Skip to main content
Acta Crystallographica Section E: Crystallographic Communications logoLink to Acta Crystallographica Section E: Crystallographic Communications
. 2015 May 13;71(Pt 6):618–620. doi: 10.1107/S2056989015008701

Crystal structure of 4-[(5-methyl­isoxazol-3-yl)amino­sulfon­yl]anilinium 3,5-di­nitro­salicylate

Sevaiyan Malathy a, Jeyaraman Selvaraj Nirmalram a, Packianathan Thomas Muthiah a,*
PMCID: PMC4459324  PMID: 26090134

The title mol­ecular salt, consists of a sulfamethoxazolium (SMZ) cation and a 3,5-di­nitro­salicylate (DNS) anion, which are linked by an N—H⋯O hydrogen bond. In the crystal, the cations and anions are linked via N—H⋯O, N—H⋯N and C—H⋯O hydrogen bonds, forming a three-dimensional framework.

Keywords: crystal structure; sulfamethoxazolium; 3,5-di­nitro­salicylate; mol­ecular salt; hydrogen bonding.

Abstract

The title mol­ecular salt, C10H12N3O3S+·C7H3N2O7 , protonation occurs at the amino N atom attached to the benzene ring of sulfamethoxazole. In the anion, there is an intra­molecular O—H⋯O hydrogen bond and the cation is linked to the anion by an N—H⋯O hydrogen bond. In the extended structure, the cations and anions are linked via N—H⋯O, N—H⋯N and C—H⋯O hydrogen bonds, forming a three-dimensional framework.

Chemical context  

Sulfamethoxazole, {4-[(5-methyl­isoxazol-3-yl)amino­sulfon­yl]aniline} (SMZ) is a well-known anti­bacterial and anti­fungal sulfa drug (Ma et al., 2007; Hida et al., 2005). This drug prevents the formation of di­hydro­folic acid, a compound that bacteria must be able to make in order to endure. The structural resemblance of p-amino benzoic acid to the sulfanilamide group enables sulfanilamide block folic acid synthesis in bacteria (Bock et al.,1974). SMZ is also known to be effective against gram positive and gram negative bacteria and some protozoans. In clinical practice, SMZ is used as a combinatorial drug along with Trimethoprim (TMP) to treat a variety of bacterial infections. In the last three and half decades, multiple crystalline forms of SMZ (Bettinetti et al., 1982; Maury et al., 1985; Price et al., 2005), metal complexes (Marques et al., 2006; Nakai et al., 1984) and salt forms (Nakai et al., 1984; Subashini et al., 2007) have been reported. We report herein on the crystal structure and supra­molecular packing pattern of the title salt.graphic file with name e-71-00618-scheme1.jpg

Structural commentary  

The asymmetric unit of the title salt (SMZDNS), consists of a sulfamethoxazolium cation and a 3,5-di­nitro­salicylate anion (Fig. 1). The SMZ cation is L-shaped with the dihedral angle between the oxazole and anilinium rings being 81.86 (10)°. The geometry around the sulfur atom is slightly distorted tetra­hedral, which is evident from the O1—S1—O2 angle of 120.44 (8)°. Protonation occurs at the amino atom N1 of the benzene moiety of SMZ. In the cation there is an intra­molecular O—H⋯O hydrogen bond with an S(6) ring motif (Fig. 1 and Table 1). The cation is linked to the anion by an N—H⋯O hydrogen bond (Fig. 1 and Table 1), and the dihedral angle between the benzene rings of the cation and anion is 78.51 (8)°.

Figure 1.

Figure 1

A view of the mol­ecular structure of the title mol­ecular salt, showing the atom labelling. The displacement ellipsoids are drawn at the 50% probability level. The hydrogen bonds are shown as dashed lines (see Table 1 for details).

Table 1. Hydrogen-bond geometry (, ).

