The centrosymmetric CrIII ion in the title compound shows a distorted octahedral coordination with four N atoms of two ethane-1,2-diamine ligands in the equatorial plane and two N-coordinated NCS− groups in trans-axial positions. The ethane-1,2-diamine ligand in the complex cation and the ClO4 − anion are both disordered.
Keywords: crystal structure; synchrotron radiation; ethane-1,2-diamine; thiocyanate; trans-geometry; chromium(III) complex; hydrogen bonds
Abstract
The structure of the title compound, [Cr(NCS)2(C2H8N2)2]ClO4, has been determined from synchroton data. The asymmetric unit consists of one half of a centrosymmetric CrIII complex cation and half of a perchlorate anion with the Cl atom on a twofold rotation axis. The CrIII ion is coordinated by the four N atoms of two ethane-1,2-diamine (en) ligands in the equatorial plane and two N-bound thiocyanate (NCS−) anions in a trans-axial arrangement, displaying a slightly distorted octahedral geometry with crystallographic inversion symmetry. The Cr—N(en) bond lengths are in the range 2.053 (16)–2.09 (2) Å, while the Cr—N(thiocyanate) bond length is 1.983 (2) Å. The five-membered en rings are disordered over two sites, with occupancy ratios of 0.522 (16):0.478 (16). Each ClO4 − anion is disordered over two sites with equal occupancy. The crystal structure is stabilized by intermolecular hydrogen bonds involving the en NH2 groups as donors and perchlorate O and thiocyanate S atoms as acceptors.
Chemical context
Considerable attention has been focussed for some time on metal complexes containing thiocyanate ligands because of their ability to coordinate through either the N or S atoms. Ethane-1,2-diamine (en) can coordinate to a central metal ion as a bidentate ligand via the two N atoms, forming a five-membered chelate ring. The [Cr(NCS)2(en)2]+ cation can form either trans or cis geometric isomers. Trans and cis isomers of the complex cation with SCN− or ClO4
− counter-anions have been prepared and their IR spectral properties reported (House, 1973 ▸; Sandrini et al., 1978 ▸; De et al., 1987 ▸). IR and electronic spectral properties are useful in determining the geometric isomers of chromium(III) complexes with mixed ligands (Choi, 2000 ▸; Choi et al., 2004 ▸; Choi & Moon, 2014 ▸). However, it should be noted that the geometric assignments based on spectroscopic studies are not always definitive.
In a recent publication, we described the synthesis and crystal structure of trans-[Cr(NCS)2(en)2]2[ZnCl4] (Moon & Choi, 2015 ▸). The asymmetric unit of this complex contained four halves of centrosymmetric [Cr(NCS)2(en)2]+ complex cations and one [ZnCl4]2− anion. To compare and contrast this structure with a complex of this cation with a different counter-anion we report here the structure of trans-[Cr(NCS)2(en)2]ClO4, (I).
