Skip to main content
Acta Crystallographica Section E: Crystallographic Communications logoLink to Acta Crystallographica Section E: Crystallographic Communications
. 2015 May 20;71(Pt 6):650–653. doi: 10.1107/S2056989015009184

Crystal structure of trans-bis­(ethane-1,2-diamine-κ2 N,N′)bis­(thio­cyanato-κN)chromium(III) perchlorate from synchrotron data

Dohyun Moon a, Jong-Ha Choi b,*
PMCID: PMC4459338  PMID: 26090142

The centrosymmetric CrIII ion in the title compound shows a distorted octa­hedral coordination with four N atoms of two ethane-1,2-di­amine ligands in the equatorial plane and two N-coordinated NCS groups in trans-axial positions. The ethane-1,2-di­amine ligand in the complex cation and the ClO4 anion are both disordered.

Keywords: crystal structure; synchrotron radiation; ethane-1,2-di­amine; thio­cyanate; trans-geometry; chromium(III) complex; hydrogen bonds

Abstract

The structure of the title compound, [Cr(NCS)2(C2H8N2)2]ClO4, has been determined from synchroton data. The asymmetric unit consists of one half of a centrosymmetric CrIII complex cation and half of a perchlorate anion with the Cl atom on a twofold rotation axis. The CrIII ion is coordinated by the four N atoms of two ethane-1,2-di­amine (en) ligands in the equatorial plane and two N-bound thio­cyanate (NCS) anions in a trans-axial arrangement, displaying a slightly distorted octa­hedral geometry with crystallographic inversion symmetry. The Cr—N(en) bond lengths are in the range 2.053 (16)–2.09 (2) Å, while the Cr—N(thio­cyanate) bond length is 1.983 (2) Å. The five-membered en rings are disordered over two sites, with occupancy ratios of 0.522 (16):0.478 (16). Each ClO4 anion is disordered over two sites with equal occupancy. The crystal structure is stabilized by inter­molecular hydrogen bonds involving the en NH2 groups as donors and perchlorate O and thio­cyanate S atoms as acceptors.

Chemical context  

Considerable attention has been focussed for some time on metal complexes containing thio­cyanate ligands because of their ability to coordinate through either the N or S atoms. Ethane-1,2-di­amine (en) can coordinate to a central metal ion as a bidentate ligand via the two N atoms, forming a five-membered chelate ring. The [Cr(NCS)2(en)2]+ cation can form either trans or cis geometric isomers. Trans and cis isomers of the complex cation with SCN or ClO4 counter-anions have been prepared and their IR spectral properties reported (House, 1973; Sandrini et al., 1978; De et al., 1987). IR and electronic spectral properties are useful in determining the geometric isomers of chromium(III) complexes with mixed ligands (Choi, 2000; Choi et al., 2004; Choi & Moon, 2014). However, it should be noted that the geometric assignments based on spectroscopic studies are not always definitive.graphic file with name e-71-00650-scheme1.jpg

In a recent publication, we described the synthesis and crystal structure of trans-[Cr(NCS)2(en)2]2[ZnCl4] (Moon & Choi, 2015). The asymmetric unit of this complex contained four halves of centrosymmetric [Cr(NCS)2(en)2]+ complex cations and one [ZnCl4]2− anion. To compare and contrast this structure with a complex of this cation with a different counter-anion we report here the structure of trans-[Cr(NCS)2(en)2]ClO4, (I).

