Skip to main content
Acta Crystallographica Section E: Crystallographic Communications logoLink to Acta Crystallographica Section E: Crystallographic Communications
. 2015 May 23;71(Pt 6):681–683. doi: 10.1107/S2056989015009263

Crystal structure of 1,13,14-tri­aza­dibenz[a,j]anthracene 1,1,2,2-tetra­chloro­ethane monosolvate

Take-aki Koizumi a,*, Tomohiro Hariu a, Yoshihisa Sei a
PMCID: PMC4459339  PMID: 26090149

The crystal structure of 1,1,2,2-tetra­chloro­ethane (TCE)-solvated 1,13,14-tri­aza­dibenz[a,j]anthracene (dibenzo[c,h]-1.9,10-anthyridine, dbanth) was determined by X-ray diffraction study. Two H atoms in the solvated TCE mol­ecule form inter­molecular C—H⋯(N,N) hydrogen bonds with three N atoms in dbanth. π–π inter­actions link the dbanth mol­ecules to form a one-dimensional columnar structure.

Keywords: crystal structure; 1,9,10-anthyridine; hydrogen bonding; π–π stacking

Abstract

The asymmetric unit of the title compound, C19H11N3·C2H2Cl4, consists of one half-mol­ecule of 1,13,14-tri­aza­dibenz[a,j]anthracene (dibenzo[c,h]-1.9,10-anthyridine, dbanth) and one half of 1,1,2,2-tetra­chloro­ethane (TCE), both of which are located on a crystallographic twofold rotation axis. The dihedral angle between the planes of the terminal benzene rings in dbanth is 3.59 (7)° owing to the steric repulsion between the H atoms in the two benzo groups and the H atom in the central pyridine ring of the anthridine skeleton. In the crystal, π–π inter­actions between pyridine rings [centroid–centroid distances = 3.568 (2) and 3.594 (2) Å] link the dbanth mol­ecules to form a one-dimensional columnar structure along the c axis. The dbanth and TCE mol­ecules are connected through weak bifurcated C—H⋯(N,N) hydrogen bonds.

Chemical context  

1,9,10-Anthyridine has an anthracene skeleton with three imine N atoms that are situated at the same edge of the mol­ecule. Since an imine unit in an aromatic compound such as pyridine can act as a hydrogen-bond acceptor, 1,9,10-anthyridine can form a triply hydrogen-bonded structure with a corresponding H-atom donor, such as 2,6-di­amino­pyri­dinium and 2,6-bis­(hy­droxy­meth­yl)phenol (Murray & Zimmerman, 1992; Xu et al., 2006; Djurdjevic et al., 2007; Blight et al., 2009). Formation of multiple hydrogen bonds often corresponds to a large association constant (K a = ca 104–1010); therefore, 1,9,10-anthyridine derivatives are promising components for supra­molecular compounds. However, there have been few reports on the crystal structures of 1,9,10-anthyridine derivatives. The crystal structure and inter­molecular inter­actions of chloro­benzene-solvated 2,3,7,8-tetra­phenyl-1,9,10-anthyridine have been reported (Madhavi et al., 1997). In addition, 1,13,14-tri­aza­dibenz[a,j]anthracene (dbanth) has been synthesized and its crystal structure has been reported (Djurdjevic et al., 2007; Blight et al., 2009). In that case, the crystals contained no solvent mol­ecules. In other instances, several transition-metal complexes bearing dbanth as a ligand have been reported (Wang et al., 2012; Huang et al., 2013; Hirakawa & Koizumi, 2014). In this paper, we report the crystal structure of dbanth 1,1,2,2-tetra­chloro­ethane (TCE) monosolvate, (I). The H atoms in the TCE mol­ecule form C—H⋯N hydrogen bonds with three dbanth N atoms (Table 1). graphic file with name e-71-00681-scheme1.jpg

Table 1. Hydrogen-bond geometry (, ).

