Skip to main content
Acta Crystallographica Section E: Crystallographic Communications logoLink to Acta Crystallographica Section E: Crystallographic Communications
. 2015 May 28;71(Pt 6):706–708. doi: 10.1107/S2056989015009342

Crystal structure of bis­{S-hexyl 3-[4-(di­methyl­amino)­benzyl­idene]di­thio­carbazato-κ2 N 3,S}copper(II)

E Zangrando a, M S Begum b, R Miyatake c, M C Sheikh d, Md M Hossain b,*
PMCID: PMC4459341  PMID: 26090156

In the title complex, the CuII atom exhibits a square-planar coordination geometry and is located on a crystallographic inversion centre, leading to a trans configuration of the N,S-chelating ligands.

Keywords: crystal structure, copper(II) complex, di­thio­carbazate ligand

Abstract

In the title complex, [Cu(C16H24N3S2)2], the CuII atom is coordinated by two azomethine N and two thiol­ate S atoms of the chelating Schiff base ligands, resulting in a distorted square-planar coordination environment. The S—Cu—N chelating angle is of 84.41 (5)°. The CuII atom is located on a crystallographic inversion centre, leading to a trans configuration of the N,S-chelating ligands.

Chemical context  

Bidentate Schiff bases of S-methyl or S-benzyl di­thio­carbaza­tes and their metal complexes have received considerable attention for their possible bioactivities (Chan et al., 2008; How et al., 2008; Ali et al., 2002; Chew et al., 2004; Crouse et al., 2004). As part of our ongoing structural studies on these S-containing Schiff bases (Howlader et al., 2015; Begum et al., 2015), we report herein the structure of a copper(II) complex with the (di­methyl­amino­benzyl­idene)di­thio­carbazate ligand.graphic file with name e-71-00706-scheme1.jpg

Structural commentary  

In the crystal, the bis-chelated CuII complex resides on a crystallographic inversion centre and the two chelating Schiff bases, in their deprotonated imino thiol­ate form, coordinate the metal centre via the azomethine nitro­gen N1 and thiol­ate sulfur S1 atoms in a trans-planar configuration (Fig. 1). The Cu1—S and Cu1—N coordination bond lengths are of 2.2557 (6) and 2.0060 (14) Å, respectively, with an S1—Cu—N1 chelating angle of 84.41 (5)°. It is worth of note that copper(II) complexes with similar di­thio­carbazate ligands assume a distorted tetra­hedral configuration as well (Tarafder, et al., 2008; Manan, et al., 2011). In these derivatives the coordination distances are close comparable to those here reported. On the other hand the present Cu—S and Cu—N bond lengths are slightly longer with respect to those measured in the centrosymmetric complex with ligand bearing a benzyl group at the S atom [Cu—S = 2.165 (1), Cu—N = 1.929 (4) Å; Tian, et al., 1998).

Figure 1.

Figure 1

Drawing (ellipsoid probability at 50%) of the CuL 2 complex with atom labels of the crystallographic independent unit (primed atoms at −x + 2, −y, −z + 1).

Supra­molecular features  

The crystal packing shows almost planar complexes piled along axis b with a stacking distance of 5.23947 (10) Å. (Fig. 2)

Figure 2.

Figure 2

Crystal packing of the CuL 2 complex viewed down the b axis.

Synthesis and crystallization  

A solution of Cu(CH3COO)2·H2O (0.10 g, 0.5 mmol, 15 mL methanol) was added to a solution of the N,N′-di­methyl­amino­benzaldehyde Schiff base of S-hexyl­dithio­carbazate (0.32 g, 1.0 mmol, 10 mL methanol). The resulting mixture was stirred at room temperature for seven hours. A dark reddish brown precipitate was formed, filtered off, washed with methanol and dried in vacuo over anhydrous CaCl2. Dark reddish brown single crystals of the compound, suitable for X-ray diffraction, were obtained by slow evaporation from a mixture of di­chloro­methane and aceto­nitrile (2:1), m.p. 437 K.

Database survey  

The structure of the corresponding copper(II) complex with N,N′-di­methyl­amino­phenyl but having a benzyl group replac­ing the hexyl alkyl chain at S has been reported (Tian, et al., 1998).

Refinement  

Crystal data, data collection and structure refinement details are summarized in Table 1. All H atoms were fixed geom­etrically (C—H = 0.95–0.99 Å) and refined as riding, with U iso(H) = 1.2 U eq(C).

Table 1. Experimental details.