Structural commentary  

Fig. 1 shows an ellipsoid plot of trans-[Cr(NCS)2(en)2]ClO4, (I), with the atom-numbering scheme. In the structure of (I), there is a centrosymmetric CrIII complex cation with two en ligands bound through their N atoms in equatorial sites and the two axial N-bound thio­cyanate anions in a trans configuration. The asymmetric unit is composed of half of one complex cation and half a ClO4 anion. The CrIII atom is located on a crystallographic centre of symmetry, so this complex cation has mol­ecular Ci symmetry, while the the Cl atom of the perchlorate anion lies on a twofold rotation axis. The bidentate en ligand adopts a stable gauche conformation similar to that observed in related compounds (Brenčič & Leban, 1981; Choi et al., 2010). The Cr—N bond lengths for the en ligand range from 2.053 (16) to 2.09 (2) Å, and these bond lengths are in good agreement with those observed in trans-[CrF2(en)2]ClO4 (Brenčič & Leban, 1981), trans-[CrBr2(en)2]ClO4 (Choi et al., 2010), trans-[CrCl2(Me2tn)2]2ZnCl4 (Me2tn = 2,2-di­methyl­propane-1,3-di­amine; Choi et al., 2011) and trans-[CrF2(2,2,3-tet)]ClO4 (2,2,3-tet = 1,4,7,11-tetra­aza­undecane; Choi & Moon, 2014). The Cr—N(thio­cyanate) bond length is 1.983 (2) Å and is similar to the average values of 1.985 (2), 1.995 (6), 1.983 (2) and 1.996 (15) Å found in trans-[Cr(NCS)2(en)2]2ZnCl4 (Moon & Choi, 2015), trans-[Cr(NCS)2(cyclam)]2ZnCl4 (cyclam = 1,4,8,11-tetra­aza­cyclo­tetra­decane (Moon et al., 2015), trans-[Cr(NCS)2(Me2tn)2]NCS (Choi & Lee, 2009) and cis-[Cr(NCS)2(cyclam)]NCS (Moon et al., 2013), respectively. The N-coordinated iso­thio­cyanate group is almost linear, with an N—C—S angle of 179.3 (3)°. The ClO4 counter-anion lies well outside the coordination sphere of the complex and, because of significant disorder, the tetra­hedral geometry of this anion is severely distorted.

Figure 1.

Figure 1

The mol­ecular structure of (I), drawn with 20% probability displacement ellipsoids. Atoms of the minor disorder components have been omitted for clarity.

Supra­molecular features  

In the crystal, an N—H⋯S hydrogen bond links neighbouring cations, while a series of N—H⋯O contacts link the cations to neighbouring anions (Table 1). An extensive array of these contacts generate a three-dimensional network of mol­ecules stacked along the b-axis direction (Fig. 2). These hydrogen-bonded networks help to stabilize the crystal structure.

Table 1. Hydrogen-bond geometry (, ).

DHA DH HA D A DHA
N2AH2A1S1i 0.89 2.45 3.324(17) 167
N2AH2A2O2B ii 0.89 2.41 3.187(19) 146
N3AH3A1O1B iii 0.89 2.58 3.282(16) 136
N2BH2B1S1i 0.89 2.77 3.459(17) 135
N3BH3B1O2C iii 0.89 2.45 3.22(2) 145
N3BH3B2S1iv 0.89 2.38 3.255(18) 166

Symmetry codes: (i) Inline graphic; (ii) Inline graphic; (iii) Inline graphic; (iv) Inline graphic.

Figure 2.

Figure 2

The crystal packing of (I), viewed perpendicular to the ac plane. Dashed lines represent N—H⋯O (red) and N—H⋯S (blue) hydrogen-bonding inter­actions, respectively. The minor disorder components and C-bound H atoms have been omitted for clarity.

Database survey  

A search of the Cambridge Structural Database (Version 5.36, last update February 2015; Groom & Allen, 2014) indicates a total of 13 hits for CrIII complexes with a [CrL 2(en)2]+ unit. The crystal structures of trans-[CrCl2(en)2]Cl·HCl·2H2O (Ooi et al., 1960), trans-[CrF2(en)2]X (X = ClO4, Cl, Br) (Brenčič & Leban, 1981), cis-[CrF2(en)2]ClO4 (Brenčič et al., 1987), trans-[CrBr2(en)2]ClO4 (Choi et al., 2010) have been reported previously. Recently, we have also reported the closely related crystal structure of [Cr(NCS)2(en)2]2[ZnCl4], in which there are four crystallographically independent CrIII complex cations that also adopt a trans configuration. However, a crystal structure of [Cr(NCS)2(en)2]+ with a ClO4 anion has not been reported previously.

