Skip to main content
Acta Crystallographica Section E: Crystallographic Communications logoLink to Acta Crystallographica Section E: Crystallographic Communications
. 2015 May 13;71(Pt 6):o400. doi: 10.1107/S2056989015008919

Crystal structure of tert-butyl­diphenyl­phosphine oxide

George Agbeworvi a, Zerihun Assefa a,*, Richard E Sykora b, Jared D Taylor b
PMCID: PMC4459331  PMID: 26090188

Abstract

In the structure of the title triorganophosphine oxide, C16H19OP, the P—O bond is 1.490 (1) Å. The P atom has a distorted tetrahedral geometry. The O atom inter­acts with both phenyl groups of a neighboring mol­ecule [C⋯O = 2.930 (3) and 2.928 (4) Å]. The C—O interaction directs an extended supramolecular arrangement along the a-axis.

Keywords: crystal structure, phosphine oxide

Related literature  

For the structures of related phosphine oxides Ph3P=O, EtPh2P=O and BuPh2P=O, see: Al-Farhan (1992), Orama & Koskinen (1994) and Caddy et al. (2007), respectively.graphic file with name e-71-0o400-scheme1.jpg

Experimental  

Crystal data  

  • C16H19OP

  • M r = 258.28

  • Monoclinic, Inline graphic

  • a = 6.3432 (6) Å

  • b = 9.5219 (9) Å

  • c = 12.4556 (15) Å

  • β = 101.665 (10)°

  • V = 736.78 (13) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.17 mm−1

  • T = 293 K

  • 0.4 × 0.15 × 0.04 mm

Data collection  

  • Agilent Xcalibur, Eos diffractometer

  • Absorption correction: multi-scan (CrysAlis PRO; Agilent, 2014) T min = 0.842, T max = 1.000

  • 11029 measured reflections

  • 2713 independent reflections

  • 2203 reflections with I > 2σ(I)

  • R int = 0.049

Refinement  

  • R[F 2 > 2σ(F 2)] = 0.044

  • wR(F 2) = 0.086

  • S = 1.05

  • 2713 reflections

  • 166 parameters

  • 1 restraint

  • H-atom parameters constrained

  • Δρmax = 0.18 e Å−3

  • Δρmin = −0.24 e Å−3

  • Absolute structure: Flack (1983)

  • Absolute structure parameter: 0.19 (10)

Data collection: CrysAlis PRO (Agilent, 2014); cell refinement: CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: OLEX2 (Dolomanov et al., 2009); software used to prepare material for publication: OLEX2 and publCIF (Westrip, 2010).

Supplementary Material

Crystal structure: contains datablock(s) I, New_Global_Publ_Block. DOI: 10.1107/S2056989015008919/hg5439sup1.cif

e-71-0o400-sup1.cif (21.1KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S2056989015008919/hg5439Isup2.hkl

e-71-0o400-Isup2.hkl (133.2KB, hkl)

I . DOI: 10.1107/S2056989015008919/hg5439fig1.tif

A ball-and-stick representation of the mol­ecular structure of I.

. DOI: 10.1107/S2056989015008919/hg5439fig2.tif

Mol­ecular packing with short C—H⋯O contacts indicated by dashed lines

CCDC reference: 1063801

Additional supporting information: crystallographic information; 3D view; checkCIF report

Table 1. Selected bond lengths ().