DHA DH HA D A DHA
O6H6AO5 0.82 1.68 2.4296(19) 151
N2H2AO5 0.86 2.12 2.7852(18) 134
N1H1AO4i 0.89 1.77 2.661(2) 177
N1H1BN3i 0.89 2.24 3.041(2) 150
N1H1CO6ii 0.89 2.21 3.064(2) 160
C5H5O6ii 0.93 2.60 3.293(2) 132
C6H6O8iii 0.93 2.60 3.176(2) 121

Symmetry codes: (i) Inline graphic; (ii) Inline graphic; (iii) Inline graphic.

Supra­molecular features  

In the crystal of the title salt, there are various hydrogen bonds present linking the anions and cations and forming a three-dimensional network (Figs. 2 and 3, and Table 1). The ammonium ion of the cation generates a C(3) chain and two Inline graphic(6) and Inline graphic(10) ring motifs (Bernstein et al., 1995). The primary inter­action between the cation and anion happens through an N—H⋯O hydrogen bond and it forms a chain of C(3) graph set. The Inline graphic(6) motif is formed via N—H⋯O and C—H⋯O hydrogen bonds that link the ammonium N1 phenyl C5 group of SMZ and the hy­droxy O6 group of the anion. The Inline graphic(10) ring motif is a result of the linking of two symmetry-related cations and one anion via a pair of N—H⋯O and N—H⋯N hydrogen bonds. This motif is formed by the inter­action of symmetry-related imino N2, oxazole N3, ammonium N1 atoms of the cation and the carboxyl­ate (O4 and O5) group of the anion. The Inline graphic(6) and Inline graphic(10) motifs are linked by another ring motif with an Inline graphic(8) graph set. This motif is formed by linking two symmetry-related cations with an anion via a pair of bifurcated N—H⋯O hydrogen bonds. The amalgamation of the above ring motifs leads to the formation of supra­molecular sheets along the a axis (Fig. 2). The sheets thus formed are linked to adjacent ones through Inline graphic(16) and Inline graphic(20) motifs. The Inline graphic(16) motif is formed by inter­action of ammonium atom N1 and atom O2 of the sulfate group of an inversion-related SMZ ion in an adjacent sheet via a pair of N—H⋯O hydrogen bonds. The other motif, an Inline graphic(20) ring, is formed by the linkage of two inversion-related cations along the b axis. Finally, through these arrangements a three-dimensional hydrogen-bonded architecture is formed.

Figure 2.

Figure 2

A view of the graph set motifs formed in the crystal of the title salt, via N—H⋯O, N—H⋯N and C—H⋯O hydrogen bonds (dashed lines; see Table 1 for details). The cations are drawn in wire mode and the anions in ball-and-stick mode.

Figure 3.

Figure 3

A view along the a axis of the crystal packing of the title salt. The hydrogen bonds are drawn as dashed lines (see Table 1 for details). H atoms not involved in hydrogen bonding have been omitted for clarity.

Database survey  

A search of the Cambridge Structural Database (Version 5.36; Groom & Allen, 2014) for 4-[(5-methyl­isoxazol-3-yl)amino­sulfon­yl]aniline revealed the presence of only two structures of the protonated form. These include, catena-[bis­(sulfa­methoxazolium)(μ2-chlorido)­tri­chlorido­cadmium(II) monohydrate] [RISZAV; Subashini et al., 2008] and 4-[(5-methyl­isoxazol-3-yl)amino­sulfon­yl]anilinium chloride (also known as sulfamethoxazole chloride; SIMJEE; Subashini et al., 2007). The dihedral angles between the oxazole ring and anilinium ring is found to be ca 88° in RISZAV, similar to the value of 81.86 (10)° in the title salt, and ca 58° in SIMJEE.

Synthesis and crystallization  

20 ml of a hot ethano­lic solution of sulfamethoxazole (63 mg) and 3.5 di­nitro­salicylic acid (57 mg) were mixed and warmed at 323 K for 30 min over a water bath. The mixture was then allowed to cool slowly at room temperature. Three weeks later, light-yellow prismatic crystals were obtained.

Refinement  

Crystal data, data collection and structure refinement details are summarized in Table 2. All H atoms were positioned geometrically and refined using a riding model: O—H = 0.82 Å, N—H = 0.86–0.89 Å, and C—H = 0.93–0.96 Å with U iso(H) = 1.5U eq(C,O,N) for methyl, hy­droxy and ammonium H atoms and 1.2U eq(C,N) for aromatic and other H atoms.