Synthesis and crystallization  

All chemicals were reagent grade materials and were used without further purification. The title compound, trans-[Cr(NCS)2(en)2]ClO4 was prepared according to the literature method (Sandrini et al., 1978). The crude perchlorate salt (0.33 g) was dissolved in 20 mL of 0.1 M HCl at 333 K. The filtrate was added to 6 mL of 60% HClO4. The resulting solution was allowed to stand at room temperature for 2 d to give orange block-like crystals suitable for X-ray structural analysis. IR spectrum (KBr, cm−1) : 3247 (vs), 3208 (vs), 3131 (vs) and 3097 (vs) (ν NH), 2966 (s), 2955 (s) and 2893 (s) (ν CH), 2077 (vs) (νa CN), 1586 (vs) (δ NH2), 1459 (s) (δ CH2), 1365 (m) (ν CN), 1326 (s) (ω NH2), 1290 (vs) (ω CH2), 1146 (vs) (γ NH2), 1117 (vs) (ν CN), 1088 (vs) (νa Cl—O), 1047 (vs) (γ CH2), 1007 (s), 983 (s), 873 (m) (ρ CH2), 849 (w) (ρ NH2), 729 (vs), 636 (s) and 626 (vs) (δ OClO), 558 (vs), 559 (s) (δ CCC), 501 (vs), 478 (s) (δ NCS), 444 (m) and 419 (m) (ν Cr—N).

Refinement  

Crystal data, data collection and structure refinement details are summarized in Table 2. In the title compound, the ethane-1,2-di­amine group is disordered with atoms N2A/N2B, C2A/C2B, C3A/C3B and N3A/N3B positionally disordered over two sets of sites with a refined occupancy ratio of 0.522 (16):0.478 (16). The half mol­ecules of each distorted perchlorate anion are disordered over two sites of equal occupancy, with atoms Cl1B/Cl1C and O2B/O1C refined using EXYZ/EADP constraints. All H atoms were placed in geometrically idealized positions and constrained to ride on their parent atoms, with C—H = 0.97 Å and N—H = 0.89 Å, and with U iso(H) values of 1.2 of the parent atoms.

Table 2. Experimental details.

Crystal data
Chemical formula [Cr(NCS)2(C2H8N2)2]ClO4
M r 387.82
Crystal system, space group Monoclinic, C2/c
Temperature (K) 260
a, b, c () 15.599(3), 7.4440(15), 13.792(3)
() 105.83(3)
V (3) 1540.8(6)
Z 4
Radiation type Synchrotron, = 0.630
(mm1) 0.86
Crystal size (mm) 0.14 0.13 0.13
 
Data collection
Diffractometer ADSC Q210 CCD area detector
Absorption correction Empirical (using intensity measurements) (HKL3000sm SCALEAPCK; Otwinowski Minor, 1997)
T min, T max 0.893, 0.897
No. of measured, independent and observed [I > 2(I)] reflections 8172, 2121, 2019
R int 0.015
(sin /)max (1) 0.696
 
Refinement
R[F 2 > 2(F 2)], wR(F 2), S 0.060, 0.178, 1.09
No. of reflections 2121
No. of parameters 140
H-atom treatment H-atom parameters constrained
max, min (e 3) 0.74, 1.12

Computer programs: PAL ADSC Quantum-210 ADX Program (Arvai Nielsen, 1983), HKL3000sm (Otwinowski Minor, 1997), SHELXT2014/5 (Sheldrick, 2015a ), SHELXL2014/7 (Sheldrick, 2015b ), DIAMOND (Putz Brandenburg, 2014) and publCIF (Westrip, 2010).

Supplementary Material

Crystal structure: contains datablock(s) I. DOI: 10.1107/S2056989015009184/sj5459sup1.cif

e-71-00650-sup1.cif (432KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S2056989015009184/sj5459Isup2.hkl

e-71-00650-Isup2.hkl (170.6KB, hkl)

CCDC reference: 1400767

Additional supporting information: crystallographic information; 3D view; checkCIF report

Acknowledgments

The X-ray crystallography experiment at the PLS-II BL2D-SMC beamline was supported in part by MISP and POSTECH.

supplementary crystallographic information

Crystal data

[Cr(NCS)2(C2H8N2)2]ClO4 F(000) = 796
Mr = 387.82 Dx = 1.672 Mg m3
Monoclinic, C2/c Synchrotron radiation, λ = 0.630 Å
a = 15.599 (3) Å Cell parameters from 46962 reflections
b = 7.4440 (15) Å θ = 0.4–33.6°
c = 13.792 (3) Å µ = 0.86 mm1
β = 105.83 (3)° T = 260 K
V = 1540.8 (6) Å3 Block, orange
Z = 4 0.14 × 0.13 × 0.13 mm

