Skip to main content
Acta Crystallographica Section E: Crystallographic Communications logoLink to Acta Crystallographica Section E: Crystallographic Communications
. 2015 May 23;71(Pt 6):690–692. doi: 10.1107/S2056989015009767

Crystal structure of a sodium, zinc and iron(III)-based non-stoichiometric phosphate with an alluaudite-like structure: Na1.67Zn1.67Fe1.33(PO4)3

Jamal Khmiyas a,*, Abderrazzak Assani a, Mohamed Saadi a, Lahcen El Ammari a
PMCID: PMC4459337  PMID: 26090152

The transition-metal orthophosphate Na1.67Zn1.67Fe1.33(PO4)3 cristallizes in an alluaudite-type structure. The chains characterizing the alluaudite structure are then built up from [M 2O10] (M = Fe/Zn) units alternating with [ZnO6] octa­hedra. This structure is characterized by a cationic disorder in one tunnel and in the general position.

Keywords: crystal structure, transition-metal phosphates, solid-state reaction synthesis, alluaudite structure type, Na1.67Zn1.67Fe1.33(PO4)3

Abstract

The new title compound, disodium dizinc iron(III) tris­(phosphate), Na1.67Zn1.67Fe1.33(PO4)3, which belongs to the alluaudite family, has been synthesized by solid-state reactions. In this structure, all atoms are in general positions except for four, which are located on special positions of the C2/c space group. This structure is characterized by cation substitutional disorder at two sites, one situated on the special position 4e (2) and the other on the general position 8f. The 4e site is partially occupied by Na+ [0.332 (3)], whereas the 8f site is entirely filled by a mixture of Fe and Zn. The full-occupancy sodium and zinc atoms are located at the Wyckoff positions on the inversion center 4a (-1) and on the twofold rotation axis 4e, respectively. Refinement of the occupancy ratios, bond-valence analysis and the electrical neutrality requirement of the structure lead to the given composition for the title compound. The three-dimensional framework of this structure consists of kinked chains of edge-sharing octa­hedra stacked parallel to [10-1]. The chains are formed by a succession of trimers based on [ZnO6] octa­hedra and the mixed-cation FeIII/ZnII [(Fe/Zn)O6] octa­hedra [FeIII:ZnIII ratio 0.668 (3)/0.332 (3)]. Continuous chains are held together by PO4 phosphate groups, forming polyhedral sheets perpendicular to [010]. The stacked sheets delimit two types of tunnels parallel to the c axis in which the sodium cations are located. Each Na+ cation is coordinated by eight O atoms. The disorder of Na in the tunnel might presage ionic mobility for this material.

Chemical context  

Alkali transition-metal phosphates belonging to the alluaudite family constitute one of the most diverse and rich classes of minerals, and have been studied intensively over the last few years. Owing to their outstanding physico-chemical properties, these compounds have many potential applications in various fields, such as catalytic activity (Kacimi et al., 2005) and as promising cathodes for sodium-ion batteries through the presence of mobile cations located in the tunnels of the open three-dimensional framework (Huang et al., 2015). In their recent study, Huang et al. (2015) point out that the electrochemical performance is not only associated with morphology, but also with the electronic and crystalline structure.

Accordingly, a large number of alluaudite phases with alkali cations in the tunnels have been reported. Nevertheless, the presence of alkali metals in the tunnels of synthetic alluaudite phases is frequently accompanied by cationic distributions that lead to non-stoichiometric compositions, such as: (Na0.38,Ca0.31)MgFe2(PO4)3 (Zid et al., 2005); NaFe3.67(PO4)3 (Korzenski et al., 1998); Cu1.35Fe3(PO4)3 (Warner et al., 1993); K0.53Mn2.37Fe1.24(PO4)3 (Hidouri & Ben Amara, 2011); Na1.79Mg1.79Fe1.21(PO4)3 (Hidouri et al., 2003); Na1.50Mn2.48Al0.85(PO4)3 (Hatert, 2006); Na1−xLixMnFe2(PO4)3 where x = 0, 0.25, 0.50, and 0.75 (Hermann et al., 2002). As part of our study on alluaudite-related phosphates (Bouraima et al., 2015; Assani et al., 2011), we report the synthesis and the crystal structure of a new sodium, zinc and iron-based non-stoichiometric phosphate, namely Na1.67Zn1.67Fe1.33(PO4)3.