DHA DH HA D A DHA
N1H7C11 0.98 2.53 3.372(3) 144
N2H7C11 0.98 2.57 3.206(3) 122

Structural commentary  

The mol­ecular structure of the title compound is depicted in Fig. 1. The dbanth and TCE mol­ecules have twofold rotation symmetry. Although the structure of dbanth is almost planar, the planes of the terminal benzene rings are slightly twisted with respect to each other, with a dihedral angle of 3.59 (7)°. The distortion of the compound is considered to be due to the steric repulsion between atoms H5, H5* and H6. Atom H7 in the solvated TCE mol­ecule forms a bifurcated hydrogen bond with the two N atoms (N1 and N2) of the dbanth mol­ecule (Table 1). When dbanth was recrystallized from CHCl3, solvation of CHCl3 did not occur. This result indicates that formation of C—H⋯N hydrogen bonds stabilizes the 1:1 complex of dbanth and TCE.

Figure 1.

Figure 1

The two components of the title compound, (I), with displacement ellipsoids drawn at the 50% probability level. C—H⋯N hydrogen bonds are shown as dashed lines. [Symmetry code: (*) −x + 1, y, −z + Inline graphic.]

Supra­molecular features  

In the crystal, the dbanth mol­ecule inter­acts with the neighbouring dbanth mol­ecule through π–π stacking inter­actions, with an average inter­planar distance of 3.36 Å; the centroid–centroid distances between pyridine rings containing atom N1 and between pyridine rings containing atom N2 are 3.568 (2) and 3.594 (2) Å, respectively (Fig. 2). The dbanth mol­ecules form a one-dimensional columnar structure via successive π–π stacking inter­actions (Fig. 3). A twofold rotation axis passes through atoms N2, C9 and H6 of the central pyridine ring, so that all of the dbanth mol­ecules are arranged parallel to one another in the space group C2/c. In the crystal of nonsolvated dbanth (space group P21/c; Djurdjevic et al., 2007), dbanth mol­ecules are also stacked in a column, but the mol­ecules in the neighbouring columns are inclined to each other by 41.8 (2)°.

Figure 2.

Figure 2

A partial packing diagram of the title compound, showing π–π inter­actions (dotted lines).

Figure 3.

Figure 3

A crystal packing of the title compound, viewed down the c axis. Dashed lines indicate C—H⋯N hydrogen bonds.

Synthesis and crystallization  

1,13,14-Tri­aza­dibenz[a,j]anthracene (dbanth) was synthesized via the reaction of 2,6-di­amino-3,5-di­iodo­pyridine with two equivalents of 2-formyl­benzene­boronic acid using Pd(PPh3)4 as a catalyst according to a literature method (Djurdjevic et al., 2007). Single crystals suitable for X-ray diffraction were obtained from a TCE solution by slow evaporation.

Refinement  

Crystal data, data collection, and refinement details are summarized in Table 2. All H atoms were fixed geometry (C—H = 0.93 or 0.98 Å) and refined using a riding model, with U iso(H) values set at 1.2U eq of the parent atom.

Table 2. Experimental details.

Crystal data
Chemical formula C19H11N3C2H2Cl4
M r 449.14
Crystal system, space group Monoclinic, C2/c
Temperature (K) 90
a, b, c () 20.072(7), 14.190(5), 7.079(3)
() 110.255(4)
V (3) 1891.5(11)
Z 4
Radiation type Mo K
(mm1) 0.64
Crystal size (mm) 0.79 0.40 0.10
 
Data collection
Diffractometer Bruker APEXII CCD area detector
Absorption correction Multi-scan (SADABS; Bruker, 1996)
T min, T max 0.511, 0.938
No. of measured, independent and observed [F 2 > 2(F 2)] reflections 4336, 1670, 1606
R int 0.038
(sin /)max (1) 0.595
 
Refinement
R[F 2 > 2(F 2)], wR(F 2), S 0.030, 0.081, 1.06
No. of reflections 1670
No. of parameters 128
H-atom treatment H-atom parameters constrained
max, min (e 3) 0.50, 0.27

Computer programs: APEX2 (Bruker, 2006), SAINT (Bruker, 2004), SHELXT (Sheldrick, 2015a ), SHELXL2014 (Sheldrick, 2015b ) and CrystalStructure (Rigaku, 2010).