Table 2. Experimental details.

Crystal data
Chemical formula C10H12N3O3S+C7H3N2O7
M r 481.41
Crystal system, space group Triclinic, P Inline graphic
Temperature (K) 296
a, b, c () 8.5551(1), 10.5000(2), 12.7576(3)
, , () 106.463(1), 100.913(1), 108.272(1)
V (3) 993.72(3)
Z 2
Radiation type Mo K
(mm1) 0.23
Crystal size (mm) 0.20 0.20 0.16
 
Data collection
Diffractometer Bruker Kappa APEXII CCD
Absorption correction Multi-scan (SADABS; Bruker, 2004)
T min, T max 0.955, 0.964
No. of measured, independent and observed [I > 2(I)] reflections 24261, 6718, 4911
R int 0.030
(sin /)max (1) 0.758
 
Refinement
R[F 2 > 2(F 2)], wR(F 2), S 0.048, 0.139, 1.05
No. of reflections 6718
No. of parameters 301
H-atom treatment H-atom parameters constrained
max, min (e 3) 0.40, 0.40

Computer programs: APEX2 and SAINT (Bruker, 2004), SHELXS97 and SHELXL97 (Sheldrick, 2008), PLATON (Spek, 2009), Mercury (Macrae et al., 2008), POVRay (Cason, 2004) and publCIF (Westrip, 2010).

Supplementary Material

Crystal structure: contains datablock(s) global, I. DOI: 10.1107/S2056989015008701/su5130sup1.cif

e-71-00618-sup1.cif (29.7KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S2056989015008701/su5130Isup2.hkl

e-71-00618-Isup2.hkl (322.1KB, hkl)

Supporting information file. DOI: 10.1107/S2056989015008701/su5130Isup3.cml

CCDC reference: 1063245

Additional supporting information: crystallographic information; 3D view; checkCIF report

Acknowledgments

The authors thank the DST–India (FIST programme) for the use of the Bruker SMART APEXII diffractometer at the School of Chemistry, Bharathidasan University, Tiruchirappalli, Tamil Nadu, India. JSN thanks the UGC–SAP, India, for the award of an RFSMS.

supplementary crystallographic information

Crystal data

C10H12N3O3S+·C7H3N2O7 Z = 2
Mr = 481.41 F(000) = 496
Triclinic, P1 Dx = 1.609 Mg m3
Hall symbol: -P 1 Mo Kα radiation, λ = 0.71073 Å
a = 8.5551 (1) Å Cell parameters from 6718 reflections
b = 10.5000 (2) Å θ = 1.8–32.6°
c = 12.7576 (3) Å µ = 0.23 mm1
α = 106.463 (1)° T = 296 K
β = 100.913 (1)° Prism, yellow
γ = 108.272 (1)° 0.20 × 0.20 × 0.16 mm
V = 993.72 (3) Å3

Data collection

Bruker Kappa APEXII CCD diffractometer 6718 independent reflections
Radiation source: fine-focus sealed tube 4911 reflections with I > 2σ(I)
Graphite monochromator Rint = 0.030
ω and φ scan θmax = 32.6°, θmin = 1.8°
Absorption correction: multi-scan (SADABS; Bruker, 2004) h = −12→12
Tmin = 0.955, Tmax = 0.964 k = −15→15
24261 measured reflections l = −19→16

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.048 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.139 H-atom parameters constrained
S = 1.05 w = 1/[σ2(Fo2) + (0.0667P)2 + 0.2293P] where P = (Fo2 + 2Fc2)/3
6718 reflections (Δ/σ)max < 0.001
301 parameters Δρmax = 0.40 e Å3
0 restraints Δρmin = −0.40 e Å3