Structural commentary  

The alluaudite structure of the title compound crystallizes in the monoclinic space group C2/c, with Z = 4. The principal building units of the crystal structure are represented in Fig. 1. Refinement of the occupancy fractions, bond-valence analysis based on the formula proposed by Brown & Altermatt (1985) and the required electrical neutrality of the structure lead to the formula Na1.67Zn1.67Fe1.33(PO4)3 for the title compound. The mixed Fe1 and Zn1 atoms are located at the general position 8f with Fe3+/Zn2+ occupancy fractions of 0.668 (3)/0.332 (3), and form a highly distorted [(Fe1/Zn1)O6] octa­hedral group, with Fe3+/Zn2+—O bond lengths ranging from 1.951 (1) to 2.209 (1)Å. The Zn2 atom is surrounded by six oxygen atoms, building a slightly distorted octa­hedron with an average Zn2—O bond length of 2.153 (1) Å.

Figure 1.

Figure 1

The principal building units in the structure of the title compound. Displacement ellipsoids are drawn at the 50% probability level. [Symmetry codes: (i) x + Inline graphic, y + Inline graphic, z; (ii) −x + Inline graphic, y + Inline graphic, −z + Inline graphic; (iii) −x + Inline graphic, −y + Inline graphic, −z + 1; (iv) −x + Inline graphic, −y + Inline graphic, −z; (v) −x + 1, −y + 1, −z; (vi) −x + 1, y, −z + Inline graphic; (vii) x, −y + 1, z + Inline graphic; (viii) x − Inline graphic, −y + Inline graphic, z − Inline graphic; (ix) −x + 2, y, −z + Inline graphic; (x) −x + 2, −y + 1, −z + 1; (xi) x + Inline graphic, −y + Inline graphic, z + Inline graphic; (xii) −x + Inline graphic, −y + Inline graphic, −z + 1; (xiii) x, −y + 1, z − Inline graphic.]

The crystal structure of this phosphate compound consists of infinite kinked chains of two edge-sharing [Fe1/Zn1O6] octa­hedra leading to the formation of [(Fe1,Zn1)2O10] dimers that are connected by a common edge to [Zn2O6] octa­hedra, as shown in Fig. 2. These chains are linked by PO4 tetra­hedral groups, forming a stack of sheets perpendicular to [010] and alternating with sodium layers, as shown in Fig. 3, which reveal small tunnels along the [201] direction. The three-dimensional framework also encloses two types of large tunnels, in which the Na+ cations reside, as shown in Fig. 4. The site 4e centred on the first tunnel is partially occupied by Na1 [0.332 (3)], whereas Na2 occupies site 4a centred on the second tunnel. Each sodium atom is surrounded by eight oxygen atoms with Na1—O and Na2—O bond lengths in the ranges 2.448 (1)–2.908 (2) Å, and 2.324 (1)–2.901 (1) Å, respectively. The displacement ellipsoids of the partially occupied atom Na1 are rather larger than those of the rest of the atoms. Most probably this is due to the size of the channels, which allows atom Na1 to have more freedom. The disorder of Na in the tunnel may presage ionic mobility for this material.

Figure 2.

Figure 2

A view along the b axis of a sheet resulting from chains connected by vertices of PO4 tetra­hedra.

Figure 3.

Figure 3

A stack of layers perpendicular to the b axis, showing small tunnels along the [201] direction.

Figure 4.

Figure 4

Polyhedral representation of Na1.67Zn1.67Fe1.33(PO4)3 showing tunnels running along the [001] direction.

Synthesis and crystallization  

Single crystals of Na1.67Zn1.67Fe1.33(PO4)3 were synthesised by conventional solid-state reaction (Girolami et al., 1999). The nitrate-based sodium, zinc and iron precursors, in addition to the 85 wt% H3PO4 were taken in proportions corresponding to the molar ratio Na:Zn:Fe:P = 2:2:1:3. The resulting reaction mixture was ground in an agate mortar and progressively heated in a platinum crucible to the melting temperature of 1135 K. The melted product was cooled at a rate of 5 K/h. The product was obtained as transparent brown crystals corresponding to the title phosphate.

