but now the y-coordinates are almost identical, while the z-coordinates differ by ca 0.18. Hence it is not possible to identify even pseudosymmetry here. For compound (III), it will be convenient to refer to the mol­ecules containing atoms N11—N14 as mol­ecules of types 1–4, respectively. Compounds (IV) and (V) both crystallize with Z′ = 1, in space groups P21 and P21/c, respectively.

In compounds (I)–(III), the non-H atoms are almost co-planar, as shown by the relevant torsional and dihedral angles (Table 1). It is inter­esting to note that the orientation of the ester function in compound (I) differs from that in compounds (II) and (III) (Table 1 and Figs. 1–6 ): this difference may arise, at least in part, from the participation of the carbonyl O atom of the ester unit in short C—H⋯O inter­actions in all of the mol­ecules of compounds (II) and (III) but not in compound (I) (Table 2). The non-H atoms in compound (IV) are also nearly coplanar, with a dihedral angle between the mean planes of the quinoline and naphthalene units of 7.39 (12)°. By contrast, while the quinoline and pyridine units in compound (V) are nearly parallel (Fig. 8), with a dihedral angle between their mean planes of only 3.10 (9)°, they are by no means coplanar, as indicated by the values of the torsional angles C2—C3—C37—O31, 92.08 (18), C3—C37—O31—C33, 165.21 (13) and C37—O31—C33—C32, −90.17 (17)°. This again may perhaps be ascribed in part to the strong hydrogen bonds present in the crystal structure of (V) (Table 2).

Table 1. Selected torsional and dihedral angles (°) for compounds (I)–(III).

‘Dihedral 1’ represents the dihedral angle between the mean planes of the quinoline and phenyl rings. ‘Dihedral 2’ represents the dihedral angle between the mean planes of the phenyl ring and the carboxyl unit.

Parameter (I) (II) (III)      
x nil nil 1 2 3 4
Cx2—Cx3—Cx37—Ox31            
  −174.63 (17) −176.93 (18) −179.4 (3) 179.8 (3) 178.4 (3) −177.6 (3)
Cx3—Cx37—Ox31—Cx31            
  −175.71 (16) −179.57 (17) 177.2 (3) −175.9 (3) −178.9 (3) 176.4 (3)
Cx37—Ox31—Cx31—Cx32            
  173.73 (17) −172.62 (18) −176.8 (3) 174.5 (3) 177.7 (3) −174.4 (3)
Cx31—Cx32—Cx38—Ox38            
  4.1 (3) 159.5 (3) −177.5 (4) 166.4 (4) −168.7 (4) 178.9 (4)
Cx31—Cx32—Cx38—Ox39            
  −177.01 (17) −20.7 (3) 2.8 (6) −14.8 (5) 12.7 (5) −0.7 (5)
Cx32—Cx38—Ox39—Cx39            
  −175.77 (17) −176.4 (2) 179.2 (3) −176.4 (3) 178.3 (4) 180.0 (3)
Dihedral 1 0.66 (6) 10.72 (8) 5.44 (2) 4.18 (2) 3.825 (13) 5.55 (3)
Dihedral 2 4.27 (8) 19.25 (15) 2.52 (3) 14.66 (7) 12.29 (8) 1.78 (6)

Table 2. Hydrogen bonds and short inter­molecular contacts (Å, °) for compounds (II)–(V).

Cg1, Cg2 and Cg3 are the centroids of rings C231–C236, C331–C336 and C31–C34,C34A,C38A, respectively.

Compound D—H⋯A D—H H⋯A DA D—H⋯A
(II) C36—H36⋯O38i 0.95 2.53 3.277 (3) 136
(III) C28—H28⋯N41ii 0.95 2.63 3.565 (5) 169
  C136—H136⋯O138iii 0.95 2.50 3.261 (4) 137
  C236—H236⋯O438iv 0.95 2.43 3.223 (4) 141
  C336—H336⋯O338v 0.95 2.46 3.238 (4) 139
  C436—H436⋯O238iv 0.95 2.51 3.254 (4) 136
  C337—H33BCg1 0.99 2.64 3.441 (4) 138
  C437—H43ACg2 0.99 2.64 3.446 (4) 138
(IV) C37—H37ACg3vi 0.99 2.74 3.552 (3) 139
(V) O341—H341⋯N31vii 0.91 1.81 2.7098 (19) 174
  O351—H351⋯O341 0.91 1.86 2.7209 (19) 158
  C4—H4⋯O351viii 0.95 2.60 3.374 (2) 139

Symmetry codes: (i) x + Inline graphic, y, −z + Inline graphic; (ii) x − Inline graphic, −y + Inline graphic, −z + 1; (iii) −x, y − Inline graphic, −z + Inline graphic; (iv) −x + 1, y + Inline graphic, −z + Inline graphic; (v) −x + 1, y − Inline graphic, −z + Inline graphic; (vi) x − 1, y, z; (vii) x − Inline graphic, −y + Inline graphic, z + Inline graphic; (viii) −x + Inline graphic, y − Inline graphic, −z + Inline graphic.

None of the mol­ecules of compounds (I)–(V) exhibits any inter­nal symmetry and hence all are conformationally chiral. For compounds (I), (II) and (V), the centrosymmetric space groups accommodate equal numbers of the two conformational enanti­omers, but only one such enanti­omer is present in each crystal of compound (IV): the absolute configuration of the enanti­omer present in the crystal selected for data collection was established by means of the Flack x parameter (Flack, 1983), although this has no chemical significance. For compound (III), the value of the Flack x parameter gives evidence of partial inversion twinning.

Supra­molecular inter­actions  

The supra­molecular assembly in compounds (I)–(V) is determined by a variety of direction-specific inter­molecular inter­actions, including both π–π stacking inter­actions and hydrogen bonds of C—H⋯N, C—H⋯O and C—H⋯π types, as well as O—H⋯N hydrogen bonds in compound (V) only. In compound (III), there are two fairly short inter­molecular C—H⋯N contacts involving C—H bonds from methyl groups bonded to the quinoline nucleus: not only are such bonds of low acidity, but these methyl groups are likely to be undergoing very rapid rotation about the adjacent C—C bonds (Riddell & Rogerson, 1996, 1997). When a group having local C 3 symmetry, such as a methyl group, is directly bonded to a group having approximate local C 2 symmetry, such as an aryl ring, the rotational barrier between these two groups is extremely low, of the order of J mol−1 rather than the usual kJ mol−1 (Naylor & Wilson, 1957; Tannenbaum et al., 1956). Accordingly, these contacts in (III) are not regarded as having any structural significance. Likewise, the C—H⋯O contact in (V) involving the methyl group bonded to the unfused pyridine ring is not regarded as significant.

There are no hydrogen bonds of any kind in the crystal structure of compound (I), but mol­ecules are linked into chains by π–π stacking inter­actions. The fused aryl ring of the mol­ecule at (x, y, z) and the brominated ring of the mol­ecule at (−x + 1, −y + 1, −z + 1) make a dihedral angle of 1.04°; the ring centroid separation is 3.6168 (10) Å, and the shortest perpendicular distance from the centroid of one ring to the plane of the other is 3.4132 (6) Å, with a ring-centroid offset of ca 1.20 Å. For the heterocyclic ring at (x, y, z) and the brominated aryl ring at (−x, 1 − y, 1 − z), the corresponding values are 1.52 (9)°, 3.7454 (11) Å, 3.4357 (8) Å and ca 1.49 Å. The combination of these two stacking inter­actions links the mol­ecules of (I) into a chain running parallel to the [100] direction (Fig. 9). Two chains of this type pass through each unit cell but there are no direction-specific inter­actions between adjacent chains.

Figure 9.

Figure 9

Part of the crystal structure of compound (I) showing the formation of a π-stacked chain along [100]. For the sake of clarity, H atoms have been omitted. Atoms marked with an asterisk (*), a hash (#), a dollar sign ($) or an ampersand (&) are at the symmetry positions (−x, −y + 1, −z + 1), (−x + 1, −y + 1, −z + 1), (x − 1, y, z) and (x + 1, y, z), respectively.

The only short C—H⋯O contact in the structure of compound (II) has a C—H⋯O angle of only 136° (Table 2), and so it is unlikely to be of major structural significance (Wood et al., 2009). However, there is a weak π–π stacking inter­action between mol­ecules related by a 21 screw axis. The pyridyl ring at (x, y, z) and the brominated aryl ring at (−x + Inline graphic, y + Inline graphic, z) make a dihedral angle of 3.87 (10)°: the shortest perpendicular distance from the centroid of one ring to the plane of the other is 3.3816 (9) Å, but the ring-centroid separation is 3.882 (12), resulting in a ring-centroid offset of ca 1.78 Å. Thus there is only a very modest overlap of these rings and a consequently weak stacking inter­action: if this inter­action is, in fact, regarded as significant, it links the mol­ecules into a π-stacked chain running parallel to [010].

Within the selected asymmetric unit for compound (III), three of the four independent mol­ecules, those of types 2, 3 and 4 (cf. Figs. 3–6 ), are linked by two π–π stacking inter­actions, but the type 1 mol­ecule does not participate in any such inter­action. One of these stacking inter­actions involves the pyridyl ring of the type 2 mol­ecule and the fused aryl ring of the type 3 mol­ecule, while the other involves the pyridyl ring of the type 3 mol­ecule and the fused aryl ring of the type 4 mol­ecule. The dihedral angles between the ring planes within these two inter­actions are 3.11 (18) and 0.96 (7)°, respectively, the ring-centroid separations are 3.553 (2) Å and 3.544 (2) Å, and the shortest perpendicular distances from the centroid of one ring in each inter­action to the plane of the other ring are 3.4014 (15) and 3.3820 (15) Å, corresponding to ring-centroid offsets of ca 1.03 and ca 1.06 Å, respectively. The only short C—H⋯N contact within the crystal structure of compound (III) has an H⋯N distance which is not significantly less than the sum of the van der Waals radii, but there are four independent C—H⋯O hydrogen bonds present in the structure although all are probably weak as they have quite small C—H⋯O angles (Table 2). However, the pattern of these contacts is of inter­est as it precludes the possibility of any additional crystallographic symmetry in this structure where Z′ = 4. One of the C—H⋯O inter­actions involves only mol­ecules of type 1 which are related by the 21 screw axis along (0, y, Inline graphic), forming a C(6) (Bernstein et al., 1995) running parallel to the [010] direction (Fig. 10); an entirely similar chain is formed by type 3 mol­ecules related to one another by the 21 screw axis along (Inline graphic, y, Inline graphic). However, the mol­ecules of types 2 and 4 which are related by the 21 screw axis along (Inline graphic, y, Inline graphic) together form a Inline graphic(12) chain parallel to [010] (Fig. 11), which runs anti­parallel to the chains formed by the mol­ecules of types 1 and 3. Hence the patterns of supra­molecular assembly in compounds (I)–(III), as well as their crystallization characteristics, show significant differences.

Figure 10.

Figure 10

Part of the crystal structure of compound (III) showing the formation of two independent chains running parallel to the [010] direction and formed separately by the mol­ecules of types 1 and 3. For the sake of clarity, H atoms not involved in the motifs shown have been omitted. Atoms marked with an asterisk (*), a hash (#) or a dollar sign ($) are at the symmetry positions (−x, y − Inline graphic, −z + Inline graphic), (x, y − 1, z) and (−x + 1, y − Inline graphic, −z + + Inline graphic), respectively.

Figure 11.

Figure 11

Part of the crystal structure of compound (III) showing the formation of a chain running parallel to the [010] direction and containing alternating mol­ecules of types 2 and 4. For the sake of clarity, H atoms not involved in the motifs shown have been omitted. Atoms marked with an asterisk (*) or a hash (#) are at the symmetry positions (−x + 1, y + Inline graphic, −z + Inline graphic) and (x, y + 1, z), respectively.

There are no hydrogen bonds of the C—H⋯N or C—H⋯O types in the crystal structure of compound (IV) and, despite the large number of independent aromatic rings, there are no π–π stacking inter­actions. The only direction-specific inter­molecular inter­action is a weak C—H⋯π(arene) contact involving mol­ecules related by translation.

The supra­molecular assembly in compound (V) is, however, rather more elaborate, resulting in part from the presence of additional hydrogen-bond donors and acceptors in the unfused pyridine unit. An intra­molecular O—H⋯O hydrogen bond (Table 2) gives rise to an S(7) (Bernstein et al., 1995) motif, and an inter­molecular O—H⋯N hydrogen bond links mol­ecules related by the n-glide plane at y = Inline graphic, forming a C(7) chain running parallel to the [10Inline graphic] direction (Fig. 12). In addition, inversion-related pairs of mol­ecules are linked by π–π stacking inter­actions involving the unfused pyridine ring of one mol­ecule and the quinoline unit of the other (Fig. 13). Thus the unfused pyridine ring of the mol­ecule at (x, y, z) and the fused pyridine ring of the mol­ecule at (1 − x, 1 − y, 1 − z) make a dihedral angle of 4.43 (8)°: the ring-centroid separation is 3.7499 (9) Å and the shortest perpendicular distance from the centroid of one ring to the plane of the other is 3.5077 (7) Å, corresponding to a ring-centroid offset of ca 1.33 Å. For the unfused pyridyl ring at (x, y, z) and the fused aryl ring at (−x + 1, −y + 1, −z + 1) the corresponding values are 1.73 (8)°, 3.7333 (10) Å, 3.4637 (8) Å and ca 1.39 Å, respectively. The effect of the hydrogen-bonded chains is to link the π-stacked dimer centered at (Inline graphic, Inline graphic, Inline graphic) directly to the four symmetry-related dimers centred at (1, 0, 0), (1, 1, 0), (0, 0, 1) and (0, 1, 1), thus forming a sheet of π-stacked hydrogen-bonded chains lying parallel to (101) [Fig. 14].

Figure 12.

Figure 12

A stereoview of part of the crystal structure of compound (V) showing the formation of a C(7) chain formed by O—H⋯N hydrogen bonds and running parallel to [10Inline graphic]. For the sake of clarity, H atoms bonded to C atoms have been omitted.

Figure 13.

Figure 13

Part of the crystal structure of compound (V) showing the formation of a centrosymmetric π-stacked dimer. For the sake of clarity, H atoms have all been omitted. Atoms marked with an asterisk (*) are at the symmetry position (−x + 1, −y + 1, −z + 1).

Figure 14.

Figure 14

A stereoview of part of the crystal structure of compound (V) showing the formation of a π-stacked sheet of hydrogen bonded chains lying parallel to (101). For the sake of clarity, H atoms bonded to C atoms have been omitted.

Database survey  

The structures of a number of fairly simple 2-chloro­quinolione derivatives related to compounds (I)–(V) have been reported in recent years. A structural study of a closely related group of six simply substituted 2-chloro­quinolines (Hathwar et al., 2010) focused on supra­molecular aggregation via C—H⋯Cl hydrogen bonds and attractive Cl⋯Cl inter­actions. However, it must be pointed out firstly that it is now well established (Brammer et al., 2001; Thallapally & Nangia, 2001) that Cl atoms bonded to C atoms are extremely poor acceptors of hydrogen bonds, even from strong donors such as O—H or N—H; and secondly, that for none of the compounds in this group were the shortest inter­molecular Cl⋯Cl distances less than the sum of the van der Waals radii (Bondi, 1964; Nyburg & Faerman, 1985; Rowland & Taylor, 1996): indeed, the concept of the van der Waals radius was nowhere mentioned by the original authors. Two of the six compounds in this group contained 3-hy­droxy­methyl substituents and, in each of these, the mol­ecules are linked into C(6) chains by means of O—H⋯N hydrogen bonds.

Mol­ecules of 2-[(2-chloro­quinolin-3-yl)(hy­droxy)meth­yl]acrylo­nitrile (Anuradha et al., 2013a ) are also linked into C(6) chains by O—H⋯N hydrogen bonds, while in the closely related methyl 2-[(2-chloro­quinolin-3-yl)(hy­droxy)meth­yl]acrylate, where Z′ = 2 (Anuradha et al., 2013b ), mol­ecules of one type are linked by O—H⋯O hydrogen bonds, again forming C(6) chains to which the mol­ecules of the second type are linked by O—H⋯N hydrogen bonds. Chains of C(6) type are formed also in N-{(2-chloro-3-quinlin­yl)meth­yl]-4-fluoro­aniline (Jasinski et al., 2010), which is closely related to compounds (I)–(V) except that an amino linkage replaces the ether linkage in (I)–(V), so that the chains are built from N—H⋯N hydrogen bonds.

In the esters (2-choloroquinolin-3-yl)methyl acetate and (2-chloro-6-methyl­quinolin-3-yl)methyl acetate (Tabassum et al., 2014), there are no strong hydrogen bond donors: in the methyl­ated compound, where Z′ = 2, the only hydrogen bond, of C—H⋯O type, links the two independent mol­ecules, while in the unmethyl­ated compound, the mol­ecules are linked into C(5) chains by C—H⋯N hydrogen bonds. In the structure of 2-chloro-3-(di­meth­oxy­meth­yl)-6-meth­oxy­quinoline (Chandrika et al., 2015), there are no hydrogen bonds of any kind.

Synthesis and crystallization  

For the synthesis of compounds (I)–(V), a mixture of 0.4 mmol of the appropriate quinoline derivative, 2-chloro-3-(chloro­meth­yl)quinoline for compounds (I), (IV) and (V) or 2-chloro-3-(chloro­meth­yl)-5-methyl­quinoline for compounds (II) and (III) and 0.4 mmol of the appropriate hy­droxy compound, methyl 5-bromo-2-hy­droxy­benzoate for (I) and (II), methyl 2-hy­droxy­benzoate for (III), 1-hy­droxy­naphthalene for (IV), or 3-hy­droxy-4,5-bis­(hy­droxy­meth­yl)-2-methyl­pyridinium chloride for (V), were dissolved in N,N-di­methyl­formamide (3–5 ml) together with potassium carbonate (2 mmol) and these mixtures were stirred at ambient temperature for 6–9 h, with monitoring by TLC. When each reaction was complete, ice-cold water (5 ml) was added and the resulting solid products were collected by filtration, washed with water and dried in air. Crystals suitable for single-crystal X-ray diffraction were obtained by slow evaporation, at ambient temperature and in the presence of air, of solutions in di­chloro­methane, with yields in the range 86–97%.