Structural commentary
Fig. 1 ▸ shows an ellipsoid plot of trans-[Cr(NCS)2(en)2]ClO4, (I), with the atom-numbering scheme. In the structure of (I), there is a centrosymmetric CrIII complex cation with two en ligands bound through their N atoms in equatorial sites and the two axial N-bound thiocyanate anions in a trans configuration. The asymmetric unit is composed of half of one complex cation and half a ClO4 − anion. The CrIII atom is located on a crystallographic centre of symmetry, so this complex cation has molecular Ci symmetry, while the the Cl atom of the perchlorate anion lies on a twofold rotation axis. The bidentate en ligand adopts a stable gauche conformation similar to that observed in related compounds (Brenčič & Leban, 1981 ▸; Choi et al., 2010 ▸). The Cr—N bond lengths for the en ligand range from 2.053 (16) to 2.09 (2) Å, and these bond lengths are in good agreement with those observed in trans-[CrF2(en)2]ClO4 (Brenčič & Leban, 1981 ▸), trans-[CrBr2(en)2]ClO4 (Choi et al., 2010 ▸), trans-[CrCl2(Me2tn)2]2ZnCl4 (Me2tn = 2,2-dimethylpropane-1,3-diamine; Choi et al., 2011 ▸) and trans-[CrF2(2,2,3-tet)]ClO4 (2,2,3-tet = 1,4,7,11-tetraazaundecane; Choi & Moon, 2014 ▸). The Cr—N(thiocyanate) bond length is 1.983 (2) Å and is similar to the average values of 1.985 (2), 1.995 (6), 1.983 (2) and 1.996 (15) Å found in trans-[Cr(NCS)2(en)2]2ZnCl4 (Moon & Choi, 2015 ▸), trans-[Cr(NCS)2(cyclam)]2ZnCl4 (cyclam = 1,4,8,11-tetraazacyclotetradecane (Moon et al., 2015 ▸), trans-[Cr(NCS)2(Me2tn)2]NCS (Choi & Lee, 2009 ▸) and cis-[Cr(NCS)2(cyclam)]NCS (Moon et al., 2013 ▸), respectively. The N-coordinated isothiocyanate group is almost linear, with an N—C—S angle of 179.3 (3)°. The ClO4 − counter-anion lies well outside the coordination sphere of the complex and, because of significant disorder, the tetrahedral geometry of this anion is severely distorted.
Figure 1.
The molecular structure of (I), drawn with 20% probability displacement ellipsoids. Atoms of the minor disorder components have been omitted for clarity.
Supramolecular features
In the crystal, an N—H⋯S hydrogen bond links neighbouring cations, while a series of N—H⋯O contacts link the cations to neighbouring anions (Table 1 ▸). An extensive array of these contacts generate a three-dimensional network of molecules stacked along the b-axis direction (Fig. 2 ▸). These hydrogen-bonded networks help to stabilize the crystal structure.
Table 1. Hydrogen-bond geometry (, ).
| DHA | DH | HA | D A | DHA |
|---|---|---|---|---|
| N2AH2A1S1i | 0.89 | 2.45 | 3.324(17) | 167 |
| N2AH2A2O2B ii | 0.89 | 2.41 | 3.187(19) | 146 |
| N3AH3A1O1B iii | 0.89 | 2.58 | 3.282(16) | 136 |
| N2BH2B1S1i | 0.89 | 2.77 | 3.459(17) | 135 |
| N3BH3B1O2C iii | 0.89 | 2.45 | 3.22(2) | 145 |
| N3BH3B2S1iv | 0.89 | 2.38 | 3.255(18) | 166 |
Symmetry codes: (i)
; (ii)
; (iii)
; (iv)
.
Figure 2.
The crystal packing of (I), viewed perpendicular to the ac plane. Dashed lines represent N—H⋯O (red) and N—H⋯S (blue) hydrogen-bonding interactions, respectively. The minor disorder components and C-bound H atoms have been omitted for clarity.
Database survey
A search of the Cambridge Structural Database (Version 5.36, last update February 2015; Groom & Allen, 2014 ▸) indicates a total of 13 hits for CrIII complexes with a [CrL 2(en)2]+ unit. The crystal structures of trans-[CrCl2(en)2]Cl·HCl·2H2O (Ooi et al., 1960 ▸), trans-[CrF2(en)2]X (X = ClO4, Cl, Br) (Brenčič & Leban, 1981 ▸), cis-[CrF2(en)2]ClO4 (Brenčič et al., 1987 ▸), trans-[CrBr2(en)2]ClO4 (Choi et al., 2010 ▸) have been reported previously. Recently, we have also reported the closely related crystal structure of [Cr(NCS)2(en)2]2[ZnCl4], in which there are four crystallographically independent CrIII complex cations that also adopt a trans configuration. However, a crystal structure of [Cr(NCS)2(en)2]+ with a ClO4 anion has not been reported previously.