Data collection

ADSC Q210 CCD area-detector diffractometer 2019 reflections with I > 2σ(I)
Radiation source: PLSII 2D bending magnet Rint = 0.015
ω scan θmax = 26.0°, θmin = 2.7°
Absorption correction: empirical (using intensity measurements) (HKL3000sm SCALEAPCK; Otwinowski & Minor, 1997) h = −21→21
Tmin = 0.893, Tmax = 0.897 k = −10→10
8172 measured reflections l = −19→19
2121 independent reflections

Refinement

Refinement on F2 Hydrogen site location: inferred from neighbouring sites
Least-squares matrix: full H-atom parameters constrained
R[F2 > 2σ(F2)] = 0.060 w = 1/[σ2(Fo2) + (0.1146P)2 + 2.4721P] where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.178 (Δ/σ)max < 0.001
S = 1.09 Δρmax = 0.74 e Å3
2121 reflections Δρmin = −1.12 e Å3
140 parameters Extinction correction: SHELXL2014/7 (Sheldrick, 2015b), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
0 restraints Extinction coefficient: 0.045 (12)

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq Occ. (<1)
Cr1 0.2500 0.2500 0.5000 0.0273 (3)
S1 0.21080 (8) 0.77661 (11) 0.67477 (8) 0.0586 (3)
N1 0.24831 (15) 0.4775 (3) 0.57426 (17) 0.0433 (5)
C1 0.23290 (16) 0.6026 (3) 0.61573 (17) 0.0363 (5)
N2A 0.3423 (12) 0.1308 (19) 0.6213 (13) 0.036 (2) 0.522 (16)
H2A1 0.3272 0.1503 0.6781 0.043* 0.522 (16)
H2A2 0.3442 0.0127 0.6118 0.043* 0.522 (16)
N3A 0.3624 (11) 0.337 (2) 0.4641 (10) 0.043 (3) 0.522 (16)
H3A1 0.3553 0.3266 0.3981 0.052* 0.522 (16)
H3A2 0.3722 0.4525 0.4807 0.052* 0.522 (16)
C2A 0.4311 (5) 0.2126 (10) 0.6277 (8) 0.057 (2) 0.522 (16)
H2A3 0.4784 0.1375 0.6678 0.068* 0.522 (16)
H2A4 0.4355 0.3305 0.6587 0.068* 0.522 (16)
C3A 0.4385 (5) 0.2274 (14) 0.5199 (10) 0.066 (3) 0.522 (16)
H3A3 0.4943 0.2842 0.5191 0.079* 0.522 (16)
H3A4 0.4362 0.1092 0.4897 0.079* 0.522 (16)
N2B 0.3570 (13) 0.164 (2) 0.6143 (14) 0.041 (3) 0.478 (16)
H2B1 0.3654 0.2382 0.6667 0.049* 0.478 (16)
H2B2 0.3464 0.0548 0.6342 0.049* 0.478 (16)
N3B 0.3502 (13) 0.341 (3) 0.4378 (9) 0.040 (2) 0.478 (16)
H3B1 0.3527 0.2732 0.3856 0.048* 0.478 (16)
H3B2 0.3396 0.4543 0.4167 0.048* 0.478 (16)
C2B 0.4369 (4) 0.1614 (15) 0.5773 (8) 0.056 (2) 0.478 (16)
H2B3 0.4355 0.0582 0.5339 0.067* 0.478 (16)
H2B4 0.4902 0.1541 0.6334 0.067* 0.478 (16)
C3B 0.4370 (5) 0.3297 (19) 0.5203 (7) 0.060 (3) 0.478 (16)
H3B3 0.4869 0.3303 0.4911 0.072* 0.478 (16)
H3B4 0.4427 0.4322 0.5651 0.072* 0.478 (16)
Cl1B 0.5000 0.7072 (3) 0.7500 0.0989 (7) 0.5
O1B 0.4393 (4) 0.5672 (9) 0.7711 (5) 0.0762 (16) 0.5
O2B 0.4350 (6) 0.7462 (8) 0.6376 (6) 0.159 (3) 0.5
Cl1C 0.5000 0.7072 (3) 0.7500 0.0989 (7) 0.5
O1C 0.4350 (6) 0.7462 (8) 0.6376 (6) 0.159 (3) 0.5
O2C 0.4488 (11) 0.8416 (15) 0.7860 (8) 0.152 (5) 0.5