Supplementary Material

Crystal structure: contains datablock(s) General, I. DOI: 10.1107/S2056989015009263/is5393sup1.cif

e-71-00681-sup1.cif (19.9KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S2056989015009263/is5393Isup2.hkl

e-71-00681-Isup2.hkl (82.4KB, hkl)

Supporting information file. DOI: 10.1107/S2056989015009263/is5393Isup3.cml

CCDC references: 1401209, 1401209

Additional supporting information: crystallographic information; 3D view; checkCIF report

Acknowledgments

This work was supported by a Grant-in-Aid for Scientific Research on Innovative Areas of New Polymeric Materials Based on Element-Blocks (No. 2401) (24102013) from the Ministry of Education, Culture, Sports, Science, and Technology, Japan.

supplementary crystallographic information

Crystal data

C19H11N3·C2H2Cl4 F(000) = 912.00
Mr = 449.14 Dx = 1.577 Mg m3
Monoclinic, C2/c Mo Kα radiation, λ = 0.71073 Å
Hall symbol: -C 2yc Cell parameters from 94 reflections
a = 20.072 (7) Å θ = 5.4–26.8°
b = 14.190 (5) Å µ = 0.64 mm1
c = 7.079 (3) Å T = 90 K
β = 110.255 (4)° Needle, colorless
V = 1891.5 (11) Å3 0.79 × 0.40 × 0.10 mm
Z = 4

Data collection

Bruker APEXII CCD area-detector diffractometer 1606 reflections with F2 > 2σ(F2)
ω scans Rint = 0.038
Absorption correction: multi-scan (SADABS; Bruker, 1996) θmax = 25.0°
Tmin = 0.511, Tmax = 0.938 h = −23→19
4336 measured reflections k = −13→16
1670 independent reflections l = −7→8

Refinement

Refinement on F2 Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.030 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.081 H-atom parameters constrained
S = 1.06 w = 1/[σ2(Fo2) + (0.0378P)2 + 2.3451P] where P = (Fo2 + 2Fc2)/3
1670 reflections (Δ/σ)max = 0.001
128 parameters Δρmax = 0.50 e Å3
0 restraints Δρmin = −0.27 e Å3
Primary atom site location: structure-invariant direct methods

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement was performed using all reflections. The weighted R-factor (wR) and goodness of fit (S) are based on F2. R-factor (gt) are based on F. The threshold expression of F2 > 2.0 σ(F2) is used only for calculating R-factor (gt).

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
Cl1 0.41196 (2) 0.93210 (3) 0.70600 (6) 0.02318 (16)
Cl2 0.46383 (2) 0.83298 (3) 0.42650 (6) 0.02069 (15)
N1 0.38456 (7) 0.62220 (9) 0.53448 (19) 0.0148 (3)
N2 0.5000 0.61449 (12) 0.7500 0.0129 (4)
C1 0.32689 (8) 0.57917 (11) 0.4258 (2) 0.0158 (3)
H1 0.2883 0.6168 0.3558 0.019*
C2 0.31719 (8) 0.47862 (11) 0.4035 (2) 0.0144 (3)
C3 0.25243 (8) 0.43881 (12) 0.2803 (2) 0.0179 (3)
H2 0.2145 0.4778 0.2120 0.022*
C4 0.24495 (8) 0.34260 (12) 0.2603 (3) 0.0205 (4)
H3 0.2021 0.3164 0.1793 0.025*
C5 0.30269 (8) 0.28419 (12) 0.3637 (2) 0.0193 (4)
H4 0.2978 0.2191 0.3497 0.023*
C6 0.36626 (8) 0.32177 (11) 0.4851 (2) 0.0152 (3)
H5 0.4039 0.2820 0.5522 0.018*
C7 0.37471 (8) 0.42004 (11) 0.5082 (2) 0.0122 (3)
C8 0.43950 (7) 0.46557 (10) 0.6339 (2) 0.0112 (3)
C9 0.5000 0.41722 (14) 0.7500 0.0110 (4)
H6 0.5000 0.3517 0.7500 0.013*
C10 0.44225 (8) 0.56624 (10) 0.6410 (2) 0.0115 (3)
C11 0.46206 (8) 0.83406 (10) 0.6758 (2) 0.0150 (3)
H7 0.4386 0.7764 0.6963 0.018*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
Cl1 0.0185 (2) 0.0215 (2) 0.0267 (3) 0.00797 (15) 0.00433 (19) −0.00421 (15)
Cl2 0.0227 (2) 0.0234 (3) 0.0136 (2) 0.00366 (15) 0.00322 (19) −0.00042 (14)
N1 0.0132 (7) 0.0162 (7) 0.0140 (7) 0.0038 (5) 0.0035 (5) 0.0018 (5)
N2 0.0126 (9) 0.0133 (9) 0.0129 (9) 0.000 0.0043 (7) 0.000
C1 0.0119 (8) 0.0202 (8) 0.0135 (8) 0.0070 (6) 0.0023 (6) 0.0039 (6)
C2 0.0102 (7) 0.0211 (8) 0.0118 (7) 0.0020 (6) 0.0039 (6) 0.0016 (6)
C3 0.0079 (7) 0.0284 (9) 0.0154 (8) 0.0033 (6) 0.0014 (6) 0.0029 (6)
C4 0.0089 (7) 0.0298 (9) 0.0186 (9) −0.0055 (6) −0.0005 (7) −0.0003 (7)
C5 0.0157 (8) 0.0187 (8) 0.0204 (8) −0.0042 (6) 0.0026 (7) 0.0004 (6)
C6 0.0103 (7) 0.0176 (8) 0.0146 (8) −0.0002 (6) 0.0006 (6) 0.0020 (6)
C7 0.0091 (7) 0.0174 (8) 0.0103 (7) −0.0004 (6) 0.0036 (6) 0.0009 (5)
C8 0.0092 (7) 0.0152 (8) 0.0097 (7) −0.0001 (6) 0.0039 (6) −0.0002 (5)
C9 0.0108 (10) 0.0104 (10) 0.0114 (10) 0.000 0.0036 (9) 0.000
C10 0.0111 (7) 0.0136 (7) 0.0104 (8) 0.0011 (5) 0.0045 (6) 0.0010 (5)
C11 0.0158 (8) 0.0130 (8) 0.0154 (8) 0.0017 (6) 0.0046 (7) −0.0008 (6)