Refinement  

Crystal data, data collection and structure refinement details are summarized in Table 3. All H atoms were located in difference Fourier maps. C-bound H atoms were then treated as riding atoms in geometrically idealized positions: C—H distances 0.95–0.99 Å with U iso(H) = 1.5U eq(C) for the methyl groups, which were permitted to rotate but not to tilt, and 1.2U eq(C) for other C-bound H atoms.

Table 3. Experimental details.

  (I) (II) (III)
Crystal data
Chemical formula C18H13BrClNO3 C19H15BrClNO3 C19H16ClNO3
M r 406.64 420.67 341.78
Crystal system, space group Monoclinic, P21/n Orthorhombic, P b c a Orthorhombic, P212121
Temperature (K) 173 173 173
a, b, c (Å) 7.3185 (4), 18.4177 (7), 11.7870 (5) 15.1920 (3), 11.98641 (19), 19.0307 (3) 13.5860 (3), 15.5857 (2), 30.9389 (5)
α, β, γ (°) 90, 93.609 (4), 90 90, 90, 90 90, 90, 90
V3) 1585.62 (13) 3465.44 (10) 6551.2 (2)
Z 4 8 16
Radiation type Mo Kα Cu Kα Cu Kα
μ (mm−1) 2.78 4.81 2.21
Crystal size (mm) 0.44 × 0.23 × 0.12 0.24 × 0.16 × 0.08 0.48 × 0.26 × 0.14
 
Data collection
Diffractometer Agilent Eos Gemini Agilent Eos Gemini Agilent Eos Gemini
Absorption correction Multi-scan (SADABS; Sheldrick, 2003) Multi-scan (SADABS; Sheldrick, 2003) Multi-scan (SADABS; Sheldrick, 2003)
T min, T max 0.335, 0.717 0.399, 0.680 0.472, 0.734
No. of measured, independent and observed [I > 2σ(I)] reflections 17735, 4612, 3682 21861, 3421, 3062 45901, 12840, 11257
R int 0.036 0.055 0.048
(sin θ/λ)max−1) 0.703 0.618 0.619
 
Refinement
R[F 2 > 2σ(F 2)], wR(F 2), S 0.033, 0.071, 1.06 0.034, 0.093, 1.06 0.046, 0.129, 1.04
No. of reflections 4612 3421 12840
No. of parameters 218 229 874
No. of restraints 0 0 0
H-atom treatment H-atom parameters constrained H-atom parameters constrained H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.42, −0.41 0.52, −0.49 0.42, −0.31
Absolute structure Refined as an inversion twin
Absolute structure parameter 0.152 (16)
  (IV) (V)
Crystal data
Chemical formula C20H14ClNO C18H17ClN2O3
M r 319.77 344.79
Crystal system, space group Monoclinic, P21 Monoclinic, P21/n
Temperature (K) 173 173
a, b, c (Å) 5.3165 (3), 10.5098 (4), 13.6201 (7) 9.7866 (3), 15.3336 (4), 10.6570 (3)
α, β, γ (°) 90, 98.527 (5), 90 90, 92.381 (3), 90
V3) 752.62 (6) 1597.85 (8)
Z 2 4
Radiation type Cu Kα Cu Kα
μ (mm−1) 2.27 2.29
Crystal size (mm) 0.34 × 0.10 × 0.08 0.42 × 0.38 × 0.32
 
Data collection
Diffractometer Agilent Eos Gemini Agilent Eos Gemini
Absorption correction Multi-scan (SADABS; Sheldrick, 2003) Multi-scan (SADABS; Sheldrick, 2003)
T min, T max 0.551, 0.834 0.375, 0.481
No. of measured, independent and observed [I > 2σ(I)] reflections 4606, 2014, 1938 9423, 3112, 2764
R int 0.029 0.043
(sin θ/λ)max−1) 0.619 0.618
 
Refinement
R[F 2 > 2σ(F 2)], wR(F 2), S 0.033, 0.090, 1.08 0.045, 0.127, 1.05
No. of reflections 2014 3112
No. of parameters 208 219
No. of restraints 1 0
H-atom treatment H-atom parameters constrained H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.22, −0.19 0.32, −0.25
Absolute structure Classical Flack method preferred over Parsons because s.u. lower  
Absolute structure parameter −0.007 (18)

Computer programs: CrysAlis PRO and CrysAlis RED (Agilent, 2012), SHELXS97 (Sheldrick, 2008), SHELXL2014 (Sheldrick, 2015) and PLATON (Spek, 2009).

The H atoms bonded to O atoms in compound (V) were permitted to ride at the positions located in the difference Fourier map, with U iso(H) = 1.5U eq(O), giving O—H distances of 0.91 Å. For compound (III), the Flack x parameter (Flack, 1983) for the crystal selected for data collection was x = 0.161 (1) calculated (Parsons et al., 2013) using 4617 quotients of type [(I +)−(I )]/[(I +)+(I )]. Use of the TWIN/BASF instructions in SHELXL2014 (Sheldrick, 2015) gave a value for the twin fraction of 0.152 (16). For compound (IV), the absolute configuration of the conformational enanti­omer present in the crystal selected for data collection was established by means of the Flack x parameter calculated as x = −0.007 (18) by the standard method (Flack, 1983) and as x = 0.06 (2) calculated using 102 quotients of type [(I +)−(I )]/[(I +)+(I )].

Supplementary Material

Crystal structure: contains datablock(s) global, I, II, III, IV, V. DOI: 10.1107/S2056989015008233/su5121sup1.cif

e-71-00609-sup1.cif (3.4MB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S2056989015008233/su5121Isup2.hkl

e-71-00609-Isup2.hkl (253KB, hkl)

Structure factors: contains datablock(s) II. DOI: 10.1107/S2056989015008233/su5121IIsup3.hkl

e-71-00609-IIsup3.hkl (187.9KB, hkl)

Structure factors: contains datablock(s) III. DOI: 10.1107/S2056989015008233/su5121IIIsup4.hkl

e-71-00609-IIIsup4.hkl (702.9KB, hkl)

Structure factors: contains datablock(s) IV. DOI: 10.1107/S2056989015008233/su5121IVsup5.hkl

e-71-00609-IVsup5.hkl (110.8KB, hkl)

Structure factors: contains datablock(s) V. DOI: 10.1107/S2056989015008233/su5121Vsup6.hkl

e-71-00609-Vsup6.hkl (170.9KB, hkl)

Supporting information file. DOI: 10.1107/S2056989015008233/su5121Isup7.cml

Supporting information file. DOI: 10.1107/S2056989015008233/su5121IIsup8.cml

Supporting information file. DOI: 10.1107/S2056989015008233/su5121IIIsup9.cml

Supporting information file. DOI: 10.1107/S2056989015008233/su5121IVsup10.cml

Supporting information file. DOI: 10.1107/S2056989015008233/su5121Vsup11.cml

CCDC references: 1061944, 992268, 992267, 1061945, 1061946

Additional supporting information: crystallographic information; 3D view; checkCIF report

Acknowledgments

HBVS and THS thank the authorities of Jain University for their support and encouragement. HSY thanks the University of Mysore for research facilities. JPJ acknowledges the NSF–MRI program (grant No. 1039027) for funds to purchase the X-ray diffractometer.

supplementary crystallographic information

(I) Methyl 5-bromo-2-[(2-chloroquinolin-3-yl)methoxy]benzoate. Crystal data

C18H13BrClNO3 F(000) = 816
Mr = 406.64 Dx = 1.703 Mg m3
Monoclinic, P21/n Mo Kα radiation, λ = 0.71073 Å
a = 7.3185 (4) Å Cell parameters from 5443 reflections
b = 18.4177 (7) Å θ = 3.0–33.0°
c = 11.7870 (5) Å µ = 2.78 mm1
β = 93.609 (4)° T = 173 K
V = 1585.62 (13) Å3 Plate, colourles
Z = 4 0.44 × 0.23 × 0.12 mm

(I) Methyl 5-bromo-2-[(2-chloroquinolin-3-yl)methoxy]benzoate. Data collection

Agilent Eos Gemini diffractometer 3682 reflections with I > 2σ(I)
Radiation source: Enhance (Mo) X-ray Source Rint = 0.036
ω scans θmax = 30.0°, θmin = 3.0°
Absorption correction: multi-scan (SADABS; Sheldrick, 2003) h = −10→8
Tmin = 0.335, Tmax = 0.717 k = −24→25
17735 measured reflections l = −16→16
4612 independent reflections

(I) Methyl 5-bromo-2-[(2-chloroquinolin-3-yl)methoxy]benzoate. Refinement

Refinement on F2 0 restraints
Least-squares matrix: full Hydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.033 H-atom parameters constrained
wR(F2) = 0.071 w = 1/[σ2(Fo2) + (0.0288P)2 + 0.6015P] where P = (Fo2 + 2Fc2)/3
S = 1.06 (Δ/σ)max = 0.001
4612 reflections Δρmax = 0.42 e Å3
218 parameters Δρmin = −0.41 e Å3

(I) Methyl 5-bromo-2-[(2-chloroquinolin-3-yl)methoxy]benzoate. Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

(I) Methyl 5-bromo-2-[(2-chloroquinolin-3-yl)methoxy]benzoate. Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
N1 0.3544 (2) 0.64638 (8) 0.75859 (12) 0.0228 (3)
C2 0.3622 (2) 0.57729 (10) 0.74061 (14) 0.0218 (4)
Cl2 0.44084 (7) 0.52448 (3) 0.85755 (4) 0.03157 (12)
C3 0.3125 (2) 0.54040 (10) 0.63773 (15) 0.0209 (4)
C4 0.2421 (2) 0.58250 (10) 0.55035 (15) 0.0219 (4)
H4 0.2034 0.5606 0.4799 0.026*
C4A 0.2265 (2) 0.65814 (10) 0.56389 (15) 0.0209 (4)
C5 0.1545 (3) 0.70490 (11) 0.47672 (16) 0.0257 (4)
H5 0.1115 0.6851 0.4055 0.031*
C6 0.1462 (3) 0.77791 (11) 0.49390 (17) 0.0303 (4)
H6 0.0952 0.8087 0.4354 0.036*
C7 0.2134 (3) 0.80793 (11) 0.59853 (18) 0.0315 (4)
H7 0.2101 0.8590 0.6093 0.038*
C8 0.2826 (3) 0.76456 (11) 0.68391 (17) 0.0276 (4)
H8 0.3271 0.7855 0.7539 0.033*
C8A 0.2888 (2) 0.68865 (10) 0.66944 (14) 0.0212 (4)
C37 0.3404 (3) 0.46017 (10) 0.62654 (15) 0.0246 (4)
H37A 0.4696 0.4471 0.6467 0.030*
H37B 0.2612 0.4333 0.6772 0.030*
O31 0.2926 (2) 0.44326 (7) 0.51108 (10) 0.0275 (3)
C31 0.2926 (2) 0.37331 (9) 0.47662 (14) 0.0203 (3)
C32 0.2264 (2) 0.35949 (9) 0.36438 (14) 0.0191 (3)
C33 0.2199 (2) 0.28798 (9) 0.32599 (14) 0.0203 (3)
H33 0.1751 0.2779 0.2502 0.024*
C34 0.2772 (3) 0.23189 (9) 0.39624 (15) 0.0212 (4)
Br34 0.26437 (3) 0.13590 (2) 0.33927 (2) 0.03066 (7)
C35 0.3456 (3) 0.24530 (10) 0.50667 (15) 0.0235 (4)
H35 0.3860 0.2064 0.5548 0.028*
C36 0.3543 (3) 0.31595 (10) 0.54578 (15) 0.0224 (4)
H36 0.4030 0.3255 0.6209 0.027*
C38 0.1676 (2) 0.41935 (10) 0.28586 (14) 0.0217 (4)
O38 0.1774 (2) 0.48297 (8) 0.30438 (12) 0.0415 (4)
O39 0.1018 (2) 0.39288 (7) 0.18579 (11) 0.0361 (4)
C39 0.0528 (3) 0.44627 (11) 0.10042 (18) 0.0380 (5)
H39A −0.0067 0.4223 0.0336 0.057*
H39B 0.1633 0.4714 0.0786 0.057*
H39C −0.0317 0.4815 0.1308 0.057*

(I) Methyl 5-bromo-2-[(2-chloroquinolin-3-yl)methoxy]benzoate. Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
N1 0.0241 (8) 0.0260 (8) 0.0181 (7) −0.0004 (6) 0.0007 (6) −0.0038 (6)
C2 0.0222 (9) 0.0266 (9) 0.0164 (8) 0.0002 (7) −0.0006 (7) 0.0005 (7)
Cl2 0.0414 (3) 0.0328 (3) 0.0196 (2) 0.0036 (2) −0.00517 (19) 0.00316 (18)
C3 0.0220 (9) 0.0205 (9) 0.0202 (8) −0.0018 (7) 0.0021 (7) −0.0023 (7)
C4 0.0240 (9) 0.0237 (9) 0.0178 (8) −0.0012 (7) 0.0002 (7) −0.0028 (7)
C4A 0.0207 (9) 0.0222 (9) 0.0201 (8) 0.0005 (7) 0.0031 (7) −0.0006 (7)
C5 0.0272 (10) 0.0282 (10) 0.0215 (8) 0.0036 (8) 0.0006 (7) 0.0006 (7)
C6 0.0314 (11) 0.0278 (10) 0.0320 (10) 0.0073 (8) 0.0048 (8) 0.0068 (8)
C7 0.0334 (11) 0.0228 (10) 0.0390 (11) 0.0045 (8) 0.0077 (9) −0.0024 (8)
C8 0.0304 (11) 0.0242 (10) 0.0282 (9) 0.0009 (8) 0.0034 (8) −0.0079 (8)
C8A 0.0199 (9) 0.0227 (9) 0.0213 (8) 0.0014 (7) 0.0036 (7) −0.0029 (7)
C37 0.0354 (11) 0.0211 (9) 0.0170 (8) 0.0003 (7) −0.0022 (7) −0.0010 (7)
O31 0.0467 (9) 0.0168 (6) 0.0181 (6) 0.0019 (6) −0.0048 (6) −0.0020 (5)
C31 0.0231 (9) 0.0188 (9) 0.0191 (8) −0.0002 (7) 0.0020 (7) 0.0000 (6)
C32 0.0215 (9) 0.0172 (8) 0.0186 (8) 0.0003 (6) 0.0009 (6) 0.0019 (6)
C33 0.0228 (9) 0.0187 (8) 0.0193 (8) −0.0016 (7) 0.0003 (7) 0.0000 (6)
C34 0.0250 (9) 0.0158 (8) 0.0227 (8) −0.0012 (6) 0.0008 (7) 0.0006 (7)
Br34 0.04557 (13) 0.01513 (9) 0.03011 (11) −0.00002 (8) −0.00682 (8) −0.00001 (7)
C35 0.0284 (10) 0.0198 (9) 0.0224 (9) 0.0007 (7) 0.0010 (7) 0.0058 (7)
C36 0.0280 (10) 0.0209 (9) 0.0178 (8) −0.0014 (7) −0.0013 (7) 0.0026 (7)
C38 0.0247 (9) 0.0207 (9) 0.0197 (8) 0.0003 (7) 0.0011 (7) 0.0010 (7)
O38 0.0816 (12) 0.0175 (7) 0.0240 (7) 0.0027 (7) −0.0074 (7) 0.0014 (6)
O39 0.0601 (10) 0.0178 (7) 0.0272 (7) −0.0043 (6) −0.0220 (7) 0.0050 (6)
C39 0.0540 (14) 0.0263 (11) 0.0307 (10) −0.0027 (9) −0.0207 (10) 0.0108 (8)

(I) Methyl 5-bromo-2-[(2-chloroquinolin-3-yl)methoxy]benzoate. Geometric parameters (Å, º)