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
Cr1 0.0366 (4) 0.0229 (3) 0.0251 (3) 0.00353 (14) 0.0128 (2) −0.00135 (14)
S1 0.0988 (7) 0.0298 (4) 0.0630 (6) 0.0072 (3) 0.0492 (5) −0.0070 (3)
N1 0.0553 (12) 0.0327 (11) 0.0427 (10) 0.0052 (9) 0.0145 (9) −0.0097 (8)
C1 0.0472 (12) 0.0289 (10) 0.0356 (10) 0.0012 (9) 0.0163 (9) −0.0012 (8)
N2A 0.050 (5) 0.024 (3) 0.034 (3) −0.001 (2) 0.011 (3) 0.004 (2)
N3A 0.047 (5) 0.036 (3) 0.056 (7) 0.006 (3) 0.028 (5) 0.017 (5)
C2A 0.048 (3) 0.044 (3) 0.065 (5) −0.003 (2) −0.006 (3) −0.001 (3)
C3A 0.038 (3) 0.044 (4) 0.121 (8) 0.008 (3) 0.031 (4) 0.026 (5)
N2B 0.048 (6) 0.044 (8) 0.031 (3) 0.012 (5) 0.014 (3) 0.005 (4)
N3B 0.050 (5) 0.043 (4) 0.031 (4) 0.005 (3) 0.019 (4) 0.002 (3)
C2B 0.041 (3) 0.073 (5) 0.051 (5) 0.017 (3) 0.007 (3) 0.003 (4)
C3B 0.045 (3) 0.068 (7) 0.070 (4) −0.014 (4) 0.023 (3) −0.013 (4)
Cl1B 0.1112 (15) 0.0671 (10) 0.1316 (18) 0.000 0.0553 (13) 0.000
O1B 0.074 (3) 0.073 (4) 0.083 (4) −0.009 (3) 0.024 (3) 0.029 (3)
O2B 0.152 (6) 0.199 (8) 0.130 (5) 0.028 (4) 0.045 (5) 0.035 (4)
Cl1C 0.1112 (15) 0.0671 (10) 0.1316 (18) 0.000 0.0553 (13) 0.000
O1C 0.152 (6) 0.199 (8) 0.130 (5) 0.028 (4) 0.045 (5) 0.035 (4)
O2C 0.255 (15) 0.095 (7) 0.121 (8) −0.038 (9) 0.076 (9) −0.014 (6)

Geometric parameters (Å, º)