P1O1 1.4897(14)
P1C1 1.821(3)
P1C7 1.825(3)
P1C13 1.841(3)

Acknowledgments

The authors kindly acknowledge support from the National Science Foundation, CHE-0959406 (ZA) and CHE-0846680 (RES).

supplementary crystallographic information

S1. Synthesis and crystallization

The tert-butyl­diphenyl­phosphine oxide was unintentionally obtained during the reaction used to coordinate the unoxidized ligand to gold(I). The product was obtained after mixing tert-butyl­diphenyl­phosphine (0.0600 g, 0.24 mmol) with a solution of (C4H8S)AuCl (0.0264 g, 0.08 mmol) in tetra­hydro­furan (20 mL) at -80oC. The reaction solution was stirred for 3 hours and the solvent removed totally by purging nitro­gen gas into the solution. The residue was then recrystallized from CH2Cl2/n-hexane mixture within six days. Partial evaporation of the solvent provided quality crystals of the title compound. Yield 90%. Melting point 137oC (decomposition). 1H NMR (CD2Cl2) [δ (ppm)]: 1.3(s),7.3(m), 7.6(m), 7.9(m). For 31P NMR in CD2Cl2 [δ (ppm)]: 38.96. Infrared data (cm-1): 3032 (C–H, Ar), 2908 (C–H, CH3), 1597 (C=C, Ar), 1165 (P=O), 1126 (P–Ar).

S2. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 1. H-atoms were placed in calculated positions and allowed to ride during subsequent refinement, with Uiso(H) = 1.2Ueq(C) and C—H distances of 0.93 Å for ring hydrogens and with Uiso(H) = 1.5Ueq(O) and C—H distances of 0.96 Å for methyl hydrogens.

Figures

Fig. 1.

Fig. 1.

A ball-and-stick representation of the molecular structure of I.

Fig. 2.

Fig. 2.

Molecular packing with short C—H···O contacts indicated by dashed lines

Crystal data

C16H19OP F(000) = 276
Mr = 258.28 Dx = 1.164 Mg m3
Monoclinic, P21 Mo Kα radiation, λ = 0.71073 Å
a = 6.3432 (6) Å Cell parameters from 2279 reflections
b = 9.5219 (9) Å θ = 3.3–23.1°
c = 12.4556 (15) Å µ = 0.17 mm1
β = 101.665 (10)° T = 293 K
V = 736.78 (13) Å3 Plate, colourless
Z = 2 0.4 × 0.15 × 0.04 mm

Data collection

Agilent Xcalibur, Eos diffractometer 2713 independent reflections
Radiation source: Enhance (Mo) X-ray Source 2203 reflections with I > 2σ(I)
Graphite monochromator Rint = 0.049
Detector resolution: 16.0514 pixels mm-1 θmax = 25.4°, θmin = 2.7°
ω scans h = −7→7
Absorption correction: multi-scan (CrysAlis PRO; Agilent, 2014) k = −11→11
Tmin = 0.842, Tmax = 1.000 l = −14→14
11029 measured reflections

Refinement

Refinement on F2 Secondary atom site location: difference Fourier map
Least-squares matrix: full Hydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.044 H-atom parameters constrained
wR(F2) = 0.086 w = 1/[σ2(Fo2) + (0.0343P)2 + 0.0459P] where P = (Fo2 + 2Fc2)/3
S = 1.05 (Δ/σ)max < 0.001
2713 reflections Δρmax = 0.18 e Å3
166 parameters Δρmin = −0.24 e Å3
1 restraint Absolute structure: Flack (1983)
Primary atom site location: heavy-atom method Absolute structure parameter: 0.19 (10)