Synthesis and crystallization
All chemicals were reagent grade materials and were used without further purification. The title compound, trans-[Cr(NCS)2(en)2]ClO4 was prepared according to the literature method (Sandrini et al., 1978 ▸). The crude perchlorate salt (0.33 g) was dissolved in 20 mL of 0.1 M HCl at 333 K. The filtrate was added to 6 mL of 60% HClO4. The resulting solution was allowed to stand at room temperature for 2 d to give orange block-like crystals suitable for X-ray structural analysis. IR spectrum (KBr, cm−1) : 3247 (vs), 3208 (vs), 3131 (vs) and 3097 (vs) (ν NH), 2966 (s), 2955 (s) and 2893 (s) (ν CH), 2077 (vs) (νa CN), 1586 (vs) (δ NH2), 1459 (s) (δ CH2), 1365 (m) (ν CN), 1326 (s) (ω NH2), 1290 (vs) (ω CH2), 1146 (vs) (γ NH2), 1117 (vs) (ν CN), 1088 (vs) (νa Cl—O), 1047 (vs) (γ CH2), 1007 (s), 983 (s), 873 (m) (ρ CH2), 849 (w) (ρ NH2), 729 (vs), 636 (s) and 626 (vs) (δ OClO), 558 (vs), 559 (s) (δ CCC), 501 (vs), 478 (s) (δ NCS), 444 (m) and 419 (m) (ν Cr—N).
Refinement
Crystal data, data collection and structure refinement details are summarized in Table 2 ▸. In the title compound, the ethane-1,2-diamine group is disordered with atoms N2A/N2B, C2A/C2B, C3A/C3B and N3A/N3B positionally disordered over two sets of sites with a refined occupancy ratio of 0.522 (16):0.478 (16). The half molecules of each distorted perchlorate anion are disordered over two sites of equal occupancy, with atoms Cl1B/Cl1C and O2B/O1C refined using EXYZ/EADP constraints. All H atoms were placed in geometrically idealized positions and constrained to ride on their parent atoms, with C—H = 0.97 Å and N—H = 0.89 Å, and with U iso(H) values of 1.2 of the parent atoms.
Table 2. Experimental details.
| Crystal data | |
| Chemical formula | [Cr(NCS)2(C2H8N2)2]ClO4 |
| M r | 387.82 |
| Crystal system, space group | Monoclinic, C2/c |
| Temperature (K) | 260 |
| a, b, c () | 15.599(3), 7.4440(15), 13.792(3) |
| () | 105.83(3) |
| V (3) | 1540.8(6) |
| Z | 4 |
| Radiation type | Synchrotron, = 0.630 |
| (mm1) | 0.86 |
| Crystal size (mm) | 0.14 0.13 0.13 |
| Data collection | |
| Diffractometer | ADSC Q210 CCD area detector |
| Absorption correction | Empirical (using intensity measurements) (HKL3000sm SCALEAPCK; Otwinowski Minor, 1997 ▸) |
| T min, T max | 0.893, 0.897 |
| No. of measured, independent and observed [I > 2(I)] reflections | 8172, 2121, 2019 |
| R int | 0.015 |
| (sin /)max (1) | 0.696 |
| Refinement | |
| R[F 2 > 2(F 2)], wR(F 2), S | 0.060, 0.178, 1.09 |
| No. of reflections | 2121 |
| No. of parameters | 140 |
| H-atom treatment | H-atom parameters constrained |
| max, min (e 3) | 0.74, 1.12 |
Supplementary Material
Crystal structure: contains datablock(s) I. DOI: 10.1107/S2056989015009184/sj5459sup1.cif
Structure factors: contains datablock(s) I. DOI: 10.1107/S2056989015009184/sj5459Isup2.hkl
CCDC reference: 1400767
Additional supporting information: crystallographic information; 3D view; checkCIF report
Acknowledgments
The X-ray crystallography experiment at the PLS-II BL2D-SMC beamline was supported in part by MISP and POSTECH.