Cr1—N1 1.983 (2) C3A—H3A3 0.9700
Cr1—N1i 1.983 (2) C3A—H3A4 0.9700
Cr1—N3Ai 2.053 (16) N2B—C2B 1.471 (18)
Cr1—N3A 2.053 (16) N2B—H2B1 0.8900
Cr1—N2B 2.06 (2) N2B—H2B2 0.8900
Cr1—N2Bi 2.06 (2) N3B—C3B 1.514 (17)
Cr1—N2Ai 2.085 (19) N3B—H3B1 0.8900
Cr1—N2A 2.085 (19) N3B—H3B2 0.8900
Cr1—N3Bi 2.09 (2) C2B—C3B 1.479 (17)
Cr1—N3B 2.09 (2) C2B—H2B3 0.9700
S1—C1 1.617 (3) C2B—H2B4 0.9700
N1—C1 1.152 (3) C3B—H3B3 0.9700
N2A—C2A 1.493 (15) C3B—H3B4 0.9700
N2A—H2A1 0.8900 Cl1B—O1Bii 1.489 (6)
N2A—H2A2 0.8900 Cl1B—O1B 1.489 (6)
N3A—C3A 1.475 (16) Cl1B—O2Bii 1.630 (8)
N3A—H3A1 0.8900 Cl1B—O2B 1.630 (8)
N3A—H3A2 0.8900 Cl1C—O2Cii 1.450 (13)
C2A—C3A 1.527 (17) Cl1C—O2C 1.450 (13)
C2A—H2A3 0.9700 Cl1C—O1Cii 1.630 (8)
C2A—H2A4 0.9700 Cl1C—O1C 1.630 (8)
N1—Cr1—N1i 180.0 N2A—C2A—H2A4 110.4
N1—Cr1—N3Ai 90.8 (5) C3A—C2A—H2A4 110.4
N1i—Cr1—N3Ai 89.2 (5) H2A3—C2A—H2A4 108.6
N1—Cr1—N3A 89.2 (5) N3A—C3A—C2A 106.5 (10)
N1i—Cr1—N3A 90.8 (5) N3A—C3A—H3A3 110.4
N3Ai—Cr1—N3A 180.0 C2A—C3A—H3A3 110.4
N1—Cr1—N2B 89.5 (5) N3A—C3A—H3A4 110.4
N1i—Cr1—N2B 90.5 (5) C2A—C3A—H3A4 110.4
N1—Cr1—N2Bi 90.5 (5) H3A3—C3A—H3A4 108.6
N1i—Cr1—N2Bi 89.5 (5) C2B—N2B—Cr1 109.0 (9)
N2B—Cr1—N2Bi 180.0 (9) C2B—N2B—H2B1 109.9
N1—Cr1—N2Ai 87.0 (4) Cr1—N2B—H2B1 109.9
N1i—Cr1—N2Ai 93.0 (5) C2B—N2B—H2B2 109.9
N3Ai—Cr1—N2Ai 83.1 (5) Cr1—N2B—H2B2 109.9
N3A—Cr1—N2Ai 96.9 (5) H2B1—N2B—H2B2 108.3
N1—Cr1—N2A 93.0 (4) C3B—N3B—Cr1 106.7 (8)
N1i—Cr1—N2A 87.0 (4) C3B—N3B—H3B1 110.4
N3Ai—Cr1—N2A 96.9 (5) Cr1—N3B—H3B1 110.4
N3A—Cr1—N2A 83.1 (5) C3B—N3B—H3B2 110.4
N2Ai—Cr1—N2A 180.0 Cr1—N3B—H3B2 110.4
N1—Cr1—N3Bi 87.1 (5) H3B1—N3B—H3B2 108.6
N1i—Cr1—N3Bi 92.9 (5) N2B—C2B—C3B 107.1 (10)
N2B—Cr1—N3Bi 97.2 (5) N2B—C2B—H2B3 110.3
N2Bi—Cr1—N3Bi 82.8 (5) C3B—C2B—H2B3 110.3
N1—Cr1—N3B 92.9 (5) N2B—C2B—H2B4 110.3
N1i—Cr1—N3B 87.1 (5) C3B—C2B—H2B4 110.3
N2B—Cr1—N3B 82.8 (5) H2B3—C2B—H2B4 108.5
N2Bi—Cr1—N3B 97.2 (5) C2B—C3B—N3B 108.6 (10)
N3Bi—Cr1—N3B 180.0 C2B—C3B—H3B3 110.0
C1—N1—Cr1 168.7 (2) N3B—C3B—H3B3 110.0
N1—C1—S1 179.3 (3) C2B—C3B—H3B4 110.0
C2A—N2A—Cr1 107.5 (7) N3B—C3B—H3B4 110.0
C2A—N2A—H2A1 110.2 H3B3—C3B—H3B4 108.4
Cr1—N2A—H2A1 110.2 O1Bii—Cl1B—O1B 91.2 (5)
C2A—N2A—H2A2 110.2 O1Bii—Cl1B—O2Bii 92.7 (4)
Cr1—N2A—H2A2 110.2 O1B—Cl1B—O2Bii 101.7 (3)
H2A1—N2A—H2A2 108.5 O1Bii—Cl1B—O2B 101.7 (3)
C3A—N3A—Cr1 108.5 (8) O1B—Cl1B—O2B 92.7 (4)
C3A—N3A—H3A1 110.0 O2Bii—Cl1B—O2B 159.4 (5)
Cr1—N3A—H3A1 110.0 O2Cii—Cl1C—O2C 92.7 (9)
C3A—N3A—H3A2 110.0 O2Cii—Cl1C—O1Cii 86.8 (6)
Cr1—N3A—H3A2 110.0 O2C—Cl1C—O1Cii 79.0 (6)
H3A1—N3A—H3A2 108.4 O2Cii—Cl1C—O1C 79.0 (6)
N2A—C2A—C3A 106.7 (9) O2C—Cl1C—O1C 86.8 (6)
N2A—C2A—H2A3 110.4 O1Cii—Cl1C—O1C 159.4 (5)
C3A—C2A—H2A3 110.4
Cr1—N2A—C2A—C3A −42.0 (11) Cr1—N2B—C2B—C3B 44.2 (13)
Cr1—N3A—C3A—C2A −44.8 (13) N2B—C2B—C3B—N3B −56.3 (15)
N2A—C2A—C3A—N3A 57.9 (14) Cr1—N3B—C3B—C2B 40.2 (12)

Symmetry codes: (i) −x+1/2, −y+1/2, −z+1; (ii) −x+1, y, −z+3/2.