Refinement  

Crystal data, data collection and structure refinement details are summarized in Table 1. Refinements of the site-occupancy factors of the metal site 8f revealed the ratio of Fe1:Zn1 = 0.668 (3):0.332 (3), whereas the the occupancy fraction of Na1 was constrained to that of Zn1 in order to maintain electrical neutrality. The highest peak and the deepest hole in the final difference Fourier map are at 0.72 and 0.40 Å from O1 and Zn2, respectively.

Table 1. Experimental details.

Crystal data
Chemical formula Na1.67Zn1.67Fe1.33(PO4)3
M r 506.59
Crystal system, space group Monoclinic, C2/c
Temperature (K) 296
a, b, c () 11.7545(4), 12.5080(4), 6.4014(2)
() 113.507(1)
V (3) 863.06(5)
Z 4
Radiation type Mo K
(mm1) 7.52
Crystal size (mm) 0.31 0.25 0.19
 
Data collection
Diffractometer Bruker X8 APEX
Absorption correction Multi-scan (SADABS; Bruker, 2009)
T min, T max 0.504, 0.748
No. of measured, independent and observed [I > 2(I)] reflections 18880, 2101, 1997
R int 0.031
(sin /)max (1) 0.833
 
Refinement
R[F 2 > 2(F 2)], wR(F 2), S 0.017, 0.046, 1.19
No. of reflections 2101
No. of parameters 96
max, min (e 3) 0.65, 1.21

Computer programs: APEX2 and SAINT (Bruker, 2009), SHELXS97 and SHELXL97 (Sheldrick, 2008), ORTEPIII (Burnett Johnson, 1996), ORTEP-3 for Windows Farrugia, 2012), DIAMOND (Brandenburg, 2006) and publCIF (Westrip, 2010).

Supplementary Material

Crystal structure: contains datablock(s) I. DOI: 10.1107/S2056989015009767/pk2551sup1.cif

e-71-00690-sup1.cif (592.7KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S2056989015009767/pk2551Isup2.hkl

e-71-00690-Isup2.hkl (169KB, hkl)

CCDC reference: 1402019

Additional supporting information: crystallographic information; 3D view; checkCIF report

Acknowledgments

The authors thank the Unit of Support for Technical and Scientific Research (UATRS, CNRST) for the X-ray measurements and Mohammed V University, Rabat, Morocco, for the financial support.

supplementary crystallographic information

Crystal data

Na1.67Zn1.67Fe1.33(PO4)3 F(000) = 977
Mr = 506.59 Dx = 3.904 Mg m3
Monoclinic, C2/c Mo Kα radiation, λ = 0.71073 Å
Hall symbol: -c 2yc Cell parameters from 2101 reflections
a = 11.7545 (4) Å θ = 2.5–36.3°
b = 12.5080 (4) Å µ = 7.52 mm1
c = 6.4014 (2) Å T = 296 K
β = 113.507 (1)° Block, brown
V = 863.06 (5) Å3 0.31 × 0.25 × 0.19 mm
Z = 4

Data collection

Bruker X8 APEX diffractometer 2101 independent reflections
Radiation source: fine-focus sealed tube 1997 reflections with I > 2σ(I)
Graphite monochromator Rint = 0.031
φ and ω scans θmax = 36.3°, θmin = 2.5°
Absorption correction: multi-scan (SADABS; Bruker, 2009) h = −19→16
Tmin = 0.504, Tmax = 0.748 k = −20→20
18880 measured reflections l = −10→10

Refinement

Refinement on F2 0 restraints
Least-squares matrix: full w = 1/[σ2(Fo2) + (0.016P)2 + 1.8532P] where P = (Fo2 + 2Fc2)/3
R[F2 > 2σ(F2)] = 0.017 (Δ/σ)max = 0.001
wR(F2) = 0.046 Δρmax = 0.65 e Å3
S = 1.19 Δρmin = −1.20 e Å3
2101 reflections Extinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
96 parameters Extinction coefficient: 0.0027 (2)