Geometric parameters (Å, º)

Cl1—C11 1.7722 (15) C4—H3 0.9300
Cl2—C11 1.7778 (17) C5—C6 1.376 (2)
N1—C1 1.299 (2) C5—H4 0.9300
N1—C10 1.3913 (19) C6—C7 1.407 (2)
N2—C10 1.3373 (18) C6—H5 0.9300
N2—C10i 1.3373 (18) C7—C8 1.449 (2)
C1—C2 1.441 (2) C8—C9 1.3891 (18)
C1—H1 0.9300 C8—C10 1.430 (2)
C2—C7 1.407 (2) C9—C8i 1.3891 (18)
C2—C3 1.409 (2) C9—H6 0.9300
C3—C4 1.375 (2) C11—C11i 1.522 (3)
C3—H2 0.9300 C11—H7 0.9800
C4—C5 1.406 (2)
C1—N1—C10 117.16 (13) C7—C6—H5 119.8
C10—N2—C10i 118.40 (18) C6—C7—C2 118.69 (14)
N1—C1—C2 126.09 (14) C6—C7—C8 124.04 (14)
N1—C1—H1 117.0 C2—C7—C8 117.28 (14)
C2—C1—H1 117.0 C9—C8—C10 117.23 (13)
C7—C2—C3 120.14 (15) C9—C8—C7 123.92 (14)
C7—C2—C1 118.16 (14) C10—C8—C7 118.86 (13)
C3—C2—C1 121.70 (14) C8i—C9—C8 120.80 (19)
C4—C3—C2 120.41 (15) C8i—C9—H6 119.6
C4—C3—H2 119.8 C8—C9—H6 119.6
C2—C3—H2 119.8 N2—C10—N1 114.40 (14)
C3—C4—C5 119.38 (15) N2—C10—C8 123.16 (14)
C3—C4—H3 120.3 N1—C10—C8 122.44 (13)
C5—C4—H3 120.3 C11i—C11—Cl1 113.02 (9)
C6—C5—C4 121.04 (15) C11i—C11—Cl2 109.00 (14)
C6—C5—H4 119.5 Cl1—C11—Cl2 109.48 (8)
C4—C5—H4 119.5 C11i—C11—H7 108.4
C5—C6—C7 120.35 (14) Cl1—C11—H7 108.4
C5—C6—H5 119.8 Cl2—C11—H7 108.4
C10—N1—C1—C2 −0.6 (2) C6—C7—C8—C9 −1.8 (2)
N1—C1—C2—C7 0.2 (2) C2—C7—C8—C9 178.34 (11)
N1—C1—C2—C3 −179.50 (14) C6—C7—C8—C10 178.32 (13)
C7—C2—C3—C4 −0.3 (2) C2—C7—C8—C10 −1.6 (2)
C1—C2—C3—C4 179.35 (15) C10—C8—C9—C8i −0.54 (9)
C2—C3—C4—C5 −0.2 (2) C7—C8—C9—C8i 179.54 (15)
C3—C4—C5—C6 0.4 (3) C10i—N2—C10—N1 179.30 (14)
C4—C5—C6—C7 0.0 (2) C10i—N2—C10—C8 −0.61 (10)
C5—C6—C7—C2 −0.6 (2) C1—N1—C10—N2 180.00 (12)
C5—C6—C7—C8 179.54 (14) C1—N1—C10—C8 −0.1 (2)
C3—C2—C7—C6 0.7 (2) C9—C8—C10—N2 1.18 (19)
C1—C2—C7—C6 −178.97 (14) C7—C8—C10—N2 −178.90 (11)
C3—C2—C7—C8 −179.37 (13) C9—C8—C10—N1 −178.71 (11)
C1—C2—C7—C8 0.9 (2) C7—C8—C10—N1 1.2 (2)