supplementary crystallographic information
Crystal data
| [Cr(NCS)2(C2H8N2)2]ClO4 | F(000) = 796 |
| Mr = 387.82 | Dx = 1.672 Mg m−3 |
| Monoclinic, C2/c | Synchrotron radiation, λ = 0.630 Å |
| a = 15.599 (3) Å | Cell parameters from 46962 reflections |
| b = 7.4440 (15) Å | θ = 0.4–33.6° |
| c = 13.792 (3) Å | µ = 0.86 mm−1 |
| β = 105.83 (3)° | T = 260 K |
| V = 1540.8 (6) Å3 | Block, orange |
| Z = 4 | 0.14 × 0.13 × 0.13 mm |
Data collection
| ADSC Q210 CCD area-detector diffractometer | 2019 reflections with I > 2σ(I) |
| Radiation source: PLSII 2D bending magnet | Rint = 0.015 |
| ω scan | θmax = 26.0°, θmin = 2.7° |
| Absorption correction: empirical (using intensity measurements) (HKL3000sm SCALEAPCK; Otwinowski & Minor, 1997) | h = −21→21 |
| Tmin = 0.893, Tmax = 0.897 | k = −10→10 |
| 8172 measured reflections | l = −19→19 |
| 2121 independent reflections |
Refinement
| Refinement on F2 | Hydrogen site location: inferred from neighbouring sites |
| Least-squares matrix: full | H-atom parameters constrained |
| R[F2 > 2σ(F2)] = 0.060 | w = 1/[σ2(Fo2) + (0.1146P)2 + 2.4721P] where P = (Fo2 + 2Fc2)/3 |
| wR(F2) = 0.178 | (Δ/σ)max < 0.001 |
| S = 1.09 | Δρmax = 0.74 e Å−3 |
| 2121 reflections | Δρmin = −1.12 e Å−3 |
| 140 parameters | Extinction correction: SHELXL2014/7 (Sheldrick, 2015b), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4 |
| 0 restraints | Extinction coefficient: 0.045 (12) |
Special details
| Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)
| x | y | z | Uiso*/Ueq | Occ. (<1) | |
| Cr1 | 0.2500 | 0.2500 | 0.5000 | 0.0273 (3) | |
| S1 | 0.21080 (8) | 0.77661 (11) | 0.67477 (8) | 0.0586 (3) | |
| N1 | 0.24831 (15) | 0.4775 (3) | 0.57426 (17) | 0.0433 (5) | |
| C1 | 0.23290 (16) | 0.6026 (3) | 0.61573 (17) | 0.0363 (5) | |
| N2A | 0.3423 (12) | 0.1308 (19) | 0.6213 (13) | 0.036 (2) | 0.522 (16) |
| H2A1 | 0.3272 | 0.1503 | 0.6781 | 0.043* | 0.522 (16) |
| H2A2 | 0.3442 | 0.0127 | 0.6118 | 0.043* | 0.522 (16) |
| N3A | 0.3624 (11) | 0.337 (2) | 0.4641 (10) | 0.043 (3) | 0.522 (16) |
| H3A1 | 0.3553 | 0.3266 | 0.3981 | 0.052* | 0.522 (16) |
| H3A2 | 0.3722 | 0.4525 | 0.4807 | 0.052* | 0.522 (16) |
| C2A | 0.4311 (5) | 0.2126 (10) | 0.6277 (8) | 0.057 (2) | 0.522 (16) |