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Reflections were merged by SHELXL according to the crystal class for the calculation of statistics and refinement._reflns_Friedel_fraction is defined as the number of unique Friedel pairs measured divided by the number that would be possible theoretically, ignoring centric projections and systematic absences.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq Occ. (<1)
Fe1 0.71738 (2) 0.84648 (2) 0.12925 (3) 0.00552 (5) 0.668 (3)
Zn1 0.71738 (2) 0.84648 (2) 0.12925 (3) 0.00552 (5) 0.332 (3)
Zn2 0.5000 0.73133 (2) 0.2500 0.00966 (5)
P1 0.76212 (3) 0.60983 (2) 0.37448 (5) 0.00388 (6)
P2 0.5000 0.28835 (3) 0.2500 0.00330 (7)
Na1 1.0000 0.49141 (19) 0.7500 0.0356 (7) 0.664 (6)
Na2 0.5000 0.5000 0.0000 0.01511 (18)
O1 0.83510 (9) 0.66524 (7) 0.60760 (15) 0.00695 (15)
O2 0.77771 (9) 0.67779 (8) 0.18481 (15) 0.00760 (15)
O6 0.45837 (8) 0.21761 (8) 0.03327 (15) 0.00622 (15)
O3 0.62448 (9) 0.60224 (8) 0.32496 (16) 0.00806 (16)
O5 0.39712 (9) 0.36396 (8) 0.24820 (16) 0.00747 (16)
O4 0.82109 (10) 0.49950 (8) 0.38406 (18) 0.01105 (17)

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
Fe1 0.00523 (7) 0.00632 (7) 0.00583 (7) −0.00082 (5) 0.00307 (5) −0.00067 (5)
Zn1 0.00523 (7) 0.00632 (7) 0.00583 (7) −0.00082 (5) 0.00307 (5) −0.00067 (5)
Zn2 0.01124 (10) 0.00917 (10) 0.01083 (10) 0.000 0.00679 (8) 0.000
P1 0.00555 (12) 0.00355 (11) 0.00280 (11) −0.00051 (9) 0.00192 (9) −0.00023 (8)
P2 0.00319 (15) 0.00365 (15) 0.00256 (15) 0.000 0.00063 (12) 0.000
Na1 0.0167 (8) 0.0452 (13) 0.0345 (11) 0.000 −0.0008 (7) 0.000
Na2 0.0221 (4) 0.0079 (3) 0.0091 (3) 0.0024 (3) −0.0004 (3) 0.0006 (3)
O1 0.0098 (4) 0.0072 (4) 0.0035 (3) −0.0020 (3) 0.0022 (3) −0.0015 (3)
O2 0.0090 (4) 0.0101 (4) 0.0043 (3) −0.0022 (3) 0.0032 (3) 0.0013 (3)
O6 0.0057 (3) 0.0081 (4) 0.0044 (3) −0.0004 (3) 0.0015 (3) −0.0024 (3)
O3 0.0068 (4) 0.0083 (4) 0.0101 (4) −0.0015 (3) 0.0044 (3) −0.0006 (3)
O5 0.0055 (3) 0.0064 (3) 0.0092 (4) 0.0012 (3) 0.0016 (3) −0.0029 (3)
O4 0.0147 (4) 0.0062 (4) 0.0125 (4) 0.0026 (3) 0.0057 (3) −0.0019 (3)

Geometric parameters (Å, º)