N1—C2 1.292 (2) C37—H37B 0.9900
N1—C8A 1.370 (2) O31—C31 1.351 (2)
C2—C3 1.417 (2) C31—C36 1.392 (2)
C2—Cl2 1.7542 (18) C31—C32 1.403 (2)
C3—C4 1.364 (2) C32—C33 1.393 (2)
C3—C37 1.499 (2) C32—C38 1.486 (2)
C4—C4A 1.408 (3) C33—C34 1.373 (2)
C4—H4 0.9500 C33—H33 0.9500
C4A—C8A 1.414 (2) C34—C35 1.387 (2)
C4A—C5 1.417 (3) C34—Br34 1.8913 (18)
C5—C6 1.362 (3) C35—C36 1.380 (3)
C5—H5 0.9500 C35—H35 0.9500
C6—C7 1.411 (3) C36—H36 0.9500
C6—H6 0.9500 C38—O38 1.193 (2)
C7—C8 1.358 (3) C38—O39 1.338 (2)
C7—H7 0.9500 O39—C39 1.436 (2)
C8—C8A 1.410 (3) C39—H39A 0.9800
C8—H8 0.9500 C39—H39B 0.9800
C37—O31 1.418 (2) C39—H39C 0.9800
C37—H37A 0.9900
C2—N1—C8A 116.80 (15) C3—C37—H37B 110.6
N1—C2—C3 126.94 (16) H37A—C37—H37B 108.7
N1—C2—Cl2 115.65 (13) C31—O31—C37 119.56 (14)
C3—C2—Cl2 117.41 (14) O31—C31—C36 123.63 (15)
C4—C3—C2 115.97 (16) O31—C31—C32 116.73 (15)
C4—C3—C37 122.75 (16) C36—C31—C32 119.63 (16)
C2—C3—C37 121.27 (16) C33—C32—C31 118.73 (15)
C3—C4—C4A 120.43 (16) C33—C32—C38 119.78 (15)
C3—C4—H4 119.8 C31—C32—C38 121.48 (15)
C4A—C4—H4 119.8 C34—C33—C32 120.84 (16)
C4—C4A—C8A 117.96 (16) C34—C33—H33 119.6
C4—C4A—C5 123.28 (16) C32—C33—H33 119.6
C8A—C4A—C5 118.75 (17) C33—C34—C35 120.69 (16)
C6—C5—C4A 120.70 (18) C33—C34—Br34 118.86 (13)
C6—C5—H5 119.7 C35—C34—Br34 120.44 (13)
C4A—C5—H5 119.7 C36—C35—C34 119.18 (16)
C5—C6—C7 120.03 (18) C36—C35—H35 120.4
C5—C6—H6 120.0 C34—C35—H35 120.4
C7—C6—H6 120.0 C35—C36—C31 120.88 (16)
C8—C7—C6 120.69 (19) C35—C36—H36 119.6
C8—C7—H7 119.7 C31—C36—H36 119.6
C6—C7—H7 119.7 O38—C38—O39 122.23 (16)
C7—C8—C8A 120.48 (18) O38—C38—C32 127.08 (16)
C7—C8—H8 119.8 O39—C38—C32 110.68 (15)
C8A—C8—H8 119.8 C38—O39—C39 115.37 (15)
N1—C8A—C8 118.90 (16) O39—C39—H39A 109.5
N1—C8A—C4A 121.80 (16) O39—C39—H39B 109.5
C8—C8A—C4A 119.31 (17) H39A—C39—H39B 109.5
O31—C37—C3 105.92 (14) O39—C39—H39C 109.5
O31—C37—H37A 110.6 H39A—C39—H39C 109.5
C3—C37—H37A 110.6 H39B—C39—H39C 109.5
O31—C37—H37B 110.6
C8A—N1—C2—C3 1.0 (3) C2—C3—C37—O31 −174.63 (17)
C8A—N1—C2—Cl2 −178.33 (13) C3—C37—O31—C31 −175.71 (16)
N1—C2—C3—C4 −2.9 (3) C37—O31—C31—C36 −6.4 (3)
Cl2—C2—C3—C4 176.39 (14) C37—O31—C31—C32 173.73 (17)
N1—C2—C3—C37 175.89 (19) O31—C31—C32—C33 −178.50 (16)
Cl2—C2—C3—C37 −4.8 (2) C36—C31—C32—C33 1.6 (3)
C2—C3—C4—C4A 1.6 (3) O31—C31—C32—C38 2.8 (3)
C37—C3—C4—C4A −177.14 (17) C36—C31—C32—C38 −177.03 (17)
C3—C4—C4A—C8A 1.1 (3) C31—C32—C33—C34 −0.1 (3)
C3—C4—C4A—C5 −179.93 (18) C38—C32—C33—C34 178.58 (17)
C4—C4A—C5—C6 −178.59 (19) C32—C33—C34—C35 −1.0 (3)
C8A—C4A—C5—C6 0.3 (3) C32—C33—C34—Br34 179.85 (14)
C4A—C5—C6—C7 1.4 (3) C33—C34—C35—C36 0.5 (3)
C5—C6—C7—C8 −1.6 (3) Br34—C34—C35—C36 179.65 (14)
C6—C7—C8—C8A 0.1 (3) C34—C35—C36—C31 1.1 (3)
C2—N1—C8A—C8 −178.21 (17) O31—C31—C36—C35 178.00 (17)
C2—N1—C8A—C4A 2.2 (3) C32—C31—C36—C35 −2.2 (3)
C7—C8—C8A—N1 −178.03 (18) C33—C32—C38—O38 −174.5 (2)
C7—C8—C8A—C4A 1.6 (3) C31—C32—C38—O38 4.1 (3)
C4—C4A—C8A—N1 −3.2 (3) C33—C32—C38—O39 4.3 (2)
C5—C4A—C8A—N1 177.82 (17) C31—C32—C38—O39 −177.01 (17)
C4—C4A—C8A—C8 177.18 (17) O38—C38—O39—C39 3.1 (3)
C5—C4A—C8A—C8 −1.8 (3) C32—C38—O39—C39 −175.77 (17)
C4—C3—C37—O31 4.1 (3)

(II) Methyl 5-bromo-2-[(2-chloro-6-methylquinolin-3-yl)methoxy]benzoate. Crystal data

C19H15BrClNO3 Dx = 1.613 Mg m3
Mr = 420.67 Cu Kα radiation, λ = 1.54184 Å
Orthorhombic, Pbca Cell parameters from 3421 reflections
a = 15.1920 (3) Å θ = 4.7–72.5°
b = 11.98641 (19) Å µ = 4.81 mm1
c = 19.0307 (3) Å T = 173 K
V = 3465.44 (10) Å3 Block, colourless
Z = 8 0.24 × 0.16 × 0.08 mm
F(000) = 1696

(II) Methyl 5-bromo-2-[(2-chloro-6-methylquinolin-3-yl)methoxy]benzoate. Data collection

Agilent Eos Gemini diffractometer 3062 reflections with I > 2σ(I)
Radiation source: Enhance (Cu) X-ray Source Rint = 0.055
ω scans θmax = 72.5°, θmin = 4.7°
Absorption correction: multi-scan (SADABS; Sheldrick, 2003) h = −18→18
Tmin = 0.399, Tmax = 0.680 k = −14→12
21861 measured reflections l = −23→18
3421 independent reflections

(II) Methyl 5-bromo-2-[(2-chloro-6-methylquinolin-3-yl)methoxy]benzoate. Refinement

Refinement on F2 Hydrogen site location: inferred from neighbouring sites
Least-squares matrix: full H-atom parameters constrained
R[F2 > 2σ(F2)] = 0.034 w = 1/[σ2(Fo2) + (0.0523P)2 + 1.8465P] where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.093 (Δ/σ)max < 0.001
S = 1.06 Δρmax = 0.52 e Å3
3421 reflections Δρmin = −0.49 e Å3
229 parameters Extinction correction: SHELXL2014 (Sheldrick, 2015), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
0 restraints Extinction coefficient: 0.00048 (6)

(II) Methyl 5-bromo-2-[(2-chloro-6-methylquinolin-3-yl)methoxy]benzoate. Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

(II) Methyl 5-bromo-2-[(2-chloro-6-methylquinolin-3-yl)methoxy]benzoate. Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
N1 0.42983 (12) 0.87307 (15) 0.45790 (10) 0.0272 (4)
C2 0.42690 (13) 0.78272 (18) 0.42079 (11) 0.0249 (4)
Cl2 0.52936 (3) 0.72811 (5) 0.39507 (3) 0.03655 (16)
C3 0.35033 (14) 0.72343 (17) 0.40030 (10) 0.0226 (4)
C4 0.27189 (13) 0.76626 (18) 0.42260 (11) 0.0224 (4)
H4 0.2185 0.7297 0.4106 0.027*
C4A 0.26987 (13) 0.86525 (18) 0.46363 (11) 0.0219 (4)
C5 0.19142 (14) 0.91446 (18) 0.48888 (11) 0.0253 (4)
H5 0.1366 0.8805 0.4780 0.030*
C6 0.19242 (15) 1.00976 (18) 0.52857 (11) 0.0267 (4)
C7 0.27500 (15) 1.05991 (19) 0.54421 (12) 0.0302 (5)
H7 0.2765 1.1261 0.5716 0.036*
C8 0.35220 (15) 1.01485 (19) 0.52062 (12) 0.0299 (5)
H8 0.4066 1.0499 0.5316 0.036*
C8A 0.35123 (14) 0.91644 (17) 0.48007 (11) 0.0242 (4)
C37 0.35875 (13) 0.61865 (18) 0.35765 (11) 0.0243 (4)
H37A 0.3916 0.6338 0.3137 0.029*
H37B 0.3909 0.5610 0.3846 0.029*
O31 0.27182 (9) 0.58119 (13) 0.34187 (8) 0.0254 (3)
C31 0.26370 (13) 0.48636 (18) 0.30374 (11) 0.0224 (4)
C32 0.17885 (14) 0.45623 (18) 0.28094 (11) 0.0236 (4)
C33 0.16860 (15) 0.36086 (18) 0.23979 (11) 0.0267 (4)
H33 0.1116 0.3399 0.2240 0.032*
C34 0.24049 (16) 0.29669 (19) 0.22183 (11) 0.0271 (5)
Br34 0.22547 (2) 0.17010 (2) 0.16308 (2) 0.03596 (12)
C35 0.32387 (16) 0.32597 (18) 0.24421 (12) 0.0297 (5)
H35 0.3731 0.2813 0.2317 0.036*
C36 0.33537 (14) 0.42003 (18) 0.28463 (11) 0.0273 (5)
H36 0.3928 0.4401 0.2997 0.033*
C38 0.09631 (14) 0.5209 (2) 0.29458 (12) 0.0309 (5)
O38 0.03146 (13) 0.5097 (2) 0.25963 (13) 0.0739 (8)
O39 0.10112 (11) 0.59054 (16) 0.34798 (9) 0.0380 (4)
C39 0.02126 (19) 0.6494 (3) 0.36541 (18) 0.0522 (7)
H39A 0.0089 0.7052 0.3291 0.078*
H39B 0.0283 0.6866 0.4109 0.078*
H39C −0.0277 0.5963 0.3680 0.078*
C61 0.10926 (16) 1.0618 (2) 0.55704 (13) 0.0365 (5)
H61A 0.0590 1.0382 0.5284 0.055*
H61B 0.1145 1.1432 0.5555 0.055*
H61C 0.1003 1.0376 0.6057 0.055*

(II) Methyl 5-bromo-2-[(2-chloro-6-methylquinolin-3-yl)methoxy]benzoate. Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
N1 0.0241 (9) 0.0257 (9) 0.0319 (10) −0.0054 (7) −0.0027 (7) −0.0008 (8)
C2 0.0193 (10) 0.0264 (11) 0.0291 (11) −0.0017 (8) 0.0002 (8) 0.0026 (8)
Cl2 0.0207 (3) 0.0373 (3) 0.0516 (4) −0.0023 (2) 0.0022 (2) −0.0088 (3)
C3 0.0236 (10) 0.0229 (10) 0.0214 (10) −0.0037 (8) −0.0022 (8) 0.0021 (8)
C4 0.0202 (10) 0.0249 (10) 0.0222 (10) −0.0041 (8) −0.0023 (7) 0.0023 (8)
C4A 0.0236 (10) 0.0226 (10) 0.0196 (10) −0.0023 (8) −0.0023 (7) 0.0033 (8)
C5 0.0248 (10) 0.0288 (11) 0.0224 (10) −0.0030 (9) −0.0021 (8) 0.0012 (8)
C6 0.0309 (11) 0.0263 (11) 0.0228 (10) 0.0025 (9) −0.0017 (8) 0.0019 (8)
C7 0.0397 (13) 0.0231 (10) 0.0276 (11) −0.0022 (9) −0.0023 (9) −0.0035 (9)
C8 0.0308 (11) 0.0263 (11) 0.0325 (11) −0.0059 (9) −0.0045 (9) −0.0022 (9)
C8A 0.0262 (10) 0.0227 (10) 0.0238 (10) −0.0040 (8) −0.0038 (8) 0.0014 (8)
C37 0.0199 (10) 0.0245 (10) 0.0285 (11) −0.0029 (8) −0.0007 (8) −0.0021 (9)
O31 0.0198 (7) 0.0252 (8) 0.0312 (8) −0.0013 (6) −0.0016 (5) −0.0079 (6)
C31 0.0241 (10) 0.0226 (10) 0.0204 (10) −0.0015 (8) 0.0002 (7) 0.0013 (8)
C32 0.0230 (10) 0.0237 (10) 0.0242 (10) −0.0026 (8) −0.0009 (8) 0.0037 (8)
C33 0.0283 (11) 0.0279 (11) 0.0238 (10) −0.0068 (9) −0.0032 (8) 0.0032 (9)
C34 0.0407 (12) 0.0212 (10) 0.0195 (10) −0.0054 (9) −0.0007 (9) −0.0012 (8)
Br34 0.0551 (2) 0.02513 (16) 0.02764 (17) −0.00542 (10) −0.00230 (10) −0.00488 (9)
C35 0.0322 (11) 0.0286 (12) 0.0283 (11) 0.0027 (9) 0.0045 (9) −0.0016 (9)
C36 0.0225 (10) 0.0300 (12) 0.0294 (11) −0.0023 (9) 0.0004 (8) −0.0022 (9)
C38 0.0225 (10) 0.0334 (12) 0.0369 (12) −0.0003 (9) −0.0027 (9) −0.0007 (10)
O38 0.0309 (10) 0.100 (2) 0.0905 (17) 0.0164 (11) −0.0257 (11) −0.0441 (16)
O39 0.0232 (8) 0.0460 (11) 0.0446 (10) 0.0068 (7) 0.0006 (7) −0.0115 (8)
C39 0.0298 (13) 0.0636 (19) 0.0632 (19) 0.0151 (13) 0.0099 (13) −0.0070 (16)
C61 0.0372 (13) 0.0366 (13) 0.0357 (13) 0.0042 (10) 0.0022 (10) −0.0082 (10)

(II) Methyl 5-bromo-2-[(2-chloro-6-methylquinolin-3-yl)methoxy]benzoate. Geometric parameters (Å, º)

N1—C2 1.294 (3) O31—C31 1.354 (3)
N1—C8A 1.369 (3) C31—C36 1.396 (3)
C2—C3 1.418 (3) C31—C32 1.407 (3)
C2—Cl2 1.758 (2) C32—C33 1.394 (3)
C3—C4 1.365 (3) C32—C38 1.497 (3)
C3—C37 1.501 (3) C33—C34 1.379 (3)
C4—C4A 1.421 (3) C33—H33 0.9500
C4—H4 0.9500 C34—C35 1.382 (3)
C4A—C5 1.414 (3) C34—Br34 1.899 (2)
C4A—C8A 1.415 (3) C35—C36 1.376 (3)
C5—C6 1.370 (3) C35—H35 0.9500
C5—H5 0.9500 C36—H36 0.9500
C6—C7 1.423 (3) C38—O38 1.196 (3)
C6—C61 1.509 (3) C38—O39 1.317 (3)
C7—C8 1.367 (3) O39—C39 1.442 (3)
C7—H7 0.9500 C39—H39A 0.9800
C8—C8A 1.410 (3) C39—H39B 0.9800
C8—H8 0.9500 C39—H39C 0.9800
C37—O31 1.427 (2) C61—H61A 0.9800
C37—H37A 0.9900 C61—H61B 0.9800
C37—H37B 0.9900 C61—H61C 0.9800
C2—N1—C8A 117.13 (18) O31—C31—C36 123.12 (19)
N1—C2—C3 126.73 (19) O31—C31—C32 117.66 (18)
N1—C2—Cl2 115.67 (15) C36—C31—C32 119.2 (2)
C3—C2—Cl2 117.59 (16) C33—C32—C31 119.1 (2)
C4—C3—C2 116.24 (19) C33—C32—C38 115.38 (19)
C4—C3—C37 123.86 (18) C31—C32—C38 125.50 (19)
C2—C3—C37 119.89 (19) C34—C33—C32 120.5 (2)
C3—C4—C4A 120.25 (18) C34—C33—H33 119.7
C3—C4—H4 119.9 C32—C33—H33 119.7
C4A—C4—H4 119.9 C33—C34—C35 120.5 (2)
C5—C4A—C8A 118.7 (2) C33—C34—Br34 119.77 (17)
C5—C4A—C4 123.60 (18) C35—C34—Br34 119.65 (18)
C8A—C4A—C4 117.70 (18) C36—C35—C34 119.8 (2)
C6—C5—C4A 121.7 (2) C36—C35—H35 120.1
C6—C5—H5 119.1 C34—C35—H35 120.1
C4A—C5—H5 119.1 C35—C36—C31 120.9 (2)
C5—C6—C7 118.5 (2) C35—C36—H36 119.6
C5—C6—C61 122.2 (2) C31—C36—H36 119.6
C7—C6—C61 119.2 (2) O38—C38—O39 123.1 (2)
C8—C7—C6 121.4 (2) O38—C38—C32 122.3 (2)
C8—C7—H7 119.3 O39—C38—C32 114.56 (18)
C6—C7—H7 119.3 C38—O39—C39 116.1 (2)
C7—C8—C8A 120.1 (2) O39—C39—H39A 109.5
C7—C8—H8 120.0 O39—C39—H39B 109.5
C8A—C8—H8 120.0 H39A—C39—H39B 109.5
N1—C8A—C8 118.51 (19) O39—C39—H39C 109.5
N1—C8A—C4A 121.94 (19) H39A—C39—H39C 109.5
C8—C8A—C4A 119.5 (2) H39B—C39—H39C 109.5
O31—C37—C3 107.35 (16) C6—C61—H61A 109.5
O31—C37—H37A 110.2 C6—C61—H61B 109.5
C3—C37—H37A 110.2 H61A—C61—H61B 109.5
O31—C37—H37B 110.2 C6—C61—H61C 109.5
C3—C37—H37B 110.2 H61A—C61—H61C 109.5
H37A—C37—H37B 108.5 H61B—C61—H61C 109.5
C31—O31—C37 117.47 (16)
C8A—N1—C2—C3 0.2 (3) C4—C3—C37—O31 4.3 (3)
C8A—N1—C2—Cl2 −178.63 (15) C2—C3—C37—O31 −176.93 (18)
N1—C2—C3—C4 −0.4 (3) C3—C37—O31—C31 −179.57 (17)
Cl2—C2—C3—C4 178.35 (16) C37—O31—C31—C36 5.4 (3)
N1—C2—C3—C37 −179.3 (2) C37—O31—C31—C32 −172.62 (18)
Cl2—C2—C3—C37 −0.5 (3) O31—C31—C32—C33 178.09 (18)
C2—C3—C4—C4A 0.3 (3) C36—C31—C32—C33 0.0 (3)
C37—C3—C4—C4A 179.16 (19) O31—C31—C32—C38 0.7 (3)
C3—C4—C4A—C5 −179.75 (19) C36—C31—C32—C38 −177.4 (2)
C3—C4—C4A—C8A 0.0 (3) C31—C32—C33—C34 0.2 (3)
C8A—C4A—C5—C6 0.0 (3) C38—C32—C33—C34 177.8 (2)
C4—C4A—C5—C6 179.7 (2) C32—C33—C34—C35 −0.1 (3)
C4A—C5—C6—C7 0.2 (3) C32—C33—C34—Br34 −177.84 (16)
C4A—C5—C6—C61 −178.7 (2) C33—C34—C35—C36 −0.1 (3)
C5—C6—C7—C8 −0.1 (3) Br34—C34—C35—C36 177.58 (17)
C61—C6—C7—C8 178.9 (2) C34—C35—C36—C31 0.3 (3)
C6—C7—C8—C8A −0.2 (4) O31—C31—C36—C35 −178.2 (2)
C2—N1—C8A—C8 180.0 (2) C32—C31—C36—C35 −0.2 (3)
C2—N1—C8A—C4A 0.2 (3) C33—C32—C38—O38 −18.0 (4)
C7—C8—C8A—N1 −179.4 (2) C31—C32—C38—O38 159.5 (3)
C7—C8—C8A—C4A 0.4 (3) C33—C32—C38—O39 161.8 (2)
C5—C4A—C8A—N1 179.49 (19) C31—C32—C38—O39 −20.7 (3)
C4—C4A—C8A—N1 −0.3 (3) O38—C38—O39—C39 3.5 (4)
C5—C4A—C8A—C8 −0.3 (3) C32—C38—O39—C39 −176.4 (2)
C4—C4A—C8A—C8 179.95 (19)

(II) Methyl 5-bromo-2-[(2-chloro-6-methylquinolin-3-yl)methoxy]benzoate. Hydrogen-bond geometry (Å, º)

D—H···A D—H H···A D···A D—H···A
C36—H36···O38i 0.95 2.53 3.277 (3) 136

Symmetry code: (i) x+1/2, y, −z+1/2.