Special details

Geometry. Bond distances, angles etc. have been calculated using the rounded fractional coordinates. All su's are estimated from the variances of the (full) variance-covariance matrix. The cell e.s.d.'s are taken into account in the estimation of distances, angles and torsion angles
Refinement. Refinement on F2 for ALL reflections except those flagged by the user for potential systematic errors. Weighted R-factors wR and all goodnesses of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The observed criterion of F2 > σ(F2) is used only for calculating -R-factor-obs etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
S1 −0.02011 (5) 0.65153 (4) 0.38510 (3) 0.0339 (1)
O1 −0.12139 (15) 0.56291 (12) 0.26954 (11) 0.0467 (4)
O2 −0.09563 (16) 0.65425 (13) 0.47595 (11) 0.0464 (4)
O3 0.47464 (18) 0.55503 (17) 0.32047 (14) 0.0620 (5)
N1 0.29162 (18) 1.24424 (14) 0.38400 (13) 0.0425 (4)
N2 0.13876 (17) 0.60279 (14) 0.42019 (12) 0.0379 (4)
N3 0.3923 (2) 0.57678 (19) 0.40572 (15) 0.0531 (5)
C1 0.07470 (18) 0.82911 (15) 0.38933 (13) 0.0317 (4)
C2 0.2170 (2) 0.93167 (19) 0.47915 (16) 0.0503 (5)
C3 0.2877 (2) 1.06900 (19) 0.47852 (16) 0.0512 (5)
C4 0.21460 (19) 1.10143 (15) 0.38930 (14) 0.0346 (4)
C5 0.0702 (2) 1.00106 (18) 0.30178 (15) 0.0436 (5)
C6 0.0001 (2) 0.86347 (18) 0.30136 (15) 0.0419 (5)
C7 0.24792 (19) 0.58288 (15) 0.35500 (14) 0.0351 (4)
C8 0.2303 (2) 0.5656 (2) 0.23927 (16) 0.0473 (6)
C9 0.3764 (3) 0.55030 (19) 0.22403 (18) 0.0508 (6)
C10 0.4458 (3) 0.5285 (3) 0.1246 (2) 0.0749 (10)
O4 0.51673 (18) 0.76879 (19) 0.75742 (13) 0.0650 (5)
O5 0.24957 (17) 0.72400 (14) 0.65907 (10) 0.0492 (4)
O6 0.03386 (14) 0.74389 (13) 0.75511 (10) 0.0423 (3)
O7 −0.1353 (2) 0.8493 (3) 0.89565 (18) 0.0976 (9)
O8 −0.1205 (2) 0.7661 (3) 1.02988 (15) 0.0952 (8)
O9 0.4658 (2) 0.9039 (2) 1.25864 (12) 0.0710 (6)
O10 0.66328 (19) 0.9064 (2) 1.17615 (14) 0.0731 (6)
N4 −0.06166 (19) 0.8072 (2) 0.96064 (14) 0.0581 (6)
N5 0.51517 (19) 0.88887 (16) 1.17389 (13) 0.0476 (5)
C11 0.31809 (18) 0.78573 (15) 0.85972 (13) 0.0322 (4)
C12 0.14695 (18) 0.77861 (15) 0.85294 (13) 0.0326 (4)
C13 0.10795 (19) 0.80780 (18) 0.95755 (14) 0.0386 (4)
C14 0.2252 (2) 0.84029 (18) 1.06109 (14) 0.0398 (4)
C15 0.38950 (19) 0.84785 (16) 1.06265 (13) 0.0361 (4)
C16 0.43768 (18) 0.82182 (16) 0.96381 (14) 0.0352 (4)
C17 0.3688 (2) 0.75745 (17) 0.75231 (14) 0.0391 (4)
H1A 0.35880 1.24140 0.33870 0.0640*
H1B 0.35470 1.30800 0.45420 0.0640*
H1C 0.20820 1.27010 0.35590 0.0640*
H2 0.26480 0.90860 0.53940 0.0600*
H2A 0.15640 0.58830 0.48370 0.0450*
H3 0.38410 1.13910 0.53810 0.0610*
H5 0.02000 1.02560 0.24320 0.0520*
H6 −0.09710 0.79410 0.24200 0.0500*