Hydrogen-bond geometry (Å, º)

D—H···A D—H H···A D···A D—H···A
N2A—H2A1···S1iii 0.89 2.45 3.324 (17) 167
N2A—H2A2···O2Biv 0.89 2.41 3.187 (19) 146
N3A—H3A1···O1Bv 0.89 2.58 3.282 (16) 136
N2B—H2B1···S1iii 0.89 2.77 3.459 (17) 135
N3B—H3B1···O2Cv 0.89 2.45 3.22 (2) 145
N3B—H3B2···S1vi 0.89 2.38 3.255 (18) 166

Symmetry codes: (iii) −x+1/2, y−1/2, −z+3/2; (iv) x, y−1, z; (v) x, −y+1, z−1/2; (vi) −x+1/2, −y+3/2, −z+1.

References

  1. Arvai, A. J. & Nielsen, C. (1983). ADSC Quantum-210 ADX. Area Detector System Corporation, Poway, CA, USA.
  2. Brenčič, J. V. & Leban, I. (1981). Z. Anorg. Allg. Chem. 480, 213–219.
  3. Brenčič, J. V., Leban, I. & Polanc, I. (1987). Acta Cryst. C43, 885–887.
  4. Choi, J.-H. (2000). Chem. Phys. 256, 29–35.
  5. Choi, J.-H., Clegg, W., Harrington, R. W. & Lee, S. H. (2010). J. Chem. Crystallogr. 40, 567–571.
  6. Choi, J.-H., Joshi, T. & Spiccia, L. (2011). Z. Anorg. Allg. Chem. 637, 1194–1198.
  7. Choi, J.-H. & Lee, S. H. (2009). J. Mol. Struct 932, 84–89.
  8. Choi, J.-H. & Moon, D. (2014). J. Mol. Struct. 1059, 325–331.
  9. Choi, J.-H., Oh, I. G., Suzuki, T. & Kaizaki, S. (2004). J. Mol. Struct 694, 39–44.
  10. De, G., Szuki, M. & Uehara, A. (1987). Bull. Chem. Soc. Jpn, 60, 2871-2874.
  11. Groom, C. R. & Allen, F. H. (2014). Angew. Chem. Int. Ed. 35, 3103-3111.
  12. House, D. A. (1973). J. Inorg. Nucl. Chem. 53, 662–671.
  13. Moon, D. & Choi, J.-H. (2015). Acta Cryst. E71, 100–103. [DOI] [PMC free article] [PubMed]
  14. Moon, D., Choi, J.-H., Ryoo, K. S. & Hong, Y. P. (2013). Acta Cryst. E69, m376–m377. [DOI] [PMC free article] [PubMed]
  15. Moon, D., Ryoo, K. S. & Choi, J.-H. (2015). Acta Cryst. E71, 540–543. [DOI] [PMC free article] [PubMed]
  16. Ooi, S., Komiyama, Y. & Kuroya, H. (1960). Bull. Chem. Soc. Jpn, 33, 354–357.
  17. Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press.
  18. Putz, H. & Brandenburg, K. (2014). DIAMOND. Crystal Impact GbR, Bonn, Germany.
  19. Sandrini, D., Gandolfi, M. T., Moggi, L. & Balzani, V. (1978). J. Am. Chem. Soc 100, 1463–1468.
  20. Sheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.
  21. Sheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.
  22. Westrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) I. DOI: 10.1107/S2056989015009184/sj5459sup1.cif

e-71-00650-sup1.cif (432KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S2056989015009184/sj5459Isup2.hkl

e-71-00650-Isup2.hkl (170.6KB, hkl)

CCDC reference: 1400767

Additional supporting information: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Crystallographic Communications are provided here courtesy of International Union of Crystallography

RESOURCES