(III) Methyl 2-[(2-chloro-6-methylquinolin-3-yl)methoxy]benzoate. Crystal data

C19H16ClNO3 Dx = 1.386 Mg m3
Mr = 341.78 Cu Kα radiation, λ = 1.54184 Å
Orthorhombic, P212121 Cell parameters from 12841 reflections
a = 13.5860 (3) Å θ = 3.6–72.6°
b = 15.5857 (2) Å µ = 2.21 mm1
c = 30.9389 (5) Å T = 173 K
V = 6551.2 (2) Å3 Block, colourless
Z = 16 0.48 × 0.26 × 0.14 mm
F(000) = 2848

(III) Methyl 2-[(2-chloro-6-methylquinolin-3-yl)methoxy]benzoate. Data collection

Agilent Eos Gemini diffractometer 11257 reflections with I > 2σ(I)
Radiation source: Enhance (Cu) X-ray Source Rint = 0.048
ω scans θmax = 72.6°, θmin = 3.6°
Absorption correction: multi-scan (SADABS; Sheldrick, 2003) h = −16→15
Tmin = 0.472, Tmax = 0.734 k = −19→15
45901 measured reflections l = −38→30
12840 independent reflections

(III) Methyl 2-[(2-chloro-6-methylquinolin-3-yl)methoxy]benzoate. Refinement

Refinement on F2 Hydrogen site location: inferred from neighbouring sites
Least-squares matrix: full H-atom parameters constrained
R[F2 > 2σ(F2)] = 0.046 w = 1/[σ2(Fo2) + (0.0759P)2 + 0.9452P] where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.129 (Δ/σ)max = 0.001
S = 1.04 Δρmax = 0.42 e Å3
12840 reflections Δρmin = −0.31 e Å3
874 parameters Absolute structure: Refined as an inversion twin.
0 restraints Absolute structure parameter: 0.152 (16)

(III) Methyl 2-[(2-chloro-6-methylquinolin-3-yl)methoxy]benzoate. Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refined as a 2-component inversion twin.

(III) Methyl 2-[(2-chloro-6-methylquinolin-3-yl)methoxy]benzoate. Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
N11 0.0311 (2) 0.26008 (18) 0.44748 (8) 0.0301 (6)
C12 0.0259 (3) 0.2694 (2) 0.40606 (10) 0.0293 (7)
Cl12 0.02044 (8) 0.17391 (5) 0.37626 (3) 0.0430 (2)
C13 0.0238 (2) 0.3474 (2) 0.38287 (10) 0.0268 (6)
C14 0.0259 (2) 0.4211 (2) 0.40728 (10) 0.0282 (7)
H14 0.0256 0.4756 0.3935 0.034*
C14A 0.0287 (2) 0.4159 (2) 0.45268 (11) 0.0282 (7)
C15 0.0243 (3) 0.4892 (2) 0.47997 (12) 0.0332 (7)
H15 0.0226 0.5447 0.4674 0.040*
C16 0.0225 (3) 0.4814 (3) 0.52403 (12) 0.0363 (8)
C17 0.0282 (3) 0.3981 (3) 0.54256 (11) 0.0382 (8)
H17 0.0286 0.3923 0.5731 0.046*
C18 0.0332 (3) 0.3261 (2) 0.51731 (11) 0.0348 (7)
H18 0.0371 0.2710 0.5304 0.042*
C18A 0.0325 (2) 0.3337 (2) 0.47186 (11) 0.0290 (7)
C137 0.0188 (3) 0.3476 (2) 0.33422 (10) 0.0302 (7)
H13A 0.0764 0.3171 0.3220 0.036*
H13B −0.0418 0.3184 0.3243 0.036*
O131 0.0187 (2) 0.43457 (15) 0.32062 (7) 0.0346 (5)
C131 0.0188 (3) 0.4508 (2) 0.27728 (10) 0.0277 (7)
C132 0.0243 (3) 0.5371 (2) 0.26405 (10) 0.0284 (7)
C133 0.0259 (3) 0.5540 (2) 0.21978 (11) 0.0338 (8)
H133 0.0303 0.6119 0.2103 0.041*
C134 0.0215 (3) 0.4895 (3) 0.18938 (11) 0.0404 (9)
H134 0.0230 0.5027 0.1594 0.048*
C135 0.0147 (3) 0.4051 (3) 0.20307 (12) 0.0391 (8)
H135 0.0107 0.3602 0.1824 0.047*
C136 0.0138 (3) 0.3858 (2) 0.24656 (11) 0.0349 (8)
H136 0.0097 0.3276 0.2556 0.042*
C138 0.0272 (3) 0.6138 (2) 0.29250 (11) 0.0318 (7)
O138 0.0287 (3) 0.68600 (18) 0.27853 (9) 0.0590 (8)
O139 0.0286 (2) 0.59794 (16) 0.33477 (8) 0.0362 (6)
C139 0.0327 (3) 0.6724 (3) 0.36214 (12) 0.0412 (9)
H19A 0.0351 0.6543 0.3925 0.062*
H19B −0.0259 0.7077 0.3574 0.062*
H19C 0.0917 0.7058 0.3553 0.062*
C161 0.0161 (4) 0.5585 (3) 0.55315 (13) 0.0489 (10)
H16A 0.0696 0.5566 0.5743 0.073*
H16B −0.0473 0.5583 0.5683 0.073*
H16C 0.0217 0.6109 0.5358 0.073*
N21 0.2866 (2) 0.67705 (19) 0.53534 (10) 0.0345 (6)
C22 0.2884 (3) 0.6675 (2) 0.49411 (11) 0.0311 (7)
Cl22 0.30603 (8) 0.76266 (6) 0.46423 (3) 0.0463 (2)
C23 0.2803 (2) 0.5902 (2) 0.47028 (11) 0.0297 (7)
C24 0.2724 (3) 0.5170 (2) 0.49451 (11) 0.0312 (7)
H24 0.2675 0.4628 0.4806 0.037*
C24A 0.2716 (3) 0.5217 (2) 0.54036 (11) 0.0302 (7)
C25 0.2632 (3) 0.4488 (2) 0.56743 (12) 0.0359 (8)
H25 0.2604 0.3933 0.5548 0.043*
C26 0.2590 (3) 0.4568 (3) 0.61136 (13) 0.0406 (9)
C27 0.2650 (3) 0.5396 (3) 0.62980 (13) 0.0434 (9)
H27 0.2622 0.5453 0.6603 0.052*
C28 0.2746 (3) 0.6112 (3) 0.60521 (12) 0.0388 (8)
H28 0.2794 0.6660 0.6186 0.047*
C28A 0.2774 (3) 0.6041 (2) 0.55952 (12) 0.0332 (7)
C237 0.2795 (3) 0.5903 (2) 0.42186 (11) 0.0320 (7)
H23A 0.2233 0.6245 0.4110 0.038*
H23B 0.3411 0.6158 0.4106 0.038*
O231 0.2709 (2) 0.50396 (16) 0.40813 (8) 0.0375 (6)
C231 0.2748 (3) 0.4863 (2) 0.36514 (11) 0.0301 (7)
C232 0.2748 (3) 0.3993 (2) 0.35269 (11) 0.0294 (7)
C233 0.2777 (3) 0.3806 (2) 0.30865 (12) 0.0367 (8)
H233 0.2774 0.3223 0.2998 0.044*
C234 0.2811 (3) 0.4434 (3) 0.27777 (12) 0.0392 (9)
H234 0.2836 0.4286 0.2480 0.047*
C235 0.2810 (3) 0.5288 (3) 0.29027 (12) 0.0383 (8)
H235 0.2827 0.5727 0.2690 0.046*
C236 0.2782 (3) 0.5503 (2) 0.33367 (12) 0.0330 (7)
H236 0.2787 0.6090 0.3421 0.040*
C238 0.2727 (3) 0.3238 (2) 0.38217 (12) 0.0331 (8)
O238 0.2553 (3) 0.25274 (18) 0.36991 (10) 0.0546 (8)
O239 0.2936 (2) 0.34248 (17) 0.42314 (8) 0.0417 (6)
C239 0.2981 (3) 0.2700 (3) 0.45206 (13) 0.0485 (10)
H29A 0.3414 0.2260 0.4398 0.073*
H29B 0.2319 0.2462 0.4559 0.073*
H29C 0.3241 0.2885 0.4801 0.073*
C261 0.2477 (4) 0.3792 (3) 0.64007 (14) 0.0528 (11)
H26A 0.3075 0.3716 0.6574 0.079*
H26B 0.2372 0.3281 0.6222 0.079*
H26C 0.1912 0.3873 0.6593 0.079*
N31 0.5271 (2) 0.39181 (18) 0.44626 (9) 0.0282 (6)
C32 0.5293 (2) 0.3996 (2) 0.40484 (10) 0.0272 (7)
Cl32 0.53360 (8) 0.30319 (5) 0.37552 (3) 0.0403 (2)
C33 0.5300 (2) 0.4771 (2) 0.38069 (10) 0.0253 (6)
C34 0.5317 (2) 0.5512 (2) 0.40443 (10) 0.0272 (7)
H34 0.5335 0.6052 0.3902 0.033*
C34A 0.5309 (3) 0.5474 (2) 0.44993 (11) 0.0277 (7)
C35 0.5330 (3) 0.6216 (2) 0.47646 (12) 0.0345 (8)
H35 0.5362 0.6766 0.4633 0.041*
C36 0.5305 (3) 0.6157 (3) 0.52091 (12) 0.0387 (8)
C37 0.5264 (3) 0.5331 (3) 0.53988 (11) 0.0401 (8)
H37 0.5248 0.5285 0.5705 0.048*
C38 0.5248 (3) 0.4602 (3) 0.51574 (11) 0.0356 (8)
H38 0.5219 0.4057 0.5295 0.043*
C38A 0.5275 (3) 0.4658 (2) 0.46987 (10) 0.0279 (7)
C337 0.5297 (3) 0.4760 (2) 0.33200 (10) 0.0261 (6)
H33A 0.5895 0.4469 0.3210 0.031*
H33B 0.4711 0.4450 0.3211 0.031*
O331 0.5278 (2) 0.56258 (14) 0.31813 (7) 0.0317 (5)
C331 0.5256 (2) 0.5789 (2) 0.27513 (10) 0.0265 (6)
C332 0.5200 (3) 0.6657 (2) 0.26216 (10) 0.0299 (7)
C333 0.5204 (3) 0.6837 (2) 0.21809 (11) 0.0368 (8)
H333 0.5178 0.7418 0.2089 0.044*
C334 0.5244 (3) 0.6196 (3) 0.18732 (11) 0.0417 (9)
H334 0.5254 0.6336 0.1574 0.050*
C335 0.5269 (3) 0.5350 (2) 0.20050 (11) 0.0372 (8)
H335 0.5282 0.4905 0.1795 0.045*
C336 0.5277 (3) 0.5144 (2) 0.24398 (11) 0.0316 (7)
H336 0.5297 0.4560 0.2527 0.038*
C338 0.5135 (3) 0.7414 (2) 0.29139 (11) 0.0339 (7)
O338 0.4943 (3) 0.81240 (18) 0.27849 (10) 0.0545 (8)
O339 0.5325 (2) 0.72473 (16) 0.33255 (8) 0.0430 (6)
C339 0.5292 (4) 0.7983 (3) 0.36114 (13) 0.0584 (12)
H39A 0.5762 0.8417 0.3511 0.088*
H39B 0.5466 0.7803 0.3905 0.088*
H39C 0.4627 0.8226 0.3611 0.088*
C361 0.5325 (4) 0.6949 (3) 0.54871 (13) 0.0520 (11)
H36A 0.5506 0.7446 0.5310 0.078*
H36B 0.5810 0.6875 0.5719 0.078*
H36C 0.4673 0.7043 0.5614 0.078*
N41 0.7784 (2) 0.67216 (19) 0.35785 (9) 0.0312 (6)
C42 0.7768 (2) 0.6643 (2) 0.31639 (11) 0.0276 (7)
Cl42 0.77365 (8) 0.76085 (5) 0.28715 (3) 0.0395 (2)
C43 0.7776 (2) 0.5869 (2) 0.29224 (11) 0.0265 (7)
C44 0.7803 (2) 0.5131 (2) 0.31580 (11) 0.0283 (7)
H44 0.7824 0.4593 0.3014 0.034*
C44A 0.7802 (2) 0.5158 (2) 0.36136 (11) 0.0278 (7)
C45 0.7793 (3) 0.4418 (2) 0.38798 (12) 0.0338 (8)
H45 0.7787 0.3867 0.3749 0.041*
C46 0.7792 (3) 0.4481 (3) 0.43207 (13) 0.0371 (9)
C47 0.7801 (3) 0.5302 (3) 0.45138 (12) 0.0393 (9)
H47 0.7802 0.5347 0.4820 0.047*
C48 0.7811 (3) 0.6034 (3) 0.42712 (12) 0.0371 (8)
H48 0.7825 0.6578 0.4409 0.045*
C48A 0.7799 (2) 0.5982 (2) 0.38153 (10) 0.0284 (7)
C437 0.7759 (3) 0.5886 (2) 0.24373 (10) 0.0287 (7)
H43A 0.7172 0.6200 0.2333 0.034*
H43B 0.8355 0.6176 0.2325 0.034*
O431 0.77309 (19) 0.50187 (15) 0.22965 (8) 0.0334 (5)
C431 0.7656 (3) 0.4859 (2) 0.18670 (11) 0.0294 (7)
C432 0.7540 (2) 0.4005 (2) 0.17336 (11) 0.0314 (7)
C433 0.7493 (3) 0.3835 (2) 0.12886 (12) 0.0388 (8)
H433 0.7435 0.3257 0.1194 0.047*
C434 0.7528 (3) 0.4479 (3) 0.09854 (12) 0.0452 (10)
H434 0.7488 0.4348 0.0686 0.054*
C435 0.7621 (3) 0.5321 (3) 0.11217 (12) 0.0420 (9)
H435 0.7647 0.5770 0.0915 0.050*
C436 0.7678 (3) 0.5512 (2) 0.15565 (12) 0.0353 (8)
H436 0.7732 0.6093 0.1646 0.042*
C438 0.7472 (3) 0.3232 (2) 0.20179 (12) 0.0347 (8)
O438 0.7358 (3) 0.25227 (18) 0.18788 (10) 0.0560 (8)
O439 0.7541 (2) 0.33994 (16) 0.24416 (8) 0.0404 (6)
C439 0.7475 (4) 0.2656 (3) 0.27155 (13) 0.0501 (10)
H49A 0.7496 0.2835 0.3019 0.075*
H49B 0.8030 0.2272 0.2656 0.075*
H49C 0.6856 0.2355 0.2659 0.075*
C461 0.7757 (3) 0.3687 (3) 0.46052 (14) 0.0498 (11)
H46A 0.7075 0.3576 0.4693 0.075*
H46B 0.8163 0.3780 0.4863 0.075*
H46C 0.8009 0.3193 0.4444 0.075*