H8 0.13930 0.56490 0.18580 0.0570*
H10A 0.55580 0.60560 0.14430 0.1120*
H10B 0.36680 0.52770 0.05980 0.1120*
H10C 0.45950 0.43820 0.10560 0.1120*
H6A 0.07860 0.73090 0.70370 0.0630*
H14 0.19440 0.85670 1.12830 0.0480*
H16 0.54970 0.82850 0.96720 0.0420*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
S1 0.0360 (2) 0.0322 (2) 0.0349 (2) 0.0131 (1) 0.0121 (1) 0.0137 (2)
O1 0.0460 (6) 0.0366 (6) 0.0424 (7) 0.0088 (5) 0.0010 (5) 0.0093 (5)
O2 0.0511 (6) 0.0500 (7) 0.0531 (8) 0.0239 (5) 0.0301 (6) 0.0265 (6)
O3 0.0505 (7) 0.0712 (9) 0.0659 (10) 0.0312 (7) 0.0241 (7) 0.0152 (8)
N1 0.0506 (7) 0.0353 (7) 0.0509 (9) 0.0180 (6) 0.0277 (7) 0.0199 (6)
N2 0.0475 (7) 0.0421 (7) 0.0347 (7) 0.0238 (6) 0.0164 (6) 0.0198 (6)
N3 0.0485 (8) 0.0614 (10) 0.0492 (9) 0.0275 (7) 0.0145 (7) 0.0134 (8)
C1 0.0344 (6) 0.0310 (6) 0.0310 (7) 0.0136 (5) 0.0102 (5) 0.0120 (6)
C2 0.0576 (10) 0.0412 (9) 0.0381 (9) 0.0092 (7) −0.0054 (7) 0.0189 (8)
C3 0.0529 (9) 0.0367 (8) 0.0428 (10) 0.0026 (7) −0.0037 (8) 0.0132 (8)
C4 0.0397 (7) 0.0318 (7) 0.0399 (8) 0.0169 (6) 0.0203 (6) 0.0156 (6)
C5 0.0465 (8) 0.0430 (8) 0.0434 (9) 0.0185 (7) 0.0060 (7) 0.0228 (8)
C6 0.0393 (7) 0.0390 (8) 0.0403 (9) 0.0115 (6) 0.0000 (6) 0.0165 (7)
C7 0.0409 (7) 0.0272 (6) 0.0368 (8) 0.0132 (5) 0.0132 (6) 0.0106 (6)
C8 0.0559 (10) 0.0513 (10) 0.0423 (10) 0.0243 (8) 0.0220 (8) 0.0198 (8)
C9 0.0598 (10) 0.0385 (8) 0.0567 (12) 0.0173 (8) 0.0324 (9) 0.0136 (8)
C10 0.0892 (17) 0.0710 (15) 0.0808 (18) 0.0340 (13) 0.0583 (15) 0.0270 (13)
O4 0.0475 (7) 0.0968 (12) 0.0513 (8) 0.0267 (7) 0.0256 (6) 0.0230 (8)
O5 0.0571 (7) 0.0597 (8) 0.0306 (6) 0.0233 (6) 0.0132 (5) 0.0160 (6)
O6 0.0395 (5) 0.0529 (7) 0.0314 (6) 0.0198 (5) 0.0039 (4) 0.0138 (5)
O7 0.0692 (10) 0.171 (2) 0.0830 (13) 0.0813 (13) 0.0218 (9) 0.0526 (13)
O8 0.0515 (8) 0.167 (2) 0.0550 (10) 0.0286 (11) 0.0271 (8) 0.0321 (12)
O9 0.0746 (10) 0.0941 (12) 0.0313 (7) 0.0259 (9) 0.0026 (7) 0.0211 (8)
O10 0.0468 (7) 0.0981 (12) 0.0612 (10) 0.0296 (8) −0.0061 (7) 0.0238 (9)
N4 0.0382 (7) 0.0850 (12) 0.0393 (9) 0.0244 (8) 0.0082 (6) 0.0079 (8)
N5 0.0474 (8) 0.0447 (8) 0.0376 (8) 0.0141 (6) −0.0053 (6) 0.0128 (7)
C11 0.0333 (6) 0.0298 (6) 0.0305 (7) 0.0109 (5) 0.0073 (5) 0.0098 (6)
C12 0.0348 (6) 0.0304 (6) 0.0288 (7) 0.0116 (5) 0.0041 (5) 0.0102 (6)
C13 0.0327 (7) 0.0451 (8) 0.0349 (8) 0.0158 (6) 0.0079 (6) 0.0114 (7)
C14 0.0407 (7) 0.0452 (8) 0.0294 (8) 0.0154 (6) 0.0084 (6) 0.0109 (7)
C15 0.0361 (7) 0.0346 (7) 0.0299 (7) 0.0112 (6) −0.0004 (6) 0.0105 (6)
C16 0.0321 (6) 0.0336 (7) 0.0369 (8) 0.0124 (5) 0.0057 (6) 0.0122 (6)
C17 0.0403 (7) 0.0394 (8) 0.0365 (8) 0.0134 (6) 0.0128 (6) 0.0140 (7)