| H2A3 | 0.4784 | 0.1375 | 0.6678 | 0.068* | 0.522 (16) |
| H2A4 | 0.4355 | 0.3305 | 0.6587 | 0.068* | 0.522 (16) |
| C3A | 0.4385 (5) | 0.2274 (14) | 0.5199 (10) | 0.066 (3) | 0.522 (16) |
| H3A3 | 0.4943 | 0.2842 | 0.5191 | 0.079* | 0.522 (16) |
| H3A4 | 0.4362 | 0.1092 | 0.4897 | 0.079* | 0.522 (16) |
| N2B | 0.3570 (13) | 0.164 (2) | 0.6143 (14) | 0.041 (3) | 0.478 (16) |
| H2B1 | 0.3654 | 0.2382 | 0.6667 | 0.049* | 0.478 (16) |
| H2B2 | 0.3464 | 0.0548 | 0.6342 | 0.049* | 0.478 (16) |
| N3B | 0.3502 (13) | 0.341 (3) | 0.4378 (9) | 0.040 (2) | 0.478 (16) |
| H3B1 | 0.3527 | 0.2732 | 0.3856 | 0.048* | 0.478 (16) |
| H3B2 | 0.3396 | 0.4543 | 0.4167 | 0.048* | 0.478 (16) |
| C2B | 0.4369 (4) | 0.1614 (15) | 0.5773 (8) | 0.056 (2) | 0.478 (16) |
| H2B3 | 0.4355 | 0.0582 | 0.5339 | 0.067* | 0.478 (16) |
| H2B4 | 0.4902 | 0.1541 | 0.6334 | 0.067* | 0.478 (16) |
| C3B | 0.4370 (5) | 0.3297 (19) | 0.5203 (7) | 0.060 (3) | 0.478 (16) |
| H3B3 | 0.4869 | 0.3303 | 0.4911 | 0.072* | 0.478 (16) |
| H3B4 | 0.4427 | 0.4322 | 0.5651 | 0.072* | 0.478 (16) |
| Cl1B | 0.5000 | 0.7072 (3) | 0.7500 | 0.0989 (7) | 0.5 |
| O1B | 0.4393 (4) | 0.5672 (9) | 0.7711 (5) | 0.0762 (16) | 0.5 |
| O2B | 0.4350 (6) | 0.7462 (8) | 0.6376 (6) | 0.159 (3) | 0.5 |
| Cl1C | 0.5000 | 0.7072 (3) | 0.7500 | 0.0989 (7) | 0.5 |
| O1C | 0.4350 (6) | 0.7462 (8) | 0.6376 (6) | 0.159 (3) | 0.5 |
| O2C | 0.4488 (11) | 0.8416 (15) | 0.7860 (8) | 0.152 (5) | 0.5 |
Atomic displacement parameters (Å2)
| U11 | U22 | U33 | U12 | U13 | U23 | |
| Cr1 | 0.0366 (4) | 0.0229 (3) | 0.0251 (3) | 0.00353 (14) | 0.0128 (2) | −0.00135 (14) |
| S1 | 0.0988 (7) | 0.0298 (4) | 0.0630 (6) | 0.0072 (3) | 0.0492 (5) | −0.0070 (3) |
| N1 | 0.0553 (12) | 0.0327 (11) | 0.0427 (10) | 0.0052 (9) | 0.0145 (9) | −0.0097 (8) |
| C1 | 0.0472 (12) | 0.0289 (10) | 0.0356 (10) | 0.0012 (9) | 0.0163 (9) | −0.0012 (8) |
| N2A | 0.050 (5) | 0.024 (3) | 0.034 (3) | −0.001 (2) | 0.011 (3) | 0.004 (2) |
| N3A | 0.047 (5) | 0.036 (3) | 0.056 (7) | 0.006 (3) | 0.028 (5) | 0.017 (5) |
| C2A | 0.048 (3) | 0.044 (3) | 0.065 (5) | −0.003 (2) | −0.006 (3) | −0.001 (3) |
| C3A | 0.038 (3) | 0.044 (4) | 0.121 (8) | 0.008 (3) | 0.031 (4) | 0.026 (5) |