(III) Methyl 2-[(2-chloro-6-methylquinolin-3-yl)methoxy]benzoate. Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
N11 0.0385 (15) 0.0228 (13) 0.0289 (13) 0.0008 (12) −0.0018 (12) 0.0024 (11)
C12 0.0348 (17) 0.0208 (15) 0.0324 (16) 0.0002 (14) −0.0029 (14) −0.0009 (13)
Cl12 0.0731 (6) 0.0208 (4) 0.0351 (4) −0.0022 (4) −0.0056 (4) −0.0023 (3)
C13 0.0278 (15) 0.0240 (16) 0.0286 (16) 0.0016 (13) −0.0003 (13) 0.0023 (12)
C14 0.0306 (16) 0.0225 (16) 0.0315 (16) −0.0009 (13) −0.0002 (14) 0.0040 (13)
C14A 0.0254 (15) 0.0247 (16) 0.0345 (17) −0.0018 (13) −0.0005 (13) −0.0019 (13)
C15 0.0321 (17) 0.0271 (17) 0.0404 (19) 0.0011 (14) 0.0004 (15) −0.0037 (14)
C16 0.0306 (17) 0.040 (2) 0.039 (2) −0.0001 (16) −0.0027 (15) −0.0103 (16)
C17 0.0402 (19) 0.048 (2) 0.0259 (16) −0.0039 (18) −0.0017 (15) −0.0029 (15)
C18 0.0391 (19) 0.0345 (18) 0.0309 (17) −0.0009 (16) −0.0023 (15) 0.0030 (15)
C18A 0.0266 (16) 0.0276 (16) 0.0329 (17) −0.0010 (13) −0.0019 (13) 0.0001 (14)
C137 0.0413 (18) 0.0206 (15) 0.0287 (16) 0.0009 (14) −0.0029 (14) 0.0027 (13)
O131 0.0548 (15) 0.0209 (11) 0.0282 (12) 0.0041 (11) −0.0016 (11) 0.0038 (9)
C131 0.0296 (16) 0.0256 (16) 0.0279 (16) 0.0039 (13) 0.0008 (13) 0.0048 (13)
C132 0.0284 (16) 0.0270 (17) 0.0298 (17) 0.0045 (14) 0.0011 (13) 0.0042 (13)
C133 0.0373 (18) 0.0323 (18) 0.0316 (18) 0.0075 (15) 0.0034 (15) 0.0107 (14)
C134 0.049 (2) 0.046 (2) 0.0266 (17) 0.0104 (19) 0.0010 (16) 0.0043 (16)
C135 0.049 (2) 0.0355 (19) 0.0326 (18) 0.0083 (17) −0.0029 (16) −0.0056 (15)
C136 0.044 (2) 0.0251 (17) 0.0359 (18) 0.0066 (15) 0.0004 (15) −0.0002 (14)
C138 0.0357 (18) 0.0251 (17) 0.0345 (17) 0.0045 (14) −0.0010 (14) 0.0045 (14)
O138 0.108 (3) 0.0250 (14) 0.0440 (16) 0.0015 (16) −0.0068 (17) 0.0038 (12)
O139 0.0511 (15) 0.0257 (12) 0.0318 (12) −0.0007 (11) −0.0024 (11) −0.0004 (10)
C139 0.053 (2) 0.0323 (19) 0.0382 (19) −0.0024 (18) −0.0049 (17) −0.0082 (16)
C161 0.054 (2) 0.049 (2) 0.044 (2) 0.003 (2) 0.0007 (19) −0.0149 (19)
N21 0.0440 (17) 0.0262 (15) 0.0332 (15) 0.0035 (13) −0.0030 (13) −0.0036 (12)
C22 0.0377 (18) 0.0238 (16) 0.0318 (17) 0.0025 (14) −0.0026 (13) 0.0006 (14)
Cl22 0.0791 (7) 0.0235 (4) 0.0363 (4) 0.0029 (4) −0.0059 (4) 0.0019 (4)
C23 0.0307 (16) 0.0286 (17) 0.0297 (17) 0.0046 (14) −0.0027 (13) −0.0045 (14)
C24 0.0332 (17) 0.0237 (16) 0.0366 (19) 0.0004 (14) −0.0022 (14) −0.0045 (14)
C24A 0.0281 (16) 0.0295 (17) 0.0330 (18) −0.0005 (14) −0.0010 (14) −0.0025 (14)
C25 0.0371 (19) 0.0314 (18) 0.039 (2) −0.0024 (15) −0.0011 (15) 0.0001 (15)
C26 0.040 (2) 0.045 (2) 0.037 (2) −0.0038 (17) −0.0008 (16) 0.0092 (17)
C27 0.046 (2) 0.054 (2) 0.0295 (18) −0.0019 (19) −0.0019 (16) −0.0007 (17)
C28 0.048 (2) 0.039 (2) 0.0296 (18) 0.0000 (17) −0.0002 (16) −0.0060 (15)
C28A 0.0322 (17) 0.0314 (18) 0.0359 (18) 0.0022 (15) −0.0013 (14) −0.0021 (15)
C237 0.0403 (19) 0.0230 (16) 0.0328 (18) 0.0032 (14) −0.0021 (14) −0.0036 (14)
O231 0.0597 (16) 0.0244 (12) 0.0285 (13) −0.0032 (11) 0.0045 (11) −0.0034 (10)
C231 0.0297 (16) 0.0290 (17) 0.0316 (18) −0.0023 (14) −0.0020 (13) −0.0035 (13)
C232 0.0286 (16) 0.0276 (17) 0.0321 (17) −0.0028 (14) −0.0032 (13) −0.0032 (14)
C233 0.042 (2) 0.0306 (18) 0.0378 (19) −0.0064 (16) −0.0020 (16) −0.0099 (15)
C234 0.048 (2) 0.043 (2) 0.0268 (18) −0.0062 (18) −0.0065 (15) −0.0023 (16)
C235 0.041 (2) 0.040 (2) 0.0338 (19) 0.0003 (16) −0.0053 (15) 0.0082 (16)
C236 0.0348 (18) 0.0275 (17) 0.0368 (19) 0.0012 (14) −0.0039 (15) 0.0011 (14)
C238 0.0301 (16) 0.0297 (18) 0.039 (2) −0.0025 (14) 0.0013 (14) −0.0053 (15)
O238 0.088 (2) 0.0271 (14) 0.0490 (17) −0.0156 (14) −0.0052 (15) −0.0007 (13)
O239 0.0632 (18) 0.0287 (13) 0.0330 (13) 0.0012 (12) −0.0076 (12) 0.0028 (11)
C239 0.065 (3) 0.036 (2) 0.045 (2) 0.0049 (19) −0.0081 (19) 0.0128 (18)
C261 0.061 (3) 0.049 (3) 0.048 (2) −0.005 (2) 0.001 (2) 0.015 (2)
N31 0.0335 (14) 0.0237 (14) 0.0274 (13) −0.0006 (12) −0.0016 (11) 0.0024 (11)
C32 0.0324 (16) 0.0188 (15) 0.0302 (16) −0.0016 (13) −0.0026 (14) −0.0014 (13)
Cl32 0.0723 (6) 0.0187 (4) 0.0299 (4) −0.0005 (4) −0.0027 (4) −0.0015 (3)
C33 0.0249 (14) 0.0211 (15) 0.0300 (16) 0.0011 (12) 0.0012 (13) 0.0023 (13)
C34 0.0304 (16) 0.0203 (15) 0.0308 (16) 0.0017 (13) 0.0005 (14) 0.0026 (12)
C34A 0.0262 (16) 0.0268 (17) 0.0300 (17) 0.0016 (13) −0.0013 (13) −0.0033 (13)
C35 0.0377 (18) 0.0281 (17) 0.0377 (19) 0.0022 (15) −0.0022 (15) −0.0068 (15)
C36 0.0371 (19) 0.043 (2) 0.0364 (19) 0.0025 (17) −0.0052 (15) −0.0114 (16)
C37 0.042 (2) 0.053 (2) 0.0261 (17) 0.0016 (18) −0.0019 (16) −0.0059 (16)
C38 0.0412 (19) 0.039 (2) 0.0270 (17) 0.0004 (17) −0.0025 (15) 0.0027 (15)
C38A 0.0277 (16) 0.0291 (17) 0.0268 (16) −0.0011 (13) −0.0015 (13) 0.0023 (13)
C337 0.0336 (16) 0.0178 (14) 0.0268 (16) 0.0008 (13) 0.0005 (13) 0.0026 (12)
O331 0.0517 (14) 0.0184 (11) 0.0251 (11) −0.0017 (11) 0.0010 (11) 0.0016 (9)
C331 0.0296 (15) 0.0244 (16) 0.0254 (15) −0.0011 (13) −0.0001 (13) 0.0033 (12)
C332 0.0324 (17) 0.0255 (16) 0.0319 (17) 0.0009 (14) −0.0019 (14) 0.0021 (13)
C333 0.045 (2) 0.0304 (18) 0.0345 (18) 0.0046 (16) −0.0043 (16) 0.0113 (14)
C334 0.055 (2) 0.045 (2) 0.0244 (16) 0.007 (2) −0.0042 (16) 0.0058 (16)
C335 0.045 (2) 0.038 (2) 0.0295 (17) 0.0029 (17) −0.0036 (16) −0.0040 (15)
C336 0.0418 (19) 0.0226 (16) 0.0304 (17) −0.0010 (15) 0.0016 (15) 0.0016 (13)
C338 0.0391 (19) 0.0221 (16) 0.0406 (18) 0.0006 (15) −0.0016 (15) 0.0046 (14)
O338 0.087 (2) 0.0234 (14) 0.0528 (17) 0.0118 (14) −0.0069 (16) 0.0045 (12)
O339 0.0746 (19) 0.0206 (12) 0.0338 (13) 0.0021 (12) −0.0089 (13) −0.0035 (10)
C339 0.100 (4) 0.028 (2) 0.047 (2) 0.004 (2) −0.007 (2) −0.0121 (18)
C361 0.057 (3) 0.054 (3) 0.045 (2) 0.003 (2) −0.003 (2) −0.023 (2)
N41 0.0366 (16) 0.0262 (14) 0.0308 (14) −0.0005 (12) −0.0009 (12) −0.0026 (12)
C42 0.0324 (17) 0.0205 (15) 0.0298 (16) −0.0022 (13) −0.0016 (13) 0.0015 (13)
Cl42 0.0676 (6) 0.0203 (4) 0.0306 (4) −0.0046 (4) −0.0026 (4) 0.0015 (3)
C43 0.0280 (16) 0.0233 (16) 0.0281 (16) −0.0012 (13) −0.0007 (13) 0.0007 (13)
C44 0.0307 (16) 0.0229 (16) 0.0313 (17) 0.0003 (13) −0.0012 (13) −0.0051 (13)
C44A 0.0241 (16) 0.0280 (17) 0.0314 (17) 0.0011 (13) −0.0001 (13) 0.0028 (14)
C45 0.0330 (18) 0.0291 (18) 0.039 (2) 0.0034 (15) −0.0007 (15) 0.0065 (15)
C46 0.0259 (17) 0.047 (2) 0.039 (2) 0.0050 (16) −0.0011 (15) 0.0125 (17)
C47 0.040 (2) 0.052 (2) 0.0260 (17) 0.0009 (17) −0.0003 (15) 0.0090 (16)
C48 0.041 (2) 0.039 (2) 0.0312 (18) 0.0008 (16) −0.0028 (15) −0.0050 (16)
C48A 0.0274 (16) 0.0318 (17) 0.0260 (16) −0.0013 (13) 0.0010 (12) 0.0002 (14)
C437 0.0382 (18) 0.0207 (15) 0.0270 (16) 0.0016 (14) 0.0001 (13) −0.0025 (13)
O431 0.0513 (15) 0.0210 (12) 0.0278 (12) 0.0010 (11) −0.0005 (11) −0.0040 (9)
C431 0.0322 (17) 0.0278 (17) 0.0282 (16) 0.0004 (14) 0.0012 (13) −0.0039 (13)
C432 0.0329 (18) 0.0305 (18) 0.0307 (17) −0.0020 (14) 0.0026 (13) −0.0029 (14)
C433 0.049 (2) 0.0322 (18) 0.0356 (19) −0.0055 (16) 0.0025 (16) −0.0107 (16)
C434 0.061 (3) 0.048 (2) 0.0262 (18) −0.004 (2) 0.0002 (17) −0.0078 (16)
C435 0.056 (2) 0.041 (2) 0.0294 (19) 0.0004 (19) 0.0032 (17) 0.0040 (16)
C436 0.043 (2) 0.0286 (17) 0.0338 (19) −0.0036 (16) 0.0031 (15) −0.0020 (15)
C438 0.0402 (19) 0.0263 (18) 0.0376 (19) 0.0000 (15) −0.0007 (14) −0.0065 (14)
O438 0.092 (2) 0.0269 (14) 0.0488 (17) −0.0053 (15) −0.0008 (15) −0.0079 (13)
O439 0.0629 (17) 0.0251 (12) 0.0332 (13) −0.0066 (11) −0.0010 (12) 0.0014 (10)
C439 0.078 (3) 0.0304 (19) 0.042 (2) −0.007 (2) −0.002 (2) 0.0069 (17)
C461 0.046 (2) 0.059 (3) 0.045 (2) 0.007 (2) −0.0015 (19) 0.026 (2)

(III) Methyl 2-[(2-chloro-6-methylquinolin-3-yl)methoxy]benzoate. Geometric parameters (Å, º)