Geometric parameters (Å, º)

S1—O1 1.4224 (13) C2—C3 1.381 (3)
S1—O2 1.4276 (14) C3—C4 1.373 (3)
S1—N2 1.6264 (16) C4—C5 1.370 (2)
S1—C1 1.7651 (17) C5—C6 1.378 (3)
O3—N3 1.408 (2) C7—C8 1.408 (2)
O3—C9 1.331 (3) C8—C9 1.351 (3)
O4—C17 1.221 (2) C9—C10 1.490 (3)
O5—C17 1.288 (2) C2—H2 0.9300
O6—C12 1.300 (2) C3—H3 0.9300
O7—N4 1.210 (3) C5—H5 0.9300
O8—N4 1.212 (3) C6—H6 0.9300
O9—N5 1.221 (2) C8—H8 0.9300
O10—N5 1.215 (2) C10—H10A 0.9600
O6—H6A 0.8200 C10—H10B 0.9600
N1—C4 1.464 (2) C10—H10C 0.9600
N2—C7 1.388 (2) C11—C16 1.382 (2)
N3—C7 1.311 (3) C11—C17 1.493 (2)
N1—H1B 0.8900 C11—C12 1.427 (2)
N1—H1C 0.8900 C12—C13 1.410 (2)
N1—H1A 0.8900 C13—C14 1.377 (2)
N2—H2A 0.8600 C14—C15 1.379 (3)
N4—C13 1.457 (3) C15—C16 1.381 (2)
N5—C15 1.463 (2) C14—H14 0.9300
C1—C2 1.380 (2) C16—H16 0.9300
C1—C6 1.378 (2)
O1—S1—O2 120.44 (8) C8—C9—C10 133.9 (2)
O1—S1—N2 108.84 (8) O3—C9—C8 110.33 (19)
O1—S1—C1 107.28 (8) C1—C2—H2 120.00
O2—S1—N2 104.18 (8) C3—C2—H2 120.00
O2—S1—C1 109.04 (8) C2—C3—H3 120.00
N2—S1—C1 106.25 (8) C4—C3—H3 120.00
N3—O3—C9 108.82 (18) C6—C5—H5 120.00
C12—O6—H6A 109.00 C4—C5—H5 120.00
S1—N2—C7 124.67 (12) C5—C6—H6 120.00
O3—N3—C7 104.87 (15) C1—C6—H6 120.00
H1B—N1—H1C 109.00 C9—C8—H8 128.00
C4—N1—H1A 109.00 C7—C8—H8 128.00
C4—N1—H1B 109.00 H10B—C10—H10C 109.00
C4—N1—H1C 109.00 C9—C10—H10B 109.00
H1A—N1—H1B 109.00 C9—C10—H10C 110.00
H1A—N1—H1C 110.00 H10A—C10—H10B 109.00
S1—N2—H2A 118.00 H10A—C10—H10C 109.00
C7—N2—H2A 118.00 C9—C10—H10A 109.00
O7—N4—O8 123.4 (2) C12—C11—C16 121.17 (14)
O7—N4—C13 118.79 (19) C12—C11—C17 118.90 (14)
O8—N4—C13 117.80 (18) C16—C11—C17 119.92 (15)
O10—N5—C15 117.66 (15) O6—C12—C13 122.61 (15)
O9—N5—O10 123.92 (17) C11—C12—C13 116.05 (14)
O9—N5—C15 118.42 (17) O6—C12—C11 121.32 (14)
S1—C1—C2 121.18 (13) N4—C13—C12 120.47 (15)
C2—C1—C6 120.80 (16) C12—C13—C14 123.04 (16)
S1—C1—C6 118.00 (13) N4—C13—C14 116.48 (15)