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
P1 0.87488 (9) 0.74951 (7) 0.71978 (5) 0.03371 (18)
O1 1.1119 (2) 0.7455 (2) 0.72615 (15) 0.0475 (5)
C2 0.5797 (4) 0.5351 (3) 0.7611 (2) 0.0437 (7)
H2 0.4792 0.6045 0.7664 0.052*
C1 0.7771 (4) 0.5727 (3) 0.7363 (2) 0.0349 (7)
C14 0.7903 (5) 0.7211 (4) 0.4984 (2) 0.0631 (10)
H14A 0.9440 0.7152 0.5077 0.095*
H14B 0.7310 0.7586 0.4271 0.095*
H14C 0.7323 0.6291 0.5050 0.095*
C6 0.9206 (5) 0.4655 (3) 0.7265 (2) 0.0485 (8)
H6 1.0527 0.4876 0.7093 0.058*
C4 0.6771 (5) 0.2920 (3) 0.7685 (3) 0.0565 (9)
H4 0.6443 0.1988 0.7802 0.068*
C3 0.5318 (5) 0.3973 (3) 0.7776 (2) 0.0499 (8)
H3 0.4003 0.3745 0.7951 0.060*
C7 0.8146 (4) 0.8617 (3) 0.8285 (2) 0.0375 (7)
C8 0.6180 (4) 0.8754 (3) 0.8609 (3) 0.0513 (8)
H8 0.4985 0.8257 0.8246 0.062*
C10 0.7712 (5) 1.0408 (4) 1.0008 (2) 0.0609 (9)
H10 0.7562 1.0998 1.0583 0.073*
C9 0.6004 (5) 0.9632 (4) 0.9473 (3) 0.0615 (10)
H9 0.4692 0.9697 0.9694 0.074*
C12 0.9867 (4) 0.9407 (3) 0.8838 (3) 0.0543 (9)
H12 1.1197 0.9334 0.8637 0.065*
C11 0.9640 (5) 1.0303 (4) 0.9686 (3) 0.0671 (10)
H11 1.0807 1.0836 1.0036 0.081*
C5 0.8706 (5) 0.3264 (3) 0.7418 (3) 0.0590 (9)
H5 0.9682 0.2560 0.7341 0.071*
C13 0.7324 (4) 0.8175 (3) 0.5864 (2) 0.0361 (6)
C16 0.8231 (5) 0.9656 (3) 0.5733 (3) 0.0646 (10)
H16A 0.7806 1.0281 0.6255 0.097*
H16B 0.7678 0.9994 0.5004 0.097*
H16C 0.9774 0.9613 0.5858 0.097*
C15 0.4891 (4) 0.8239 (4) 0.5752 (3) 0.0577 (9)
H15A 0.4356 0.7323 0.5876 0.087*
H15B 0.4240 0.8552 0.5028 0.087*
H15C 0.4543 0.8885 0.6283 0.087*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
P1 0.0276 (3) 0.0354 (4) 0.0388 (4) −0.0001 (4) 0.0084 (3) 0.0003 (4)
O1 0.0296 (8) 0.0516 (11) 0.0634 (12) 0.0015 (12) 0.0142 (8) −0.0006 (14)
C2 0.0414 (16) 0.0407 (17) 0.0509 (19) 0.0010 (14) 0.0138 (13) 0.0036 (15)
C1 0.0355 (15) 0.0370 (17) 0.0306 (16) 0.0023 (12) 0.0031 (12) 0.0032 (12)
C14 0.081 (2) 0.068 (3) 0.0415 (18) 0.0185 (19) 0.0145 (16) −0.0007 (17)
C6 0.0436 (17) 0.0429 (19) 0.060 (2) 0.0050 (13) 0.0127 (16) 0.0019 (15)
C4 0.070 (2) 0.036 (2) 0.059 (2) −0.0047 (15) 0.0044 (17) 0.0081 (14)
C3 0.0496 (18) 0.047 (2) 0.054 (2) −0.0094 (15) 0.0141 (15) 0.0064 (15)
C7 0.0312 (14) 0.0432 (17) 0.0368 (17) −0.0002 (13) 0.0036 (12) −0.0016 (13)
C8 0.0411 (17) 0.067 (2) 0.0468 (19) −0.0115 (15) 0.0110 (14) −0.0145 (16)
C10 0.063 (2) 0.078 (2) 0.0397 (19) 0.005 (2) 0.0079 (16) −0.0177 (19)
C9 0.050 (2) 0.086 (3) 0.052 (2) −0.0016 (18) 0.0181 (17) −0.0197 (19)
C12 0.0380 (17) 0.071 (2) 0.052 (2) −0.0032 (16) 0.0048 (15) −0.0153 (18)
C11 0.055 (2) 0.081 (3) 0.061 (2) −0.010 (2) 0.0004 (18) −0.028 (2)
C5 0.060 (2) 0.0360 (19) 0.081 (3) 0.0131 (16) 0.0143 (18) −0.0008 (17)
C13 0.0351 (14) 0.0347 (16) 0.0405 (17) 0.0010 (12) 0.0128 (12) 0.0037 (13)
C16 0.078 (2) 0.041 (2) 0.073 (3) −0.0094 (17) 0.0122 (19) 0.0163 (17)
C15 0.0439 (16) 0.075 (2) 0.051 (2) 0.0054 (16) 0.0026 (15) 0.0143 (18)