| N2B | 0.048 (6) | 0.044 (8) | 0.031 (3) | 0.012 (5) | 0.014 (3) | 0.005 (4) |
| N3B | 0.050 (5) | 0.043 (4) | 0.031 (4) | 0.005 (3) | 0.019 (4) | 0.002 (3) |
| C2B | 0.041 (3) | 0.073 (5) | 0.051 (5) | 0.017 (3) | 0.007 (3) | 0.003 (4) |
| C3B | 0.045 (3) | 0.068 (7) | 0.070 (4) | −0.014 (4) | 0.023 (3) | −0.013 (4) |
| Cl1B | 0.1112 (15) | 0.0671 (10) | 0.1316 (18) | 0.000 | 0.0553 (13) | 0.000 |
| O1B | 0.074 (3) | 0.073 (4) | 0.083 (4) | −0.009 (3) | 0.024 (3) | 0.029 (3) |
| O2B | 0.152 (6) | 0.199 (8) | 0.130 (5) | 0.028 (4) | 0.045 (5) | 0.035 (4) |
| Cl1C | 0.1112 (15) | 0.0671 (10) | 0.1316 (18) | 0.000 | 0.0553 (13) | 0.000 |
| O1C | 0.152 (6) | 0.199 (8) | 0.130 (5) | 0.028 (4) | 0.045 (5) | 0.035 (4) |
| O2C | 0.255 (15) | 0.095 (7) | 0.121 (8) | −0.038 (9) | 0.076 (9) | −0.014 (6) |
Geometric parameters (Å, º)
| Cr1—N1 | 1.983 (2) | C3A—H3A3 | 0.9700 |
| Cr1—N1i | 1.983 (2) | C3A—H3A4 | 0.9700 |
| Cr1—N3Ai | 2.053 (16) | N2B—C2B | 1.471 (18) |
| Cr1—N3A | 2.053 (16) | N2B—H2B1 | 0.8900 |
| Cr1—N2B | 2.06 (2) | N2B—H2B2 | 0.8900 |
| Cr1—N2Bi | 2.06 (2) | N3B—C3B | 1.514 (17) |
| Cr1—N2Ai | 2.085 (19) | N3B—H3B1 | 0.8900 |
| Cr1—N2A | 2.085 (19) | N3B—H3B2 | 0.8900 |
| Cr1—N3Bi | 2.09 (2) | C2B—C3B | 1.479 (17) |
| Cr1—N3B | 2.09 (2) | C2B—H2B3 | 0.9700 |
| S1—C1 | 1.617 (3) | C2B—H2B4 | 0.9700 |
| N1—C1 | 1.152 (3) | C3B—H3B3 | 0.9700 |
| N2A—C2A | 1.493 (15) | C3B—H3B4 | 0.9700 |
| N2A—H2A1 | 0.8900 | Cl1B—O1Bii | 1.489 (6) |
| N2A—H2A2 | 0.8900 | Cl1B—O1B | 1.489 (6) |
| N3A—C3A | 1.475 (16) | Cl1B—O2Bii | 1.630 (8) |
| N3A—H3A1 | 0.8900 | Cl1B—O2B | 1.630 (8) |
| N3A—H3A2 | 0.8900 | Cl1C—O2Cii | 1.450 (13) |
| C2A—C3A | 1.527 (17) | Cl1C—O2C | 1.450 (13) |
| C2A—H2A3 | 0.9700 | Cl1C—O1Cii | 1.630 (8) |
| C2A—H2A4 | 0.9700 | Cl1C—O1C | 1.630 (8) |
| N1—Cr1—N1i | 180.0 | N2A—C2A—H2A4 | 110.4 |
| N1—Cr1—N3Ai | 90.8 (5) | C3A—C2A—H2A4 | 110.4 |
| N1i—Cr1—N3Ai | 89.2 (5) | H2A3—C2A—H2A4 | 108.6 |
| N1—Cr1—N3A | 89.2 (5) | N3A—C3A—C2A | 106.5 (10) |
| N1i—Cr1—N3A | 90.8 (5) | N3A—C3A—H3A3 | 110.4 |
| N3Ai—Cr1—N3A | 180.0 | C2A—C3A—H3A3 | 110.4 |
| N1—Cr1—N2B | 89.5 (5) | N3A—C3A—H3A4 | 110.4 |
| N1i—Cr1—N2B | 90.5 (5) | C2A—C3A—H3A4 | 110.4 |