N11—C12 1.292 (4) N31—C32 1.287 (4)
N11—C18A 1.373 (4) N31—C38A 1.365 (4)
C12—C13 1.412 (4) C32—C33 1.420 (4)
C12—Cl12 1.752 (3) C32—Cl32 1.756 (3)
C13—C14 1.375 (4) C33—C34 1.369 (4)
C13—C137 1.507 (4) C33—C337 1.507 (4)
C14—C14A 1.408 (4) C34—C34A 1.409 (4)
C14—H14 0.9500 C34—H34 0.9500
C14A—C18A 1.414 (5) C34A—C38A 1.415 (5)
C14A—C15 1.421 (5) C34A—C35 1.418 (5)
C15—C16 1.369 (5) C35—C36 1.379 (5)
C15—H15 0.9500 C35—H35 0.9500
C16—C17 1.421 (6) C36—C37 1.415 (6)
C16—C161 1.505 (5) C36—C361 1.506 (5)
C17—C18 1.370 (5) C37—C38 1.360 (5)
C17—H17 0.9500 C37—H37 0.9500
C18—C18A 1.411 (5) C38—C38A 1.422 (5)
C18—H18 0.9500 C38—H38 0.9500
C137—O131 1.419 (4) C337—O331 1.417 (4)
C137—H13A 0.9900 C337—H33A 0.9900
C137—H13B 0.9900 C337—H33B 0.9900
O131—C131 1.365 (4) O331—C331 1.355 (4)
C131—C136 1.391 (5) C331—C336 1.393 (5)
C131—C132 1.408 (5) C331—C332 1.413 (4)
C132—C133 1.395 (4) C332—C333 1.392 (5)
C132—C138 1.486 (5) C332—C338 1.489 (5)
C133—C134 1.378 (5) C333—C334 1.380 (5)
C133—H133 0.9500 C333—H333 0.9500
C134—C135 1.386 (6) C334—C335 1.380 (5)
C134—H134 0.9500 C334—H334 0.9500
C135—C136 1.379 (5) C335—C336 1.383 (5)
C135—H135 0.9500 C335—H335 0.9500
C136—H136 0.9500 C336—H336 0.9500
C138—O138 1.205 (4) C338—O338 1.205 (5)
C138—O139 1.331 (4) C338—O339 1.325 (4)
O139—C139 1.437 (4) O339—C339 1.448 (4)
C139—H19A 0.9800 C339—H39A 0.9800
C139—H19B 0.9800 C339—H39B 0.9800
C139—H19C 0.9800 C339—H39C 0.9800
C161—H16A 0.9800 C361—H36A 0.9800
C161—H16B 0.9800 C361—H36B 0.9800
C161—H16C 0.9800 C361—H36C 0.9800
N21—C22 1.284 (4) N41—C42 1.289 (4)
N21—C28A 1.367 (5) N41—C48A 1.366 (4)
C22—C23 1.417 (5) C42—C43 1.419 (5)
C22—Cl22 1.764 (4) C42—Cl42 1.757 (3)
C23—C24 1.369 (5) C43—C44 1.362 (5)
C23—C237 1.498 (5) C43—C437 1.501 (4)
C24—C24A 1.420 (5) C44—C44A 1.410 (5)
C24—H24 0.9500 C44—H44 0.9500
C24A—C25 1.415 (5) C44A—C45 1.417 (5)
C24A—C28A 1.418 (5) C44A—C48A 1.429 (5)
C25—C26 1.366 (5) C45—C46 1.368 (5)
C25—H25 0.9500 C45—H45 0.9500
C26—C27 1.413 (6) C46—C47 1.413 (6)
C26—C261 1.509 (5) C46—C461 1.519 (5)
C27—C28 1.357 (6) C47—C48 1.365 (5)
C27—H27 0.9500 C47—H47 0.9500
C28—C28A 1.419 (5) C48—C48A 1.413 (5)
C28—H28 0.9500 C48—H48 0.9500
C237—O231 1.416 (4) C437—O431 1.421 (4)
C237—H23A 0.9900 C437—H43A 0.9900
C237—H23B 0.9900 C437—H43B 0.9900
O231—C231 1.359 (4) O431—C431 1.356 (4)
C231—C236 1.395 (5) C431—C436 1.400 (5)
C231—C232 1.409 (5) C431—C432 1.403 (5)
C232—C233 1.394 (5) C432—C433 1.404 (5)
C232—C238 1.489 (5) C432—C438 1.494 (5)
C233—C234 1.368 (5) C433—C434 1.375 (6)
C233—H233 0.9500 C433—H433 0.9500
C234—C235 1.386 (6) C434—C435 1.384 (6)
C234—H234 0.9500 C434—H434 0.9500
C235—C236 1.384 (5) C435—C436 1.380 (5)
C235—H235 0.9500 C435—H435 0.9500
C236—H236 0.9500 C436—H436 0.9500
C238—O238 1.195 (4) C438—O438 1.196 (5)
C238—O239 1.331 (4) C438—O439 1.340 (4)
O239—C239 1.443 (4) O439—C439 1.438 (4)
C239—H29A 0.9800 C439—H49A 0.9800
C239—H29B 0.9800 C439—H49B 0.9800
C239—H29C 0.9800 C439—H49C 0.9800
C261—H26A 0.9800 C461—H46A 0.9800
C261—H26B 0.9800 C461—H46B 0.9800
C261—H26C 0.9800 C461—H46C 0.9800
C12—N11—C18A 116.9 (3) C32—N31—C38A 116.9 (3)
N11—C12—C13 127.0 (3) N31—C32—C33 127.2 (3)
N11—C12—Cl12 115.4 (3) N31—C32—Cl32 115.7 (2)
C13—C12—Cl12 117.6 (2) C33—C32—Cl32 117.1 (2)
C14—C13—C12 116.1 (3) C34—C33—C32 115.8 (3)
C14—C13—C137 123.2 (3) C34—C33—C337 123.1 (3)
C12—C13—C137 120.7 (3) C32—C33—C337 121.1 (3)
C13—C14—C14A 120.0 (3) C33—C34—C34A 120.0 (3)
C13—C14—H14 120.0 C33—C34—H34 120.0
C14A—C14—H14 120.0 C34A—C34—H34 120.0
C14—C14A—C18A 118.2 (3) C34—C34A—C38A 118.3 (3)
C14—C14A—C15 123.1 (3) C34—C34A—C35 123.0 (3)
C18A—C14A—C15 118.7 (3) C38A—C34A—C35 118.8 (3)
C16—C15—C14A 121.4 (3) C36—C35—C34A 121.5 (3)
C16—C15—H15 119.3 C36—C35—H35 119.3
C14A—C15—H15 119.3 C34A—C35—H35 119.3
C15—C16—C17 118.8 (3) C35—C36—C37 118.4 (3)
C15—C16—C161 121.8 (4) C35—C36—C361 120.9 (4)
C17—C16—C161 119.4 (3) C37—C36—C361 120.6 (3)
C18—C17—C16 121.4 (3) C38—C37—C36 122.2 (3)
C18—C17—H17 119.3 C38—C37—H37 118.9
C16—C17—H17 119.3 C36—C37—H37 118.9
C17—C18—C18A 119.9 (3) C37—C38—C38A 119.7 (4)
C17—C18—H18 120.0 C37—C38—H38 120.1
C18A—C18—H18 120.0 C38A—C38—H38 120.1
N11—C18A—C18 118.5 (3) N31—C38A—C34A 121.8 (3)
N11—C18A—C14A 121.8 (3) N31—C38A—C38 118.8 (3)
C18—C18A—C14A 119.7 (3) C34A—C38A—C38 119.4 (3)
O131—C137—C13 107.4 (3) O331—C337—C33 107.0 (3)
O131—C137—H13A 110.2 O331—C337—H33A 110.3
C13—C137—H13A 110.2 C33—C337—H33A 110.3
O131—C137—H13B 110.2 O331—C337—H33B 110.3
C13—C137—H13B 110.2 C33—C337—H33B 110.3
H13A—C137—H13B 108.5 H33A—C337—H33B 108.6
C131—O131—C137 117.9 (2) C331—O331—C337 118.5 (2)
O131—C131—C136 122.4 (3) O331—C331—C336 122.9 (3)
O131—C131—C132 117.6 (3) O331—C331—C332 117.4 (3)
C136—C131—C132 120.0 (3) C336—C331—C332 119.7 (3)
C133—C132—C131 117.8 (3) C333—C332—C331 118.1 (3)
C133—C132—C138 115.4 (3) C333—C332—C338 115.9 (3)
C131—C132—C138 126.8 (3) C331—C332—C338 126.1 (3)
C134—C133—C132 122.1 (3) C334—C333—C332 122.0 (3)
C134—C133—H133 119.0 C334—C333—H333 119.0
C132—C133—H133 119.0 C332—C333—H333 119.0
C133—C134—C135 119.2 (3) C335—C334—C333 119.2 (3)
C133—C134—H134 120.4 C335—C334—H334 120.4
C135—C134—H134 120.4 C333—C334—H334 120.4
C136—C135—C134 120.4 (3) C334—C335—C336 120.6 (3)
C136—C135—H135 119.8 C334—C335—H335 119.7
C134—C135—H135 119.8 C336—C335—H335 119.7
C135—C136—C131 120.5 (3) C335—C336—C331 120.3 (3)
C135—C136—H136 119.8 C335—C336—H336 119.8
C131—C136—H136 119.8 C331—C336—H336 119.8
O138—C138—O139 121.7 (3) O338—C338—O339 122.7 (3)
O138—C138—C132 122.6 (3) O338—C338—C332 122.6 (3)
O139—C138—C132 115.6 (3) O339—C338—C332 114.6 (3)
C138—O139—C139 115.4 (3) C338—O339—C339 115.2 (3)
O139—C139—H19A 109.5 O339—C339—H39A 109.5
O139—C139—H19B 109.5 O339—C339—H39B 109.5
H19A—C139—H19B 109.5 H39A—C339—H39B 109.5
O139—C139—H19C 109.5 O339—C339—H39C 109.5
H19A—C139—H19C 109.5 H39A—C339—H39C 109.5
H19B—C139—H19C 109.5 H39B—C339—H39C 109.5
C16—C161—H16A 109.5 C36—C361—H36A 109.5
C16—C161—H16B 109.5 C36—C361—H36B 109.5
H16A—C161—H16B 109.5 H36A—C361—H36B 109.5
C16—C161—H16C 109.5 C36—C361—H36C 109.5
H16A—C161—H16C 109.5 H36A—C361—H36C 109.5
H16B—C161—H16C 109.5 H36B—C361—H36C 109.5
C22—N21—C28A 116.7 (3) C42—N41—C48A 117.0 (3)
N21—C22—C23 127.9 (3) N41—C42—C43 127.2 (3)
N21—C22—Cl22 115.2 (3) N41—C42—Cl42 115.6 (3)
C23—C22—Cl22 116.9 (3) C43—C42—Cl42 117.2 (2)
C24—C23—C22 115.5 (3) C44—C43—C42 115.9 (3)
C24—C23—C237 123.2 (3) C44—C43—C437 123.4 (3)
C22—C23—C237 121.3 (3) C42—C43—C437 120.7 (3)
C23—C24—C24A 120.3 (3) C43—C44—C44A 120.6 (3)
C23—C24—H24 119.8 C43—C44—H44 119.7
C24A—C24—H24 119.8 C44A—C44—H44 119.7
C25—C24A—C28A 119.0 (3) C44—C44A—C45 123.8 (3)
C25—C24A—C24 123.4 (3) C44—C44A—C48A 117.6 (3)
C28A—C24A—C24 117.6 (3) C45—C44A—C48A 118.5 (3)
C26—C25—C24A 121.3 (4) C46—C45—C44A 121.5 (4)
C26—C25—H25 119.4 C46—C45—H45 119.3
C24A—C25—H25 119.4 C44A—C45—H45 119.3
C25—C26—C27 118.8 (4) C45—C46—C47 119.1 (3)
C25—C26—C261 121.1 (4) C45—C46—C461 121.4 (4)
C27—C26—C261 120.0 (4) C47—C46—C461 119.5 (4)
C28—C27—C26 122.0 (4) C48—C47—C46 121.6 (3)
C28—C27—H27 119.0 C48—C47—H47 119.2
C26—C27—H27 119.0 C46—C47—H47 119.2
C27—C28—C28A 119.8 (4) C47—C48—C48A 120.1 (4)
C27—C28—H28 120.1 C47—C48—H48 119.9
C28A—C28—H28 120.1 C48A—C48—H48 119.9
N21—C28A—C24A 122.0 (3) N41—C48A—C48 119.2 (3)
N21—C28A—C28 118.9 (3) N41—C48A—C44A 121.7 (3)
C24A—C28A—C28 119.1 (3) C48—C48A—C44A 119.1 (3)
O231—C237—C23 107.4 (3) O431—C437—C43 106.8 (3)
O231—C237—H23A 110.2 O431—C437—H43A 110.4
C23—C237—H23A 110.2 C43—C437—H43A 110.4
O231—C237—H23B 110.2 O431—C437—H43B 110.4
C23—C237—H23B 110.2 C43—C437—H43B 110.4
H23A—C237—H23B 108.5 H43A—C437—H43B 108.6
C231—O231—C237 118.9 (3) C431—O431—C437 118.5 (3)
O231—C231—C236 122.7 (3) O431—C431—C436 122.6 (3)
O231—C231—C232 117.5 (3) O431—C431—C432 118.1 (3)
C236—C231—C232 119.8 (3) C436—C431—C432 119.4 (3)
C233—C232—C231 117.9 (3) C431—C432—C433 118.2 (3)
C233—C232—C238 115.7 (3) C431—C432—C438 126.8 (3)
C231—C232—C238 126.3 (3) C433—C432—C438 115.0 (3)
C234—C233—C232 122.2 (4) C434—C433—C432 122.0 (3)
C234—C233—H233 118.9 C434—C433—H433 119.0
C232—C233—H233 118.9 C432—C433—H433 119.0
C233—C234—C235 119.5 (3) C433—C434—C435 119.2 (3)
C233—C234—H234 120.3 C433—C434—H434 120.4
C235—C234—H234 120.3 C435—C434—H434 120.4
C236—C235—C234 120.2 (3) C436—C435—C434 120.5 (4)
C236—C235—H235 119.9 C436—C435—H435 119.8
C234—C235—H235 119.9 C434—C435—H435 119.8
C235—C236—C231 120.3 (3) C435—C436—C431 120.7 (3)
C235—C236—H236 119.8 C435—C436—H436 119.6
C231—C236—H236 119.8 C431—C436—H436 119.6
O238—C238—O239 123.2 (4) O438—C438—O439 122.7 (4)
O238—C238—C232 122.8 (3) O438—C438—C432 122.8 (3)
O239—C238—C232 114.0 (3) O439—C438—C432 114.5 (3)
C238—O239—C239 115.4 (3) C438—O439—C439 114.6 (3)
O239—C239—H29A 109.5 O439—C439—H49A 109.5
O239—C239—H29B 109.5 O439—C439—H49B 109.5
H29A—C239—H29B 109.5 H49A—C439—H49B 109.5
O239—C239—H29C 109.5 O439—C439—H49C 109.5
H29A—C239—H29C 109.5 H49A—C439—H49C 109.5
H29B—C239—H29C 109.5 H49B—C439—H49C 109.5
C26—C261—H26A 109.5 C46—C461—H46A 109.5
C26—C261—H26B 109.5 C46—C461—H46B 109.5
H26A—C261—H26B 109.5 H46A—C461—H46B 109.5
C26—C261—H26C 109.5 C46—C461—H46C 109.5
H26A—C261—H26C 109.5 H46A—C461—H46C 109.5
H26B—C261—H26C 109.5 H46B—C461—H46C 109.5
C18A—N11—C12—C13 1.6 (6) C38A—N31—C32—C33 −1.5 (5)
C18A—N11—C12—Cl12 −178.1 (2) C38A—N31—C32—Cl32 177.6 (2)
N11—C12—C13—C14 −1.1 (5) N31—C32—C33—C34 2.3 (5)
Cl12—C12—C13—C14 178.6 (3) Cl32—C32—C33—C34 −176.7 (3)
N11—C12—C13—C137 179.3 (3) N31—C32—C33—C337 −178.2 (3)
Cl12—C12—C13—C137 −1.1 (5) Cl32—C32—C33—C337 2.8 (4)
C12—C13—C14—C14A −0.9 (5) C32—C33—C34—C34A −1.1 (5)
C137—C13—C14—C14A 178.8 (3) C337—C33—C34—C34A 179.4 (3)
C13—C14—C14A—C18A 2.1 (5) C33—C34—C34A—C38A −0.5 (5)
C13—C14—C14A—C15 −175.6 (3) C33—C34—C34A—C35 179.8 (3)
C14—C14A—C15—C16 176.9 (4) C34—C34A—C35—C36 178.9 (3)
C18A—C14A—C15—C16 −0.7 (5) C38A—C34A—C35—C36 −0.8 (6)
C14A—C15—C16—C17 1.9 (6) C34A—C35—C36—C37 0.4 (6)
C14A—C15—C16—C161 −178.9 (3) C34A—C35—C36—C361 −179.9 (4)
C15—C16—C17—C18 −1.5 (6) C35—C36—C37—C38 −0.1 (6)
C161—C16—C17—C18 179.3 (4) C361—C36—C37—C38 −179.8 (4)
C16—C17—C18—C18A −0.1 (6) C36—C37—C38—C38A 0.2 (6)
C12—N11—C18A—C18 176.9 (3) C32—N31—C38A—C34A −0.4 (5)
C12—N11—C18A—C14A −0.2 (5) C32—N31—C38A—C38 179.8 (3)
C17—C18—C18A—N11 −175.8 (3) C34—C34A—C38A—N31 1.4 (5)
C17—C18—C18A—C14A 1.3 (5) C35—C34A—C38A—N31 −178.9 (3)
C14—C14A—C18A—N11 −1.6 (5) C34—C34A—C38A—C38 −178.9 (3)
C15—C14A—C18A—N11 176.2 (3) C35—C34A—C38A—C38 0.9 (5)
C14—C14A—C18A—C18 −178.6 (3) C37—C38—C38A—N31 179.2 (3)
C15—C14A—C18A—C18 −0.9 (5) C37—C38—C38A—C34A −0.6 (6)
C14—C13—C137—O131 0.9 (5) C34—C33—C337—O331 −2.1 (4)
C12—C13—C137—O131 −179.4 (3) C32—C33—C337—O331 178.4 (3)
C13—C137—O131—C131 177.2 (3) C33—C337—O331—C331 −178.9 (3)
C137—O131—C131—C136 3.5 (5) C337—O331—C331—C336 −1.8 (5)
C137—O131—C131—C132 −176.5 (3) C337—O331—C331—C332 177.7 (3)
O131—C131—C132—C133 179.1 (3) O331—C331—C332—C333 178.2 (3)
C136—C131—C132—C133 −0.9 (5) C336—C331—C332—C333 −2.3 (5)
O131—C131—C132—C138 −1.9 (5) O331—C331—C332—C338 −1.8 (5)
C136—C131—C132—C138 178.1 (3) C336—C331—C332—C338 177.7 (3)
C131—C132—C133—C134 0.6 (6) C331—C332—C333—C334 1.1 (6)
C138—C132—C133—C134 −178.6 (3) C338—C332—C333—C334 −178.9 (4)
C132—C133—C134—C135 0.3 (6) C332—C333—C334—C335 0.8 (6)
C133—C134—C135—C136 −0.9 (6) C333—C334—C335—C336 −1.5 (6)
C134—C135—C136—C131 0.5 (6) C334—C335—C336—C331 0.2 (6)
O131—C131—C136—C135 −179.6 (3) O331—C331—C336—C335 −178.9 (3)
C132—C131—C136—C135 0.4 (6) C332—C331—C336—C335 1.7 (5)
C133—C132—C138—O138 1.6 (6) C333—C332—C338—O338 11.3 (6)
C131—C132—C138—O138 −177.5 (4) C331—C332—C338—O338 −168.7 (4)
C133—C132—C138—O139 −178.1 (3) C333—C332—C338—O339 −167.4 (3)
C131—C132—C138—O139 2.8 (6) C331—C332—C338—O339 12.7 (5)
O138—C138—O139—C139 −0.5 (6) O338—C338—O339—C339 −0.3 (6)
C132—C138—O139—C139 179.2 (3) C332—C338—O339—C339 178.3 (4)
C28A—N21—C22—C23 1.2 (6) C48A—N41—C42—C43 −0.9 (5)
C28A—N21—C22—Cl22 −177.2 (3) C48A—N41—C42—Cl42 179.4 (2)
N21—C22—C23—C24 −2.1 (5) N41—C42—C43—C44 0.0 (5)
Cl22—C22—C23—C24 176.4 (3) Cl42—C42—C43—C44 179.8 (3)
N21—C22—C23—C237 177.4 (3) N41—C42—C43—C437 −179.7 (3)
Cl22—C22—C23—C237 −4.2 (4) Cl42—C42—C43—C437 0.1 (4)
C22—C23—C24—C24A 0.7 (5) C42—C43—C44—C44A 1.3 (5)
C237—C23—C24—C24A −178.7 (3) C437—C43—C44—C44A −179.0 (3)
C23—C24—C24A—C25 179.7 (3) C43—C44—C44A—C45 177.5 (3)
C23—C24—C24A—C28A 1.1 (5) C43—C44—C44A—C48A −1.7 (5)
C28A—C24A—C25—C26 1.0 (5) C44—C44A—C45—C46 −180.0 (3)
C24—C24A—C25—C26 −177.5 (4) C48A—C44A—C45—C46 −0.8 (5)
C24A—C25—C26—C27 −1.1 (6) C44A—C45—C46—C47 −0.1 (6)
C24A—C25—C26—C261 178.6 (4) C44A—C45—C46—C461 178.5 (3)
C25—C26—C27—C28 0.1 (6) C45—C46—C47—C48 0.1 (6)
C261—C26—C27—C28 −179.6 (4) C461—C46—C47—C48 −178.5 (4)
C26—C27—C28—C28A 0.9 (6) C46—C47—C48—C48A 0.8 (6)
C22—N21—C28A—C24A 1.0 (5) C42—N41—C48A—C48 −179.6 (3)
C22—N21—C28A—C28 −179.7 (3) C42—N41—C48A—C44A 0.4 (5)
C25—C24A—C28A—N21 179.3 (3) C47—C48—C48A—N41 178.4 (3)
C24—C24A—C28A—N21 −2.1 (5) C47—C48—C48A—C44A −1.6 (5)
C25—C24A—C28A—C28 0.0 (5) C44—C44A—C48A—N41 0.8 (5)
C24—C24A—C28A—C28 178.6 (3) C45—C44A—C48A—N41 −178.4 (3)
C27—C28—C28A—N21 179.7 (4) C44—C44A—C48A—C48 −179.2 (3)
C27—C28—C28A—C24A −1.0 (6) C45—C44A—C48A—C48 1.6 (5)
C24—C23—C237—O231 −0.8 (5) C44—C43—C437—O431 2.7 (5)
C22—C23—C237—O231 179.8 (3) C42—C43—C437—O431 −177.6 (3)
C23—C237—O231—C231 −175.9 (3) C43—C437—O431—C431 176.4 (3)
C237—O231—C231—C236 −5.8 (5) C437—O431—C431—C436 4.8 (5)
C237—O231—C231—C232 174.5 (3) C437—O431—C431—C432 −174.4 (3)
O231—C231—C232—C233 179.3 (3) O431—C431—C432—C433 −178.1 (3)
C236—C231—C232—C233 −0.3 (5) C436—C431—C432—C433 2.7 (5)
O231—C231—C232—C238 −1.2 (5) O431—C431—C432—C438 1.1 (5)
C236—C231—C232—C238 179.2 (3) C436—C431—C432—C438 −178.1 (3)
C231—C232—C233—C234 0.3 (6) C431—C432—C433—C434 −1.9 (6)
C238—C232—C233—C234 −179.2 (3) C438—C432—C433—C434 178.8 (4)
C232—C233—C234—C235 −0.5 (6) C432—C433—C434—C435 0.6 (6)
C233—C234—C235—C236 0.6 (6) C433—C434—C435—C436 −0.1 (7)
C234—C235—C236—C231 −0.5 (6) C434—C435—C436—C431 0.9 (6)
O231—C231—C236—C235 −179.2 (3) O431—C431—C436—C435 178.5 (4)
C232—C231—C236—C235 0.4 (5) C432—C431—C436—C435 −2.3 (6)
C233—C232—C238—O238 −14.2 (5) C431—C432—C438—O438 178.9 (4)
C231—C232—C238—O238 166.4 (4) C433—C432—C438—O438 −1.9 (6)
C233—C232—C238—O239 164.7 (3) C431—C432—C438—O439 −0.7 (5)
C231—C232—C238—O239 −14.8 (5) C433—C432—C438—O439 178.5 (3)
O238—C238—O239—C239 2.5 (6) O438—C438—O439—C439 0.4 (6)
C232—C238—O239—C239 −176.4 (3) C432—C438—O439—C439 −180.0 (3)

(III) Methyl 2-[(2-chloro-6-methylquinolin-3-yl)methoxy]benzoate. Hydrogen-bond geometry (Å, º)

D—H···A D—H H···A D···A D—H···A
C28—H28···N41i 0.95 2.63 3.565 (5) 169
C136—H136···O138ii 0.95 2.50 3.261 (4) 137
C236—H236···O438iii 0.95 2.43 3.223 (4) 141
C336—H336···O338iv 0.95 2.46 3.238 (4) 139
C436—H436···O238iii 0.95 2.51 3.254 (4) 136
C337—H33B···Cg1 0.99 2.64 3.441 (4) 138
C437—H43A···Cg2 0.99 2.64 3.446 (4) 138

Symmetry codes: (i) x−1/2, −y+3/2, −z+1; (ii) −x, y−1/2, −z+1/2; (iii) −x+1, y+1/2, −z+1/2; (iv) −x+1, y−1/2, −z+1/2.