Geometric parameters (Å, º)

P1—O1 1.4897 (14) C7—C12 1.388 (3)
P1—C1 1.821 (3) C8—H8 0.9300
P1—C7 1.825 (3) C8—C9 1.385 (4)
P1—C13 1.841 (3) C10—H10 0.9300
C2—H2 0.9300 C10—C9 1.368 (4)
C2—C1 1.395 (3) C10—C11 1.366 (4)
C2—C3 1.372 (4) C9—H9 0.9300
C1—C6 1.390 (3) C12—H12 0.9300
C14—H14A 0.9600 C12—C11 1.388 (4)
C14—H14B 0.9600 C11—H11 0.9300
C14—H14C 0.9600 C5—H5 0.9300
C14—C13 1.530 (4) C13—C16 1.544 (4)
C6—H6 0.9300 C13—C15 1.523 (3)
C6—C5 1.384 (4) C16—H16A 0.9600
C4—H4 0.9300 C16—H16B 0.9600
C4—C3 1.382 (4) C16—H16C 0.9600
C4—C5 1.374 (4) C15—H15A 0.9600
C3—H3 0.9300 C15—H15B 0.9600
C7—C8 1.393 (3) C15—H15C 0.9600
O1—P1—C1 109.48 (12) C9—C10—H10 120.5
O1—P1—C7 109.63 (12) C11—C10—H10 120.5
O1—P1—C13 111.29 (10) C11—C10—C9 119.0 (3)
C1—P1—C7 109.29 (12) C8—C9—H9 119.2
C1—P1—C13 108.10 (12) C10—C9—C8 121.6 (3)
C7—P1—C13 109.02 (12) C10—C9—H9 119.2
C1—C2—H2 119.5 C7—C12—H12 119.4
C3—C2—H2 119.5 C11—C12—C7 121.2 (3)
C3—C2—C1 120.9 (3) C11—C12—H12 119.4
C2—C1—P1 127.1 (2) C10—C11—C12 120.4 (3)
C6—C1—P1 115.15 (19) C10—C11—H11 119.8
C6—C1—C2 117.7 (3) C12—C11—H11 119.8
H14A—C14—H14B 109.5 C6—C5—H5 119.9
H14A—C14—H14C 109.5 C4—C5—C6 120.1 (3)
H14B—C14—H14C 109.5 C4—C5—H5 119.9
C13—C14—H14A 109.5 C14—C13—P1 106.90 (19)
C13—C14—H14B 109.5 C14—C13—C16 108.9 (2)
C13—C14—H14C 109.5 C16—C13—P1 106.9 (2)
C1—C6—H6 119.4 C15—C13—P1 113.58 (18)
C5—C6—C1 121.2 (3) C15—C13—C14 110.2 (2)
C5—C6—H6 119.4 C15—C13—C16 110.2 (2)
C3—C4—H4 120.3 C13—C16—H16A 109.5
C5—C4—H4 120.3 C13—C16—H16B 109.5
C5—C4—C3 119.3 (3) C13—C16—H16C 109.5
C2—C3—C4 120.7 (3) H16A—C16—H16B 109.5
C2—C3—H3 119.7 H16A—C16—H16C 109.5
C4—C3—H3 119.7 H16B—C16—H16C 109.5
C8—C7—P1 127.2 (2) C13—C15—H15A 109.5
C12—C7—P1 115.06 (19) C13—C15—H15B 109.5
C12—C7—C8 117.8 (3) C13—C15—H15C 109.5
C7—C8—H8 120.0 H15A—C15—H15B 109.5
C9—C8—C7 120.0 (3) H15A—C15—H15C 109.5
C9—C8—H8 120.0 H15B—C15—H15C 109.5
P1—C1—C6—C5 177.2 (3) C3—C2—C1—C6 1.5 (4)
P1—C7—C8—C9 178.4 (3) C3—C4—C5—C6 1.3 (5)
P1—C7—C12—C11 −179.9 (3) C7—P1—C1—C2 43.6 (3)
O1—P1—C1—C2 163.7 (2) C7—P1—C1—C6 −134.0 (2)
O1—P1—C1—C6 −14.0 (2) C7—P1—C13—C14 179.33 (18)
O1—P1—C7—C8 −169.2 (3) C7—P1—C13—C16 62.9 (2)
O1—P1—C7—C12 10.6 (3) C7—P1—C13—C15 −58.9 (2)
O1—P1—C13—C14 58.3 (2) C7—C8—C9—C10 1.7 (5)
O1—P1—C13—C16 −58.2 (2) C7—C12—C11—C10 1.2 (5)
O1—P1—C13—C15 −180.0 (2) C8—C7—C12—C11 0.0 (5)
C2—C1—C6—C5 −0.6 (4) C9—C10—C11—C12 −1.0 (5)
C1—P1—C7—C8 −49.2 (3) C12—C7—C8—C9 −1.4 (4)
C1—P1—C7—C12 130.6 (2) C11—C10—C9—C8 −0.5 (5)
C1—P1—C13—C14 −62.0 (2) C5—C4—C3—C2 −0.4 (5)
C1—P1—C13—C16 −178.44 (19) C13—P1—C1—C2 −75.0 (2)
C1—P1—C13—C15 59.8 (2) C13—P1—C1—C6 107.4 (2)
C1—C2—C3—C4 −1.0 (4) C13—P1—C7—C8 68.7 (3)
C1—C6—C5—C4 −0.7 (5) C13—P1—C7—C12 −111.4 (2)
C3—C2—C1—P1 −176.1 (2)