Fe1—O5i 1.9514 (10) P2—O6 1.5510 (9)
Fe1—O4ii 1.9607 (10) P2—O6vi 1.5510 (9)
Fe1—O1iii 2.0170 (10) Na1—O4ix 2.4476 (11)
Fe1—O2iv 2.0567 (10) Na1—O4 2.4476 (11)
Fe1—O6v 2.0684 (9) Na1—O4x 2.5713 (12)
Fe1—O2 2.2091 (10) Na1—O4vii 2.5713 (12)
Zn2—O3vi 2.1019 (10) Na1—O1 2.812 (2)
Zn2—O3 2.1019 (10) Na1—O1ix 2.812 (2)
Zn2—O6vii 2.1549 (10) Na1—O6xi 2.908 (2)
Zn2—O6v 2.1549 (10) Na1—O6xii 2.908 (2)
Zn2—O1iii 2.2028 (9) Na2—O5xiii 2.3239 (9)
Zn2—O1viii 2.2028 (9) Na2—O5vi 2.3239 (9)
P1—O3 1.5225 (10) Na2—O3 2.3823 (9)
P1—O4 1.5345 (10) Na2—O3v 2.3824 (9)
P1—O2 1.5518 (10) Na2—O3xiii 2.5179 (10)
P1—O1 1.5563 (9) Na2—O3vi 2.5179 (10)
P2—O5 1.5317 (10) Na2—O5v 2.9008 (10)
P2—O5vi 1.5317 (10) Na2—O5 2.9008 (10)
O5i—Fe1—O4ii 95.89 (4) O4—Na1—O1 55.92 (4)
O5i—Fe1—O1iii 109.05 (4) O4x—Na1—O1 114.04 (7)
O4ii—Fe1—O1iii 88.00 (4) O4vii—Na1—O1 61.59 (4)
O5i—Fe1—O2iv 87.13 (4) O4ix—Na1—O1ix 55.92 (4)
O4ii—Fe1—O2iv 101.39 (4) O4—Na1—O1ix 119.76 (8)
O1iii—Fe1—O2iv 160.53 (4) O4x—Na1—O1ix 61.58 (4)
O5i—Fe1—O6v 161.52 (4) O4vii—Na1—O1ix 114.04 (7)
O4ii—Fe1—O6v 100.93 (4) O1—Na1—O1ix 78.70 (7)
O1iii—Fe1—O6v 79.35 (4) O4ix—Na1—O6xi 114.24 (8)
O2iv—Fe1—O6v 82.12 (4) O4—Na1—O6xi 70.35 (5)
O5i—Fe1—O2 79.41 (4) O4x—Na1—O6xi 83.40 (5)
O4ii—Fe1—O2 173.23 (4) O4vii—Na1—O6xi 101.22 (6)
O1iii—Fe1—O2 88.95 (4) O1—Na1—O6xi 125.27 (3)
O2iv—Fe1—O2 83.34 (4) O1ix—Na1—O6xi 144.38 (3)
O6v—Fe1—O2 84.43 (4) O4ix—Na1—O6xii 70.35 (5)
O3vi—Zn2—O3 79.62 (5) O4—Na1—O6xii 114.24 (8)
O3vi—Zn2—O6vii 92.79 (4) O4x—Na1—O6xii 101.22 (6)
O3—Zn2—O6vii 113.99 (4) O4vii—Na1—O6xii 83.40 (5)
O3vi—Zn2—O6v 113.99 (4) O1—Na1—O6xii 144.38 (3)
O3—Zn2—O6v 92.79 (4) O1ix—Na1—O6xii 125.27 (3)
O6vii—Zn2—O6v 145.51 (5) O6xi—Na1—O6xii 51.96 (5)
O3vi—Zn2—O1iii 164.40 (4) O5xiii—Na2—O5vi 180.00 (3)
O3—Zn2—O1iii 86.51 (4) O5xiii—Na2—O3 100.43 (3)
O6vii—Zn2—O1iii 86.30 (4) O5vi—Na2—O3 79.57 (3)
O6v—Zn2—O1iii 73.53 (3) O5xiii—Na2—O3v 79.57 (3)
O3vi—Zn2—O1viii 86.51 (4) O5vi—Na2—O3v 100.43 (3)
O3—Zn2—O1viii 164.40 (4) O3—Na2—O3v 180.0
O6vii—Zn2—O1viii 73.53 (3) O5xiii—Na2—O3xiii 107.29 (3)
O6v—Zn2—O1viii 86.30 (4) O5vi—Na2—O3xiii 72.71 (3)
O1iii—Zn2—O1viii 108.06 (5) O3—Na2—O3xiii 113.43 (4)
O3—P1—O4 112.20 (6) O3v—Na2—O3xiii 66.57 (4)
O3—P1—O2 108.58 (5) O5xiii—Na2—O3vi 72.71 (3)
O4—P1—O2 109.36 (6) O5vi—Na2—O3vi 107.29 (3)
O3—P1—O1 111.16 (6) O3—Na2—O3vi 66.57 (4)
O4—P1—O1 107.14 (6) O3v—Na2—O3vi 113.43 (4)
O2—P1—O1 108.32 (5) O3xiii—Na2—O3vi 180.00 (3)
O5—P2—O5vi 103.73 (8) O5xiii—Na2—O5v 53.55 (4)
O5—P2—O6 112.27 (5) O5vi—Na2—O5v 126.45 (4)
O5vi—P2—O6 109.00 (5) O3—Na2—O5v 85.32 (3)
O5—P2—O6vi 109.00 (5) O3v—Na2—O5v 94.68 (3)
O5vi—P2—O6vi 112.28 (5) O3xiii—Na2—O5v 67.11 (3)
O6—P2—O6vi 110.43 (7) O3vi—Na2—O5v 112.89 (3)
O4ix—Na1—O4 175.26 (12) O5xiii—Na2—O5 126.45 (4)
O4ix—Na1—O4x 79.21 (3) O5vi—Na2—O5 53.55 (4)
O4—Na1—O4x 100.58 (3) O3—Na2—O5 94.68 (3)
O4ix—Na1—O4vii 100.58 (3) O3v—Na2—O5 85.32 (3)
O4—Na1—O4vii 79.20 (3) O3xiii—Na2—O5 112.89 (3)
O4x—Na1—O4vii 174.93 (11) O3vi—Na2—O5 67.11 (3)
O4ix—Na1—O1 119.76 (8) O5v—Na2—O5 180.00 (3)