(IV) 2-Chloro-3-[(naphthalen-1-yloxy)methyl]quinoline. Crystal data

C20H14ClNO F(000) = 332
Mr = 319.77 Dx = 1.411 Mg m3
Monoclinic, P21 Cu Kα radiation, λ = 1.54184 Å
a = 5.3165 (3) Å Cell parameters from 2014 reflections
b = 10.5098 (4) Å θ = 3.3–72.6°
c = 13.6201 (7) Å µ = 2.27 mm1
β = 98.527 (5)° T = 173 K
V = 752.62 (6) Å3 Needle, colourless
Z = 2 0.34 × 0.10 × 0.08 mm

(IV) 2-Chloro-3-[(naphthalen-1-yloxy)methyl]quinoline. Data collection

Agilent Eos Gemini diffractometer 1938 reflections with I > 2σ(I)
Radiation source: Enhance (Cu) X-ray Source Rint = 0.029
ω scans θmax = 72.6°, θmin = 3.3°
Absorption correction: multi-scan (SADABS; Sheldrick, 2003) h = −6→6
Tmin = 0.551, Tmax = 0.834 k = −8→12
4606 measured reflections l = −16→16
2014 independent reflections

(IV) 2-Chloro-3-[(naphthalen-1-yloxy)methyl]quinoline. Refinement

Refinement on F2 Hydrogen site location: inferred from neighbouring sites
Least-squares matrix: full H-atom parameters constrained
R[F2 > 2σ(F2)] = 0.033 w = 1/[σ2(Fo2) + (0.0579P)2] where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.090 (Δ/σ)max < 0.001
S = 1.08 Δρmax = 0.22 e Å3
2014 reflections Δρmin = −0.19 e Å3
208 parameters Absolute structure: Classical Flack method preferred over Parsons because s.u. lower.
1 restraint Absolute structure parameter: −0.007 (18)

(IV) 2-Chloro-3-[(naphthalen-1-yloxy)methyl]quinoline. Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

(IV) 2-Chloro-3-[(naphthalen-1-yloxy)methyl]quinoline. Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
N1 0.1678 (4) 0.8551 (2) 0.36307 (18) 0.0324 (5)
C2 0.3087 (5) 0.8457 (3) 0.29394 (19) 0.0300 (5)
Cl2 0.25067 (12) 0.95854 (7) 0.19826 (5) 0.04033 (19)
C3 0.5025 (5) 0.7539 (2) 0.28753 (19) 0.0291 (5)
C4 0.5420 (5) 0.6680 (3) 0.3636 (2) 0.0311 (5)
H4 0.6701 0.6049 0.3641 0.037*
C4A 0.3943 (5) 0.6721 (3) 0.4417 (2) 0.0301 (5)
C5 0.4220 (6) 0.5842 (3) 0.5210 (2) 0.0373 (6)
H5 0.5494 0.5202 0.5244 0.045*
C6 0.2686 (6) 0.5897 (3) 0.5927 (2) 0.0392 (6)
H6 0.2863 0.5284 0.6446 0.047*
C7 0.0835 (5) 0.6863 (3) 0.5899 (2) 0.0394 (6)
H7 −0.0216 0.6903 0.6404 0.047*
C8 0.0539 (5) 0.7742 (3) 0.5151 (2) 0.0375 (6)
H8 −0.0698 0.8396 0.5145 0.045*
C8A 0.2063 (5) 0.7682 (2) 0.4390 (2) 0.0301 (5)
C37A 0.6440 (5) 0.7514 (3) 0.20041 (19) 0.0309 (5)
H37A 0.5238 0.7395 0.1383 0.037*
H37B 0.7351 0.8329 0.1958 0.037*
O31 0.8208 (4) 0.64868 (19) 0.21392 (13) 0.0335 (4)
C31 0.9563 (5) 0.6249 (3) 0.13811 (19) 0.0300 (5)
C32 0.9293 (5) 0.6908 (3) 0.0506 (2) 0.0338 (6)
H32 0.8081 0.7576 0.0391 0.041*
C33 1.0815 (5) 0.6599 (3) −0.0230 (2) 0.0359 (6)
H33 1.0579 0.7047 −0.0842 0.043*
C34 1.2606 (5) 0.5671 (3) −0.0073 (2) 0.0372 (6)
H34 1.3650 0.5496 −0.0566 0.045*
C34A 1.2927 (5) 0.4962 (2) 0.0824 (2) 0.0323 (6)
C35 1.4795 (5) 0.3997 (3) 0.1028 (2) 0.0375 (6)
H35 1.5873 0.3812 0.0550 0.045*
C36 1.5078 (5) 0.3334 (3) 0.1892 (2) 0.0417 (7)
H36 1.6336 0.2687 0.2007 0.050*
C37 1.3522 (5) 0.3594 (3) 0.2622 (2) 0.0386 (6)
H37 1.3739 0.3127 0.3226 0.046*
C38 1.1692 (5) 0.4525 (3) 0.24564 (19) 0.0329 (5)
H38 1.0628 0.4690 0.2944 0.040*
C38A 1.1379 (5) 0.5238 (2) 0.1565 (2) 0.0288 (5)

(IV) 2-Chloro-3-[(naphthalen-1-yloxy)methyl]quinoline. Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
N1 0.0306 (11) 0.0295 (11) 0.0363 (11) 0.0035 (9) 0.0022 (9) −0.0015 (9)
C2 0.0298 (12) 0.0270 (12) 0.0313 (13) −0.0002 (10) −0.0016 (10) 0.0006 (10)
Cl2 0.0429 (3) 0.0359 (3) 0.0417 (3) 0.0079 (3) 0.0048 (2) 0.0091 (3)
C3 0.0259 (12) 0.0279 (12) 0.0319 (12) −0.0018 (10) −0.0011 (10) −0.0042 (10)
C4 0.0276 (12) 0.0281 (12) 0.0365 (13) 0.0036 (10) 0.0016 (10) −0.0036 (11)
C4A 0.0268 (11) 0.0267 (12) 0.0355 (13) −0.0020 (10) 0.0007 (10) −0.0045 (10)
C5 0.0376 (13) 0.0330 (14) 0.0403 (14) 0.0040 (11) 0.0029 (11) 0.0025 (11)
C6 0.0407 (15) 0.0389 (16) 0.0369 (14) −0.0042 (13) 0.0023 (12) 0.0053 (12)
C7 0.0346 (14) 0.0493 (17) 0.0356 (14) −0.0025 (13) 0.0090 (11) −0.0027 (12)
C8 0.0321 (14) 0.0393 (15) 0.0410 (15) 0.0034 (12) 0.0050 (11) −0.0038 (12)
C8A 0.0265 (11) 0.0286 (12) 0.0339 (13) −0.0017 (10) 0.0006 (10) −0.0046 (10)
C37A 0.0287 (12) 0.0285 (12) 0.0348 (13) 0.0013 (10) 0.0024 (10) 0.0010 (10)
O31 0.0363 (9) 0.0332 (10) 0.0320 (9) 0.0074 (8) 0.0078 (7) 0.0022 (7)
C31 0.0281 (12) 0.0308 (12) 0.0313 (12) −0.0043 (10) 0.0053 (10) −0.0024 (10)
C32 0.0327 (13) 0.0349 (14) 0.0331 (13) 0.0000 (11) 0.0027 (10) −0.0005 (11)
C33 0.0386 (14) 0.0397 (15) 0.0287 (13) −0.0083 (12) 0.0031 (11) 0.0006 (11)
C34 0.0365 (14) 0.0416 (15) 0.0348 (14) −0.0083 (12) 0.0095 (11) −0.0087 (12)
C34A 0.0290 (12) 0.0316 (14) 0.0355 (13) −0.0061 (10) 0.0024 (10) −0.0088 (10)
C35 0.0298 (13) 0.0373 (14) 0.0466 (15) −0.0011 (11) 0.0095 (11) −0.0108 (12)
C36 0.0313 (14) 0.0358 (15) 0.0571 (18) 0.0044 (12) 0.0033 (13) −0.0027 (13)
C37 0.0358 (14) 0.0366 (14) 0.0423 (15) 0.0008 (12) 0.0023 (12) 0.0058 (13)
C38 0.0301 (11) 0.0324 (13) 0.0367 (12) −0.0015 (12) 0.0063 (10) −0.0015 (13)
C38A 0.0259 (11) 0.0270 (12) 0.0327 (12) −0.0043 (9) 0.0013 (10) −0.0039 (10)

(IV) 2-Chloro-3-[(naphthalen-1-yloxy)methyl]quinoline. Geometric parameters (Å, º)

N1—C2 1.291 (3) C37A—H37B 0.9900
N1—C8A 1.372 (3) O31—C31 1.367 (3)
C2—C3 1.424 (4) C31—C32 1.368 (4)
C2—Cl2 1.755 (3) C31—C38A 1.432 (4)
C3—C4 1.367 (4) C32—C33 1.416 (4)
C3—C37A 1.497 (3) C32—H32 0.9500
C4—C4A 1.413 (3) C33—C34 1.357 (5)
C4—H4 0.9500 C33—H33 0.9500
C4A—C5 1.413 (4) C34—C34A 1.420 (4)
C4A—C8A 1.418 (4) C34—H34 0.9500
C5—C6 1.364 (4) C34A—C35 1.417 (4)
C5—H5 0.9500 C34A—C38A 1.423 (4)
C6—C7 1.410 (4) C35—C36 1.357 (4)
C6—H6 0.9500 C35—H35 0.9500
C7—C8 1.366 (4) C36—C37 1.411 (4)
C7—H7 0.9500 C36—H36 0.9500
C8—C8A 1.409 (4) C37—C38 1.375 (4)
C8—H8 0.9500 C37—H37 0.9500
C37A—O31 1.426 (3) C38—C38A 1.416 (4)
C37A—H37A 0.9900 C38—H38 0.9500
C2—N1—C8A 117.4 (2) H37A—C37A—H37B 108.4
N1—C2—C3 126.9 (2) C31—O31—C37A 116.9 (2)
N1—C2—Cl2 115.61 (19) O31—C31—C32 124.5 (2)
C3—C2—Cl2 117.5 (2) O31—C31—C38A 114.9 (2)
C4—C3—C2 115.6 (2) C32—C31—C38A 120.6 (2)
C4—C3—C37A 123.4 (2) C31—C32—C33 120.2 (3)
C2—C3—C37A 120.9 (2) C31—C32—H32 119.9
C3—C4—C4A 120.7 (2) C33—C32—H32 119.9
C3—C4—H4 119.7 C34—C33—C32 121.0 (3)
C4A—C4—H4 119.7 C34—C33—H33 119.5
C4—C4A—C5 123.3 (2) C32—C33—H33 119.5
C4—C4A—C8A 118.1 (2) C33—C34—C34A 120.3 (2)
C5—C4A—C8A 118.6 (2) C33—C34—H34 119.9
C6—C5—C4A 120.9 (3) C34A—C34—H34 119.9
C6—C5—H5 119.5 C35—C34A—C34 122.4 (3)
C4A—C5—H5 119.5 C35—C34A—C38A 118.0 (3)
C5—C6—C7 120.0 (3) C34—C34A—C38A 119.6 (3)
C5—C6—H6 120.0 C36—C35—C34A 121.5 (3)
C7—C6—H6 120.0 C36—C35—H35 119.3
C8—C7—C6 120.7 (3) C34A—C35—H35 119.3
C8—C7—H7 119.7 C35—C36—C37 120.7 (3)
C6—C7—H7 119.7 C35—C36—H36 119.7
C7—C8—C8A 120.2 (3) C37—C36—H36 119.7
C7—C8—H8 119.9 C38—C37—C36 119.8 (3)
C8A—C8—H8 119.9 C38—C37—H37 120.1
N1—C8A—C8 119.2 (2) C36—C37—H37 120.1
N1—C8A—C4A 121.3 (2) C37—C38—C38A 120.5 (2)
C8—C8A—C4A 119.5 (2) C37—C38—H38 119.7
O31—C37A—C3 108.1 (2) C38A—C38—H38 119.7
O31—C37A—H37A 110.1 C38—C38A—C34A 119.5 (2)
C3—C37A—H37A 110.1 C38—C38A—C31 122.2 (2)
O31—C37A—H37B 110.1 C34A—C38A—C31 118.2 (2)
C3—C37A—H37B 110.1
C8A—N1—C2—C3 0.0 (4) C3—C37A—O31—C31 175.4 (2)
C8A—N1—C2—Cl2 179.65 (19) C37A—O31—C31—C32 −1.4 (4)
N1—C2—C3—C4 −0.5 (4) C37A—O31—C31—C38A 177.9 (2)
Cl2—C2—C3—C4 179.83 (19) O31—C31—C32—C33 179.2 (3)
N1—C2—C3—C37A 177.5 (2) C38A—C31—C32—C33 −0.1 (4)
Cl2—C2—C3—C37A −2.1 (3) C31—C32—C33—C34 −1.7 (4)
C2—C3—C4—C4A 0.7 (4) C32—C33—C34—C34A 2.1 (4)
C37A—C3—C4—C4A −177.3 (2) C33—C34—C34A—C35 −179.0 (2)
C3—C4—C4A—C5 178.4 (3) C33—C34—C34A—C38A −0.7 (4)
C3—C4—C4A—C8A −0.5 (4) C34—C34A—C35—C36 179.7 (3)
C4—C4A—C5—C6 −177.7 (3) C38A—C34A—C35—C36 1.4 (4)
C8A—C4A—C5—C6 1.2 (4) C34A—C35—C36—C37 −0.6 (4)
C4A—C5—C6—C7 −1.7 (4) C35—C36—C37—C38 0.3 (4)
C5—C6—C7—C8 0.7 (5) C36—C37—C38—C38A −0.9 (4)
C6—C7—C8—C8A 0.9 (4) C37—C38—C38A—C34A 1.8 (4)
C2—N1—C8A—C8 −179.1 (2) C37—C38—C38A—C31 −177.5 (2)
C2—N1—C8A—C4A 0.3 (4) C35—C34A—C38A—C38 −2.0 (4)
C7—C8—C8A—N1 178.0 (3) C34—C34A—C38A—C38 179.6 (2)
C7—C8—C8A—C4A −1.4 (4) C35—C34A—C38A—C31 177.3 (2)
C4—C4A—C8A—N1 −0.1 (4) C34—C34A—C38A—C31 −1.0 (3)
C5—C4A—C8A—N1 −179.0 (2) O31—C31—C38A—C38 1.4 (3)
C4—C4A—C8A—C8 179.3 (2) C32—C31—C38A—C38 −179.2 (2)
C5—C4A—C8A—C8 0.4 (4) O31—C31—C38A—C34A −177.9 (2)
C4—C3—C37A—O31 −1.1 (3) C32—C31—C38A—C34A 1.4 (3)
C2—C3—C37A—O31 −179.0 (2)

(IV) 2-Chloro-3-[(naphthalen-1-yloxy)methyl]quinoline. Hydrogen-bond geometry (Å, º)

D—H···A D—H H···A D···A D—H···A
C37A—H37A···Cg3i 0.99 2.74 3.552 (3) 139

Symmetry code: (i) x−1, y, z.

(V) {5-[(2-Chloroquinolin-3-yl)methoxy]-4-(hydroxymethyl)-6-methyl-pyridin-3-yl}methanol. Crystal data

C18H17ClN2O3 F(000) = 720
Mr = 344.79 Dx = 1.433 Mg m3
Monoclinic, P21/n Cu Kα radiation, λ = 1.54184 Å
a = 9.7866 (3) Å Cell parameters from 3112 reflections
b = 15.3336 (4) Å θ = 5.1–72.5°
c = 10.6570 (3) Å µ = 2.29 mm1
β = 92.381 (3)° T = 173 K
V = 1597.85 (8) Å3 Block, colourless
Z = 4 0.42 × 0.38 × 0.32 mm

(V) {5-[(2-Chloroquinolin-3-yl)methoxy]-4-(hydroxymethyl)-6-methyl-pyridin-3-yl}methanol. Data collection

Agilent Eos Gemini diffractometer 2764 reflections with I > 2σ(I)
Radiation source: Enhance (Cu) X-ray Source Rint = 0.043
ω scans θmax = 72.5°, θmin = 5.1°
Absorption correction: multi-scan (SADABS; Sheldrick, 2003) h = −11→9
Tmin = 0.375, Tmax = 0.481 k = −17→18
9423 measured reflections l = −13→12
3112 independent reflections

(V) {5-[(2-Chloroquinolin-3-yl)methoxy]-4-(hydroxymethyl)-6-methyl-pyridin-3-yl}methanol. Refinement

Refinement on F2 Hydrogen site location: mixed
Least-squares matrix: full H-atom parameters constrained
R[F2 > 2σ(F2)] = 0.045 w = 1/[σ2(Fo2) + (0.0793P)2 + 0.2783P] where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.127 (Δ/σ)max = 0.001
S = 1.05 Δρmax = 0.32 e Å3
3112 reflections Δρmin = −0.25 e Å3
219 parameters Extinction correction: SHELXL2014 (Sheldrick, 2015), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
0 restraints Extinction coefficient: 0.0022 (4)

(V) {5-[(2-Chloroquinolin-3-yl)methoxy]-4-(hydroxymethyl)-6-methyl-pyridin-3-yl}methanol. Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