Footnotes

Supporting information for this paper is available from the IUCr electronic archives (Reference: HG5439).

References

  1. Agilent (2014). CrysAlis PRO. Agilent Technologies Ltd, Yarnton, England.
  2. Al-Farhan, K. A. (1992). J. Crystallogr. Spectrosc. Res. 22, 687–689.
  3. Caddy, J., Coyanis, E. M., Lemmerer, A., Khanye, S. D. & Omondi, B. (2007). Acta Cryst. E63, o1032–o1033.
  4. Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.
  5. Flack, H. D. (1983). Acta Cryst. A39, 876–881.
  6. Orama, O. & Koskinen, J. T. (1994). Acta Cryst. C50, 608–609.
  7. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  8. Westrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) I, New_Global_Publ_Block. DOI: 10.1107/S2056989015008919/hg5439sup1.cif

e-71-0o400-sup1.cif (21.1KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S2056989015008919/hg5439Isup2.hkl

e-71-0o400-Isup2.hkl (133.2KB, hkl)

I . DOI: 10.1107/S2056989015008919/hg5439fig1.tif

A ball-and-stick representation of the mol­ecular structure of I.

. DOI: 10.1107/S2056989015008919/hg5439fig2.tif

Mol­ecular packing with short C—H⋯O contacts indicated by dashed lines

CCDC reference: 1063801

Additional supporting information: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Crystallographic Communications are provided here courtesy of International Union of Crystallography

RESOURCES