C1—C2—C3 119.21 (17) C13—C14—C15 118.34 (15)
C2—C3—C4 119.55 (17) N5—C15—C16 120.25 (15)
C3—C4—C5 121.35 (16) C14—C15—C16 121.92 (15)
N1—C4—C5 118.03 (15) N5—C15—C14 117.80 (14)
N1—C4—C3 120.61 (16) C11—C16—C15 119.46 (15)
C4—C5—C6 119.34 (17) O4—C17—C11 119.62 (16)
C1—C6—C5 119.70 (16) O5—C17—C11 115.95 (16)
N3—C7—C8 112.03 (16) O4—C17—O5 124.43 (17)
N2—C7—C8 130.75 (16) C13—C14—H14 121.00
N2—C7—N3 117.21 (15) C15—C14—H14 121.00
C7—C8—C9 103.93 (17) C11—C16—H16 120.00
O3—C9—C10 115.7 (2) C15—C16—H16 120.00
O1—S1—N2—C7 49.04 (16) C2—C3—C4—N1 −177.26 (16)
O2—S1—N2—C7 178.71 (14) C2—C3—C4—C5 1.5 (3)
C1—S1—N2—C7 −66.19 (15) C3—C4—C5—C6 −2.1 (3)
O1—S1—C1—C2 −161.03 (14) N1—C4—C5—C6 176.66 (16)
O1—S1—C1—C6 20.36 (16) C4—C5—C6—C1 0.7 (3)
O2—S1—C1—C2 67.01 (16) N2—C7—C8—C9 −179.86 (19)
O2—S1—C1—C6 −111.60 (14) N3—C7—C8—C9 −0.7 (2)
N2—S1—C1—C2 −44.74 (16) C7—C8—C9—O3 1.0 (2)
N2—S1—C1—C6 136.65 (14) C7—C8—C9—C10 −179.8 (3)
N3—O3—C9—C8 −0.9 (2) C16—C11—C12—O6 −179.60 (16)
C9—O3—N3—C7 0.4 (2) C16—C11—C12—C13 −1.1 (2)
N3—O3—C9—C10 179.7 (2) C17—C11—C12—O6 2.1 (2)
S1—N2—C7—N3 164.49 (14) C17—C11—C12—C13 −179.40 (15)
S1—N2—C7—C8 −16.4 (3) C12—C11—C16—C15 1.7 (3)
O3—N3—C7—N2 179.46 (15) C17—C11—C16—C15 179.96 (16)
O3—N3—C7—C8 0.2 (2) C12—C11—C17—O4 177.09 (18)
O7—N4—C13—C14 144.2 (2) C12—C11—C17—O5 −1.9 (2)
O8—N4—C13—C12 146.3 (2) C16—C11—C17—O4 −1.2 (3)
O7—N4—C13—C12 −34.7 (3) C16—C11—C17—O5 179.75 (16)
O8—N4—C13—C14 −34.7 (3) O6—C12—C13—N4 −3.2 (3)
O9—N5—C15—C14 5.4 (3) O6—C12—C13—C14 177.93 (17)
O9—N5—C15—C16 −176.34 (18) C11—C12—C13—N4 178.36 (17)
O10—N5—C15—C16 3.9 (3) C11—C12—C13—C14 −0.5 (3)
O10—N5—C15—C14 −174.40 (19) N4—C13—C14—C15 −177.38 (17)
C6—C1—C2—C3 −1.9 (3) C12—C13—C14—C15 1.6 (3)
S1—C1—C6—C5 179.87 (14) C13—C14—C15—N5 177.28 (17)
S1—C1—C2—C3 179.55 (14) C13—C14—C15—C16 −1.0 (3)
C2—C1—C6—C5 1.3 (3) N5—C15—C16—C11 −178.83 (16)
C1—C2—C3—C4 0.5 (3) C14—C15—C16—C11 −0.6 (3)