(V) {5-[(2-Chloroquinolin-3-yl)methoxy]-4-(hydroxymethyl)-6-methyl-pyridin-3-yl}methanol. Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
N1 0.14131 (14) 0.33261 (9) 0.62337 (13) 0.0316 (3)
C2 0.16152 (16) 0.41138 (10) 0.58407 (15) 0.0285 (3)
Cl2 0.10286 (4) 0.49427 (3) 0.68208 (4) 0.03973 (18)
C3 0.22557 (16) 0.43634 (10) 0.47234 (16) 0.0289 (3)
C4 0.27768 (17) 0.36931 (11) 0.40445 (15) 0.0317 (4)
H4 0.3241 0.3818 0.3300 0.038*
C4A 0.26375 (17) 0.28188 (11) 0.44305 (16) 0.0310 (4)
C5 0.3168 (2) 0.21043 (12) 0.37582 (18) 0.0389 (4)
H5 0.3677 0.2203 0.3031 0.047*
C6 0.2941 (2) 0.12723 (12) 0.41650 (19) 0.0429 (5)
H6 0.3305 0.0795 0.3720 0.052*
C7 0.2183 (2) 0.11136 (12) 0.52249 (19) 0.0463 (5)
H7 0.2022 0.0530 0.5479 0.056*
C8 0.1668 (2) 0.17907 (12) 0.59013 (17) 0.0408 (4)
H8 0.1155 0.1677 0.6621 0.049*
C8A 0.19062 (18) 0.26579 (10) 0.55190 (16) 0.0313 (4)
C37 0.23683 (17) 0.52862 (11) 0.42748 (17) 0.0329 (4)
H37A 0.2336 0.5302 0.3345 0.039*
H37B 0.1596 0.5636 0.4573 0.039*
O31 0.36442 (11) 0.56428 (7) 0.47603 (10) 0.0276 (3)
N31 0.51999 (13) 0.70720 (9) 0.25268 (13) 0.0297 (3)
C32 0.47930 (15) 0.63485 (10) 0.30994 (15) 0.0259 (3)
C33 0.39991 (15) 0.64051 (10) 0.41634 (14) 0.0236 (3)
C34 0.36223 (15) 0.72095 (10) 0.46347 (14) 0.0258 (3)
C35 0.40670 (16) 0.79604 (10) 0.40161 (15) 0.0284 (3)
C36 0.48433 (17) 0.78469 (10) 0.29806 (16) 0.0311 (4)
H36 0.5145 0.8354 0.2561 0.037*
C321 0.52007 (17) 0.54887 (11) 0.25592 (17) 0.0329 (4)
H32A 0.5987 0.5572 0.2032 0.039*
H32B 0.4434 0.5249 0.2049 0.039*
H32C 0.5447 0.5084 0.3243 0.039*
C341 0.27452 (17) 0.72795 (11) 0.57607 (15) 0.0316 (4)
H41A 0.2588 0.6694 0.6119 0.038*
H41B 0.3204 0.7647 0.6416 0.038*
O341 0.14772 (13) 0.76632 (10) 0.53514 (12) 0.0437 (3)
H341 0.1027 0.7791 0.6056 0.066*
C351 0.36913 (19) 0.88673 (11) 0.44319 (18) 0.0371 (4)
H51A 0.3812 0.8906 0.5357 0.045*
H51B 0.4321 0.9293 0.4063 0.045*
O351 0.23190 (14) 0.90946 (8) 0.40706 (13) 0.0434 (3)
H351 0.1838 0.8642 0.4382 0.065*

(V) {5-[(2-Chloroquinolin-3-yl)methoxy]-4-(hydroxymethyl)-6-methyl-pyridin-3-yl}methanol. Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
N1 0.0401 (7) 0.0246 (7) 0.0303 (7) −0.0041 (5) 0.0016 (6) 0.0012 (5)
C2 0.0320 (7) 0.0220 (7) 0.0314 (8) −0.0007 (6) 0.0000 (6) −0.0026 (6)
Cl2 0.0436 (3) 0.0287 (2) 0.0476 (3) 0.00182 (15) 0.0100 (2) −0.00770 (16)
C3 0.0312 (8) 0.0235 (8) 0.0318 (8) −0.0028 (6) −0.0022 (6) 0.0030 (6)
C4 0.0380 (8) 0.0295 (9) 0.0274 (8) −0.0038 (6) 0.0000 (6) 0.0017 (6)
C4A 0.0377 (8) 0.0258 (8) 0.0290 (8) −0.0007 (6) −0.0044 (7) −0.0014 (6)
C5 0.0460 (10) 0.0349 (9) 0.0353 (9) 0.0023 (7) −0.0043 (8) −0.0076 (7)
C6 0.0575 (11) 0.0270 (9) 0.0430 (10) 0.0059 (8) −0.0132 (9) −0.0105 (7)
C7 0.0708 (13) 0.0214 (8) 0.0453 (11) −0.0039 (8) −0.0149 (10) −0.0006 (7)
C8 0.0602 (11) 0.0266 (9) 0.0350 (9) −0.0081 (8) −0.0051 (8) 0.0024 (7)
C8A 0.0413 (9) 0.0233 (8) 0.0285 (8) −0.0029 (6) −0.0068 (7) 0.0009 (6)
C37 0.0346 (8) 0.0255 (8) 0.0381 (9) −0.0030 (6) −0.0039 (7) 0.0081 (7)
O31 0.0319 (6) 0.0216 (5) 0.0292 (6) −0.0012 (4) 0.0000 (4) 0.0060 (4)
N31 0.0299 (7) 0.0274 (7) 0.0324 (7) −0.0012 (5) 0.0082 (5) 0.0014 (5)
C32 0.0255 (7) 0.0240 (8) 0.0280 (8) 0.0017 (6) 0.0018 (6) −0.0011 (6)
C33 0.0254 (7) 0.0204 (7) 0.0251 (7) −0.0004 (5) 0.0005 (6) 0.0025 (5)
C34 0.0284 (7) 0.0250 (8) 0.0240 (7) 0.0007 (5) 0.0012 (6) −0.0002 (6)
C35 0.0333 (8) 0.0201 (7) 0.0318 (8) −0.0005 (6) 0.0025 (6) −0.0011 (6)
C36 0.0331 (8) 0.0256 (8) 0.0351 (9) −0.0033 (6) 0.0064 (6) 0.0038 (6)
C321 0.0363 (8) 0.0274 (8) 0.0354 (9) 0.0056 (6) 0.0058 (7) −0.0048 (7)
C341 0.0407 (9) 0.0304 (8) 0.0244 (8) 0.0032 (6) 0.0084 (6) −0.0011 (6)
O341 0.0404 (7) 0.0575 (8) 0.0343 (7) 0.0124 (6) 0.0145 (5) 0.0018 (6)
C351 0.0481 (10) 0.0220 (8) 0.0415 (10) 0.0018 (7) 0.0067 (8) −0.0035 (7)
O351 0.0531 (8) 0.0307 (7) 0.0467 (8) 0.0135 (6) 0.0046 (6) −0.0013 (5)

(V) {5-[(2-Chloroquinolin-3-yl)methoxy]-4-(hydroxymethyl)-6-methyl-pyridin-3-yl}methanol. Geometric parameters (Å, º)

N1—C2 1.296 (2) N31—C36 1.335 (2)
N1—C8A 1.376 (2) N31—C32 1.335 (2)
C2—C3 1.421 (2) C32—C33 1.404 (2)
C2—Cl2 1.7566 (16) C32—C321 1.499 (2)
C3—C4 1.368 (2) C33—C34 1.388 (2)
C3—C37 1.499 (2) C34—C35 1.405 (2)
C4—C4A 1.411 (2) C34—C341 1.508 (2)
C4—H4 0.9500 C35—C36 1.377 (2)
C4A—C8A 1.410 (2) C35—C351 1.510 (2)
C4A—C5 1.419 (2) C36—H36 0.9500
C5—C6 1.368 (3) C321—H32A 0.9800
C5—H5 0.9500 C321—H32B 0.9800
C6—C7 1.398 (3) C321—H32C 0.9800
C6—H6 0.9500 C341—O341 1.425 (2)
C7—C8 1.372 (3) C341—H41A 0.9900
C7—H7 0.9500 C341—H41B 0.9900
C8—C8A 1.413 (2) O341—H341 0.9077
C8—H8 0.9500 C351—O351 1.425 (2)
C37—O31 1.4394 (19) C351—H51A 0.9900
C37—H37A 0.9900 C351—H51B 0.9900
C37—H37B 0.9900 O351—H351 0.9093
O31—C33 1.3819 (18)
C2—N1—C8A 116.95 (14) N31—C32—C33 120.23 (14)
N1—C2—C3 126.88 (15) N31—C32—C321 117.78 (14)
N1—C2—Cl2 115.09 (12) C33—C32—C321 121.98 (14)
C3—C2—Cl2 118.02 (12) O31—C33—C34 120.64 (14)
C4—C3—C2 115.34 (14) O31—C33—C32 118.54 (13)
C4—C3—C37 120.45 (15) C34—C33—C32 120.78 (13)
C2—C3—C37 124.21 (15) C33—C34—C35 117.81 (14)
C3—C4—C4A 121.15 (15) C33—C34—C341 121.33 (14)
C3—C4—H4 119.4 C35—C34—C341 120.85 (14)
C4A—C4—H4 119.4 C36—C35—C34 117.68 (14)
C8A—C4A—C4 117.69 (15) C36—C35—C351 120.08 (15)
C8A—C4A—C5 119.29 (15) C34—C35—C351 122.22 (15)
C4—C4A—C5 123.00 (16) N31—C36—C35 124.36 (14)
C6—C5—C4A 119.48 (18) N31—C36—H36 117.8
C6—C5—H5 120.3 C35—C36—H36 117.8
C4A—C5—H5 120.3 C32—C321—H32A 109.5
C5—C6—C7 121.11 (17) C32—C321—H32B 109.5
C5—C6—H6 119.4 H32A—C321—H32B 109.5
C7—C6—H6 119.4 C32—C321—H32C 109.5
C8—C7—C6 120.77 (17) H32A—C321—H32C 109.5
C8—C7—H7 119.6 H32B—C321—H32C 109.5
C6—C7—H7 119.6 O341—C341—C34 107.64 (13)
C7—C8—C8A 119.49 (18) O341—C341—H41A 110.2
C7—C8—H8 120.3 C34—C341—H41A 110.2
C8A—C8—H8 120.3 O341—C341—H41B 110.2
N1—C8A—C4A 121.79 (15) C34—C341—H41B 110.2
N1—C8A—C8 118.38 (16) H41A—C341—H41B 108.5
C4A—C8A—C8 119.83 (16) C341—O341—H341 106.4
O31—C37—C3 108.55 (12) O351—C351—C35 112.61 (14)
O31—C37—H37A 110.0 O351—C351—H51A 109.1
C3—C37—H37A 110.0 C35—C351—H51A 109.1
O31—C37—H37B 110.0 O351—C351—H51B 109.1
C3—C37—H37B 110.0 C35—C351—H51B 109.1
H37A—C37—H37B 108.4 H51A—C351—H51B 107.8
C33—O31—C37 112.75 (11) C351—O351—H351 102.2
C36—N31—C32 119.13 (14)
C8A—N1—C2—C3 2.2 (2) C3—C37—O31—C33 165.21 (13)
C8A—N1—C2—Cl2 −177.48 (11) C36—N31—C32—C33 0.1 (2)
N1—C2—C3—C4 −4.1 (2) C36—N31—C32—C321 179.48 (14)
Cl2—C2—C3—C4 175.57 (12) C37—O31—C33—C34 92.25 (17)
N1—C2—C3—C37 175.40 (15) C37—O31—C33—C32 −90.17 (17)
Cl2—C2—C3—C37 −4.9 (2) N31—C32—C33—O31 −177.42 (13)
C2—C3—C4—C4A 1.8 (2) C321—C32—C33—O31 3.2 (2)
C37—C3—C4—C4A −177.78 (14) N31—C32—C33—C34 0.2 (2)
C3—C4—C4A—C8A 1.9 (2) C321—C32—C33—C34 −179.21 (14)
C3—C4—C4A—C5 −179.68 (15) O31—C33—C34—C35 177.22 (13)
C8A—C4A—C5—C6 1.1 (3) C32—C33—C34—C35 −0.3 (2)
C4—C4A—C5—C6 −177.29 (16) O31—C33—C34—C341 −3.8 (2)
C4A—C5—C6—C7 0.7 (3) C32—C33—C34—C341 178.71 (14)
C5—C6—C7—C8 −1.3 (3) C33—C34—C35—C36 0.2 (2)
C6—C7—C8—C8A 0.1 (3) C341—C34—C35—C36 −178.80 (14)
C2—N1—C8A—C4A 2.0 (2) C33—C34—C35—C351 178.66 (14)
C2—N1—C8A—C8 −178.19 (15) C341—C34—C35—C351 −0.4 (2)
C4—C4A—C8A—N1 −4.0 (2) C32—N31—C36—C35 −0.2 (3)
C5—C4A—C8A—N1 177.53 (15) C34—C35—C36—N31 0.0 (3)
C4—C4A—C8A—C8 176.21 (15) C351—C35—C36—N31 −178.46 (15)
C5—C4A—C8A—C8 −2.3 (2) C33—C34—C341—O341 −114.67 (16)
C7—C8—C8A—N1 −178.14 (16) C35—C34—C341—O341 64.32 (19)
C7—C8—C8A—C4A 1.7 (3) C36—C35—C351—O351 102.07 (19)
C4—C3—C37—O31 −88.42 (18) C34—C35—C351—O351 −76.3 (2)
C2—C3—C37—O31 92.08 (18)

(V) {5-[(2-Chloroquinolin-3-yl)methoxy]-4-(hydroxymethyl)-6-methyl-pyridin-3-yl}methanol. Hydrogen-bond geometry (Å, º)

D—H···A D—H H···A D···A D—H···A
O341—H341···N31i 0.91 1.81 2.7098 (19) 174
O351—H351···O341 0.91 1.86 2.7299 (19) 158
C4—H4···O351ii 0.95 2.60 3.374 (2) 139

Symmetry codes: (i) x−1/2, −y+3/2, z+1/2; (ii) −x+1/2, y−1/2, −z+1/2.

References

  1. Abdel-Wahab, B. F., Khidre, R. E., Farahat, A. A. & El-Ahl, A. S. (2012). Arkivoc, (i), 211–276.
  2. Agilent (2012). CrysAlis PRO and CrysAlis RED. Agilent Technologies Ltd, Yarnton, Oxfordshire, England.
  3. Anuradha, T., Srinivasan, J., Seshadri, P. R. & Bakthadoss, M. (2013a). Acta Cryst. E69, o779. [DOI] [PMC free article] [PubMed]
  4. Anuradha, T., Srinivasan, J., Seshadri, P. R. & Bakthadoss, M. (2013b). Acta Cryst. E69, o990. [DOI] [PMC free article] [PubMed]
  5. Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.
  6. Bondi, A. (1964). J. Phys. Chem. 68, 441–451.
  7. Brammer, L., Bruton, E. A. & Sherwood, P. (2001). Cryst. Growth Des. 1, 277–290.
  8. Chandrika, N., Suresha Kumara, T. H., Jasinski, J. P., Millikan, S. P., Yathirajan, H. S. & Glidewell, C. (2015). Acta Cryst. E71, o364–o365. [DOI] [PMC free article] [PubMed]
  9. Flack, H. D. (1983). Acta Cryst. A39, 876–881.
  10. Hathwar, V. R., Roopan, S. M., Subashini, R., Khan, F. N. & Guru Row, T. N. (2010). J. Chem. Soc. (Bangalore), 122, 677–685.
  11. Jasinski, J. P., Pek, A. E., Chidan Kumar, C. S., Yathirajan, H. S. & Kumar, S. (2010). Acta Cryst. E66, o2548–o2549. [DOI] [PMC free article] [PubMed]
  12. Marella, A., Tanwar, O. P., Saha, R., Ali, M. R., Srivastava, S., Akhter, M., Shaquiquzzaman, M. & Alam, M. M. (2013). Saudi Pharm. J. 21, 1–12. [DOI] [PMC free article] [PubMed]
  13. Naylor, R. E. & Wilson, E. B. (1957). J. Chem. Phys. 26, 1057–1060.
  14. Nyburg, S. C. & Faerman, C. H. (1985). Acta Cryst. B41, 274–279.
  15. Parsons, S., Flack, H. D. & Wagner, T. (2013). Acta Cryst. B69, 249–259. [DOI] [PMC free article] [PubMed]
  16. Riddell, F. G. & Rogerson, M. (1996). J. Chem. Soc. Perkin Trans. 2, pp. 493–504.
  17. Riddell, F. G. & Rogerson, M. (1997). J. Chem. Soc. Perkin Trans. 2, pp. 249–256.
  18. Rowland, R. S. & Taylor, R. (1996). J. Phys. Chem. 100, 7384–7391.
  19. Sheldrick, G. M. (2003). SADABS. University of Göttingen, Germany.
  20. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  21. Sheldrick, G. M. (2015). Acta Cryst. C71, 3–8.
  22. Spek, A. L. (2009). Acta Cryst. D65, 148–155. [DOI] [PMC free article] [PubMed]
  23. Tabassum, S., Suresha Kumara, T. H., Jasinski, J. P., Millikan, S. P., Yathirajan, H. S., Sujan Ganapathy, P. S., Sowmya, H. V., More, S. S., Nagendrappa, G., Kaur, M. & Jose, G. (2014). J. Mol. Struct. 1070, 10–20.
  24. Tannenbaum, E., Myers, R. J. & Gwinn, W. D. (1956). J. Chem. Phys. 25, 42–47.
  25. Thallapally, P. K. & Nangia, A. (2001). CrystEngComm, 3, 114–119.
  26. Wood, P. A., Allen, F. H. & Pidcock, E. (2009). CrystEngComm, 11, 1563–1571.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) global, I, II, III, IV, V. DOI: 10.1107/S2056989015008233/su5121sup1.cif

e-71-00609-sup1.cif (3.4MB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S2056989015008233/su5121Isup2.hkl

e-71-00609-Isup2.hkl (253KB, hkl)

Structure factors: contains datablock(s) II. DOI: 10.1107/S2056989015008233/su5121IIsup3.hkl

e-71-00609-IIsup3.hkl (187.9KB, hkl)

Structure factors: contains datablock(s) III. DOI: 10.1107/S2056989015008233/su5121IIIsup4.hkl

e-71-00609-IIIsup4.hkl (702.9KB, hkl)

Structure factors: contains datablock(s) IV. DOI: 10.1107/S2056989015008233/su5121IVsup5.hkl

e-71-00609-IVsup5.hkl (110.8KB, hkl)

Structure factors: contains datablock(s) V. DOI: 10.1107/S2056989015008233/su5121Vsup6.hkl

e-71-00609-Vsup6.hkl (170.9KB, hkl)

Supporting information file. DOI: 10.1107/S2056989015008233/su5121Isup7.cml

Supporting information file. DOI: 10.1107/S2056989015008233/su5121IIsup8.cml

Supporting information file. DOI: 10.1107/S2056989015008233/su5121IIIsup9.cml

Supporting information file. DOI: 10.1107/S2056989015008233/su5121IVsup10.cml

Supporting information file. DOI: 10.1107/S2056989015008233/su5121Vsup11.cml

CCDC references: 1061944, 992268, 992267, 1061945, 1061946

Additional supporting information: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Crystallographic Communications are provided here courtesy of International Union of Crystallography

RESOURCES