Symmetry codes: (i) x+1/2, y+1/2, z; (ii) −x+3/2, y+1/2, −z+1/2; (iii) −x+3/2, −y+3/2, −z+1; (iv) −x+3/2, −y+3/2, −z; (v) −x+1, −y+1, −z; (vi) −x+1, y, −z+1/2; (vii) x, −y+1, z+1/2; (viii) x−1/2, −y+3/2, z−1/2; (ix) −x+2, y, −z+3/2; (x) −x+2, −y+1, −z+1; (xi) x+1/2, −y+1/2, z+1/2; (xii) −x+3/2, −y+1/2, −z+1; (xiii) x, −y+1, z−1/2.

References

  1. Assani, A., El Ammari, L., Zriouil, M. & Saadi, M. (2011). Acta Cryst. E67, i40. [DOI] [PMC free article] [PubMed]
  2. Bouraima, A., Assani, A., Saadi, M., Makani, T. & El Ammari, L. (2015). Acta Cryst. E71, 558–560. [DOI] [PMC free article] [PubMed]
  3. Brandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.
  4. Brown, I. D. & Altermatt, D. (1985). Acta Cryst. B41, 244–247.
  5. Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.
  6. Burnett, M. N. & Johnson, C. K. (1996). ORTEPIII. Report ORNL-6895. Oak Ridge National Laboratory, Tennessee, USA.
  7. Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.
  8. Girolami, G. S., Rauchfuss, T. B. & Angelici, R. J. (1999). Synthesis and Techniques in Inorganic Chemistry, 3rd ed. Mill Valley, CA: University Science Books.
  9. Hatert, F. (2006). Acta Cryst. C62, i1–i2. [DOI] [PubMed]
  10. Hermann, R. P., Hatert, F., Fransolet, A. M., Long, G. J. & Grandjean, F. (2002). J. Solid State Chem. 4, 507–513.
  11. Hidouri, M. & Ben Amara, M. (2011). Acta Cryst. E67, i1. [DOI] [PMC free article] [PubMed]
  12. Hidouri, M., Lajmi, B., Driss, A. & Ben Amara, M. (2003). Acta Cryst. E59, i7–i9.
  13. Huang, W., Li, B., Saleem, M. F., Wu, X., Li, J., Lin, J., Xia, D., Chu, W. & Wu, Z. (2015). Chem. Eur. J. 21, 851–860. [DOI] [PubMed]
  14. Kacimi, M., Ziyad, M. & Hatert, F. (2005). Mater. Res. Bull. 40, 682–693.
  15. Korzenski, M. B., Schimek, G. L., Kolis, J. W. & Long, G. J. (1998). J. Solid State Chem. 139, 152–160.
  16. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  17. Warner, T. E., Milius, W. & Maier, J. (1993). J. Solid State Chem. 106, 301–309.
  18. Westrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.
  19. Zid, M. F., Driss, A. & Jouini, T. (2005). Acta Cryst. E61, i46–i48.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) I. DOI: 10.1107/S2056989015009767/pk2551sup1.cif

e-71-00690-sup1.cif (592.7KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S2056989015009767/pk2551Isup2.hkl

e-71-00690-Isup2.hkl (169KB, hkl)

CCDC reference: 1402019

Additional supporting information: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Crystallographic Communications are provided here courtesy of International Union of Crystallography

RESOURCES