| N1—Cr1—N2Bi | 90.5 (5) | H3A3—C3A—H3A4 | 108.6 |
| N1i—Cr1—N2Bi | 89.5 (5) | C2B—N2B—Cr1 | 109.0 (9) |
| N2B—Cr1—N2Bi | 180.0 (9) | C2B—N2B—H2B1 | 109.9 |
| N1—Cr1—N2Ai | 87.0 (4) | Cr1—N2B—H2B1 | 109.9 |
| N1i—Cr1—N2Ai | 93.0 (5) | C2B—N2B—H2B2 | 109.9 |
| N3Ai—Cr1—N2Ai | 83.1 (5) | Cr1—N2B—H2B2 | 109.9 |
| N3A—Cr1—N2Ai | 96.9 (5) | H2B1—N2B—H2B2 | 108.3 |
| N1—Cr1—N2A | 93.0 (4) | C3B—N3B—Cr1 | 106.7 (8) |
| N1i—Cr1—N2A | 87.0 (4) | C3B—N3B—H3B1 | 110.4 |
| N3Ai—Cr1—N2A | 96.9 (5) | Cr1—N3B—H3B1 | 110.4 |
| N3A—Cr1—N2A | 83.1 (5) | C3B—N3B—H3B2 | 110.4 |
| N2Ai—Cr1—N2A | 180.0 | Cr1—N3B—H3B2 | 110.4 |
| N1—Cr1—N3Bi | 87.1 (5) | H3B1—N3B—H3B2 | 108.6 |
| N1i—Cr1—N3Bi | 92.9 (5) | N2B—C2B—C3B | 107.1 (10) |
| N2B—Cr1—N3Bi | 97.2 (5) | N2B—C2B—H2B3 | 110.3 |
| N2Bi—Cr1—N3Bi | 82.8 (5) | C3B—C2B—H2B3 | 110.3 |
| N1—Cr1—N3B | 92.9 (5) | N2B—C2B—H2B4 | 110.3 |
| N1i—Cr1—N3B | 87.1 (5) | C3B—C2B—H2B4 | 110.3 |
| N2B—Cr1—N3B | 82.8 (5) | H2B3—C2B—H2B4 | 108.5 |
| N2Bi—Cr1—N3B | 97.2 (5) | C2B—C3B—N3B | 108.6 (10) |
| N3Bi—Cr1—N3B | 180.0 | C2B—C3B—H3B3 | 110.0 |
| C1—N1—Cr1 | 168.7 (2) | N3B—C3B—H3B3 | 110.0 |
| N1—C1—S1 | 179.3 (3) | C2B—C3B—H3B4 | 110.0 |
| C2A—N2A—Cr1 | 107.5 (7) | N3B—C3B—H3B4 | 110.0 |
| C2A—N2A—H2A1 | 110.2 | H3B3—C3B—H3B4 | 108.4 |
| Cr1—N2A—H2A1 | 110.2 | O1Bii—Cl1B—O1B | 91.2 (5) |
| C2A—N2A—H2A2 | 110.2 | O1Bii—Cl1B—O2Bii | 92.7 (4) |
| Cr1—N2A—H2A2 | 110.2 | O1B—Cl1B—O2Bii | 101.7 (3) |
| H2A1—N2A—H2A2 | 108.5 | O1Bii—Cl1B—O2B | 101.7 (3) |
| C3A—N3A—Cr1 | 108.5 (8) | O1B—Cl1B—O2B | 92.7 (4) |
| C3A—N3A—H3A1 | 110.0 | O2Bii—Cl1B—O2B | 159.4 (5) |
| Cr1—N3A—H3A1 | 110.0 | O2Cii—Cl1C—O2C | 92.7 (9) |
| C3A—N3A—H3A2 | 110.0 | O2Cii—Cl1C—O1Cii | 86.8 (6) |
| Cr1—N3A—H3A2 | 110.0 | O2C—Cl1C—O1Cii | 79.0 (6) |
| H3A1—N3A—H3A2 | 108.4 | O2Cii—Cl1C—O1C | 79.0 (6) |
| N2A—C2A—C3A | 106.7 (9) | O2C—Cl1C—O1C | 86.8 (6) |
| N2A—C2A—H2A3 | 110.4 | O1Cii—Cl1C—O1C | 159.4 (5) |
| C3A—C2A—H2A3 | 110.4 | ||
| Cr1—N2A—C2A—C3A | −42.0 (11) | Cr1—N2B—C2B—C3B | 44.2 (13) |
| Cr1—N3A—C3A—C2A | −44.8 (13) | N2B—C2B—C3B—N3B | −56.3 (15) |
| N2A—C2A—C3A—N3A | 57.9 (14) | Cr1—N3B—C3B—C2B | 40.2 (12) |
Symmetry codes: (i) −x+1/2, −y+1/2, −z+1; (ii) −x+1, y, −z+3/2.