Symmetry code: (i) −x+1, y, −z+3/2.

Hydrogen-bond geometry (Å, º)

D—H···A D—H H···A D···A D—H···A
N1—H7···C11 0.98 2.53 3.372 (3) 144
N2—H7···C11 0.98 2.57 3.206 (3) 122

References

  1. Blight, B. A., Camara-Campos, A., Djurdjevic, S., Kaller, M., Leigh, D. A., McMillan, F. M., McNab, H. & Slawin, A. M. Z. (2009). J. Am. Chem. Soc. 131, 14116–14122. [DOI] [PubMed]
  2. Bruker (1996). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.
  3. Bruker (2004). SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.
  4. Bruker (2006). APEX2. Bruker AXS Inc., Madison, Wisconsin, USA.
  5. Djurdjevic, S., Leigh, D. A., McNab, H., Parsons, S., Teobaldi, G. & Zerbetto, F. (2007). J. Am. Chem. Soc. 129, 476–477. [DOI] [PubMed]
  6. Hirakawa, S. & Koizumi, T. (2014). Inorg. Chem. 53, 10788–10790. [DOI] [PubMed]
  7. Huang, D.-W., Lo, Y.-H., Liu, Y.-H., Peng, S.-M. & Liu, S.-T. (2013). Organometallics, 32, 4009–4015.
  8. Madhavi, N. N. L., Katz, A. K., Carrell, H. L., Nangia, A. & Desiraju, G. R. (1997). Chem. Commun. pp. 1953–1954.
  9. Murray, T. J. & Zimmerman, S. C. (1992). J. Am. Chem. Soc. 114, 4010–4011.
  10. Rigaku (2010). CrystalStructure. Rigaku Corporation, Tokyo, Japan.
  11. Sheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.
  12. Sheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.
  13. Wang, W.-Z., Hsieh, C.-L., Ismayilov, R. H., Hsu, C.-H., Liu, I. P., Liu, Y.-H., Lee, G.-H. & Peng, S.-M. (2012). New J. Chem. 36, 2340–2346.
  14. Xu, W., Li, X.-C., Tan, H. & Chen, G.-J. (2006). Phys. Chem. Chem. Phys. 8, 4427–4433. [DOI] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) General, I. DOI: 10.1107/S2056989015009263/is5393sup1.cif

e-71-00681-sup1.cif (19.9KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S2056989015009263/is5393Isup2.hkl

e-71-00681-Isup2.hkl (82.4KB, hkl)

Supporting information file. DOI: 10.1107/S2056989015009263/is5393Isup3.cml

CCDC references: 1401209, 1401209

Additional supporting information: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Crystallographic Communications are provided here courtesy of International Union of Crystallography

RESOURCES