Hydrogen-bond geometry (Å, º)

D—H···A D—H H···A D···A D—H···A
O6—H6A···O5 0.82 1.68 2.4296 (19) 151
N2—H2A···O5 0.86 2.12 2.7852 (18) 134
N1—H1A···O4i 0.89 1.77 2.661 (2) 177
N1—H1B···N3i 0.89 2.24 3.041 (2) 150
N1—H1C···O6ii 0.89 2.21 3.064 (2) 160
C5—H5···O6ii 0.93 2.60 3.293 (2) 132
C6—H6···O8iii 0.93 2.60 3.176 (2) 121

Symmetry codes: (i) −x+1, −y+2, −z+1; (ii) −x, −y+2, −z+1; (iii) x, y, z−1.

References

  1. Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.
  2. Bettinetti, G. P., Giordano, F., La Manna, A., Giuseppetti, G. & Tadini, C. (1982). Cryst. Struct. Commun. 11, 821–828.
  3. Bock, L., Miller, G. H., Schaper, K. J. & Seydel, J. K. (1974). J. Med. Chem. 17, 23–28. [DOI] [PubMed]
  4. Bruker (2004). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.
  5. Cason, C. J. (2004). POV-RAY for Windows. Persistence of Vision, Raytracer Pty Ltd, Victoria, Australia. URL: http://www.povray.org.
  6. Groom, C. R. & Allen, F. H. (2014). Angew. Chem. Int. Ed. 53, 662–671. [DOI] [PubMed]
  7. Hida, S., Yoshida, M., Nakabayashi, I., Miura, N. N., Adachi, Y. & Ohno, N. (2005). Biol. Pharm. Bull. 28, 773–778. [DOI] [PubMed]
  8. Ma, M.-L., Cheng, Y.-Y., Xu, Z.-H., Xu, P., Qu, H.-O., Fang, Y.-J., Xu, T.-W. & Wen, L. (2007). Eur. J. Med. Chem. 42, 93–98. [DOI] [PubMed]
  9. Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470.
  10. Marques, L. L., de Oliveira, G. M. & Schulz Lang, E. (2006). Z. Anorg. Allg. Chem. 632, 2310–2314.
  11. Maury, L., Rambaud, J., Pauvert, B., Lasserre, Y., Berge, G. & Audran, M. (1985). Can. J. Chem. 63, 3012–3018.
  12. Nakai, H., Takasuka, M. & Shiro, M. (1984). J. Chem. Soc. Perkin Trans. 2, pp. 1459–1464.
  13. Price, C. P., Grzesiak, A. L. & Matzger, A. J. (2005). J. Am. Chem. Soc. 127, 5512–5517. [DOI] [PubMed]
  14. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  15. Spek, A. L. (2009). Acta Cryst. D65, 148–155. [DOI] [PMC free article] [PubMed]
  16. Subashini, A., Muthiah, P. T., Bocelli, G. & Cantoni, A. (2007). Acta Cryst. E63, o4312–o4313. [DOI] [PMC free article] [PubMed]
  17. Subashini, A., Muthiah, P. T., Bocelli, G. & Cantoni, A. (2008). Acta Cryst. E64, m250–m251. [DOI] [PMC free article] [PubMed]
  18. Westrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) global, I. DOI: 10.1107/S2056989015008701/su5130sup1.cif

e-71-00618-sup1.cif (29.7KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S2056989015008701/su5130Isup2.hkl

e-71-00618-Isup2.hkl (322.1KB, hkl)

Supporting information file. DOI: 10.1107/S2056989015008701/su5130Isup3.cml

CCDC reference: 1063245

Additional supporting information: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Crystallographic Communications are provided here courtesy of International Union of Crystallography

RESOURCES