Hydrogen-bond geometry (Å, º)
| D—H···A | D—H | H···A | D···A | D—H···A |
| N2A—H2A1···S1iii | 0.89 | 2.45 | 3.324 (17) | 167 |
| N2A—H2A2···O2Biv | 0.89 | 2.41 | 3.187 (19) | 146 |
| N3A—H3A1···O1Bv | 0.89 | 2.58 | 3.282 (16) | 136 |
| N2B—H2B1···S1iii | 0.89 | 2.77 | 3.459 (17) | 135 |
| N3B—H3B1···O2Cv | 0.89 | 2.45 | 3.22 (2) | 145 |
| N3B—H3B2···S1vi | 0.89 | 2.38 | 3.255 (18) | 166 |
Symmetry codes: (iii) −x+1/2, y−1/2, −z+3/2; (iv) x, y−1, z; (v) x, −y+1, z−1/2; (vi) −x+1/2, −y+3/2, −z+1.
References
- Arvai, A. J. & Nielsen, C. (1983). ADSC Quantum-210 ADX. Area Detector System Corporation, Poway, CA, USA.
- Brenčič, J. V. & Leban, I. (1981). Z. Anorg. Allg. Chem. 480, 213–219.
- Brenčič, J. V., Leban, I. & Polanc, I. (1987). Acta Cryst. C43, 885–887.
- Choi, J.-H. (2000). Chem. Phys. 256, 29–35.
- Choi, J.-H., Clegg, W., Harrington, R. W. & Lee, S. H. (2010). J. Chem. Crystallogr. 40, 567–571.
- Choi, J.-H., Joshi, T. & Spiccia, L. (2011). Z. Anorg. Allg. Chem. 637, 1194–1198.
- Choi, J.-H. & Lee, S. H. (2009). J. Mol. Struct 932, 84–89.
- Choi, J.-H. & Moon, D. (2014). J. Mol. Struct. 1059, 325–331.
- Choi, J.-H., Oh, I. G., Suzuki, T. & Kaizaki, S. (2004). J. Mol. Struct 694, 39–44.
- De, G., Szuki, M. & Uehara, A. (1987). Bull. Chem. Soc. Jpn, 60, 2871-2874.
- Groom, C. R. & Allen, F. H. (2014). Angew. Chem. Int. Ed. 35, 3103-3111.
- House, D. A. (1973). J. Inorg. Nucl. Chem. 53, 662–671.
- Moon, D. & Choi, J.-H. (2015). Acta Cryst. E71, 100–103. [DOI] [PMC free article] [PubMed]
- Moon, D., Choi, J.-H., Ryoo, K. S. & Hong, Y. P. (2013). Acta Cryst. E69, m376–m377. [DOI] [PMC free article] [PubMed]
- Moon, D., Ryoo, K. S. & Choi, J.-H. (2015). Acta Cryst. E71, 540–543. [DOI] [PMC free article] [PubMed]
- Ooi, S., Komiyama, Y. & Kuroya, H. (1960). Bull. Chem. Soc. Jpn, 33, 354–357.
- Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press.
- Putz, H. & Brandenburg, K. (2014). DIAMOND. Crystal Impact GbR, Bonn, Germany.
- Sandrini, D., Gandolfi, M. T., Moggi, L. & Balzani, V. (1978). J. Am. Chem. Soc 100, 1463–1468.
- Sheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.
- Sheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.
- Westrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.
Associated Data
This section collects any data citations, data availability statements, or supplementary materials included in this article.
Supplementary Materials
Crystal structure: contains datablock(s) I. DOI: 10.1107/S2056989015009184/sj5459sup1.cif
Structure factors: contains datablock(s) I. DOI: 10.1107/S2056989015009184/sj5459Isup2.hkl
CCDC reference: 1400767
Additional supporting information: crystallographic information; 3D view; checkCIF report