Crystal data
Chemical formula [Cu(C16H24N3S2)2]
M r 708.56
Crystal system, space group Monoclinic, P21/n
Temperature (K) 173
a, b, c () 15.0457(4), 5.23947(10), 22.1944(5)
() 95.7007(7)
V (3) 1740.96(7)
Z 2
Radiation type Mo K
(mm1) 0.90
Crystal size (mm) 0.24 0.17 0.05
 
Data collection
Diffractometer Rigaku R-AXIS RAPID
Absorption correction Multi-scan (ABSCOR; Rigaku, 1995)
T min, T max 0.787, 0.956
No. of measured, independent and observed [I > 2(I)] reflections 16718, 3979, 3506
R int 0.023
(sin /)max (1) 0.649
 
Refinement
R[F 2 > 2(F 2)], wR(F 2), S 0.036, 0.102, 1.10
No. of reflections 3979
No. of parameters 199
H-atom treatment H-atom parameters constrained
max, min (e 3) 0.85, 0.49

Computer programs: RAPID-AUTO (Rigaku, 2001), SIR92 (Altomare et al., 1994), SHELXL97 (Sheldrick, 2008) and CrystalStructure (Rigaku, 2010).

Supplementary Material

Crystal structure: contains datablock(s) General, I. DOI: 10.1107/S2056989015009342/ff2136sup1.cif

e-71-00706-sup1.cif (17.8KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S2056989015009342/ff2136Isup2.hkl

e-71-00706-Isup2.hkl (195KB, hkl)

CCDC reference: 1057813

Additional supporting information: crystallographic information; 3D view; checkCIF report

Acknowledgments

MSB and MMH are grateful to the Department of Chemistry, Rajshahi University, for the provision of laboratory facilities. MCS acknowledges the Department of Applied Chemistry, Toyama University, for providing funds for single-crystal X-ray analyses.

supplementary crystallographic information

Crystal data

[Cu(C16H24N3S2)2] F(000) = 750.00
Mr = 708.56 Dx = 1.352 Mg m3
Monoclinic, P21/n Mo Kα radiation, λ = 0.71075 Å
Hall symbol: -P 2yn Cell parameters from 14172 reflections
a = 15.0457 (4) Å θ = 3.1–27.4°
b = 5.23947 (10) Å µ = 0.90 mm1
c = 22.1944 (5) Å T = 173 K
β = 95.7007 (7)° Platelet, red
V = 1740.96 (7) Å3 0.24 × 0.17 × 0.05 mm
Z = 2

Data collection

Rigaku R-AXIS RAPID diffractometer 3506 reflections with I > 2σ(I)
Detector resolution: 10.000 pixels mm-1 Rint = 0.023
ω scans θmax = 27.5°
Absorption correction: multi-scan (ABSCOR; Rigaku, 1995) h = −19→19
Tmin = 0.787, Tmax = 0.956 k = −6→6
16718 measured reflections l = −28→28
3979 independent reflections

Refinement

Refinement on F2 Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.036 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.102 H-atom parameters constrained
S = 1.10 w = 1/[σ2(Fo2) + (0.0579P)2 + 0.429P] where P = (Fo2 + 2Fc2)/3
3979 reflections (Δ/σ)max = 0.002
199 parameters Δρmax = 0.85 e Å3
0 restraints Δρmin = −0.49 e Å3
Primary atom site location: structure-invariant direct methods

Special details

Geometry. ENTER SPECIAL DETAILS OF THE MOLECULAR GEOMETRY
Refinement. Refinement was performed using all reflections. The weighted R-factor (wR) and goodness of fit (S) are based on F2. R-factor (gt) are based on F. The threshold expression of F2 > 2.0 σ(F2) is used only for calculating R-factor (gt).

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
Cu1 1.0000 0.0000 0.5000 0.04758 (12)
S1 1.12679 (3) 0.22896 (13) 0.49888 (2) 0.06611 (19)
S2 1.17728 (3) 0.56787 (10) 0.40439 (2) 0.05451 (15)
N1 0.98526 (9) 0.0699 (3) 0.41070 (6) 0.0427 (4)
N2 1.03819 (9) 0.2568 (3) 0.38625 (6) 0.0421 (3)
N3 0.83204 (12) −0.0665 (4) 0.11956 (7) 0.0572 (5)
C1 0.91075 (10) −0.0399 (3) 0.30708 (7) 0.0362 (4)
C2 0.84924 (10) −0.2217 (4) 0.28137 (7) 0.0392 (4)
C3 0.82330 (11) −0.2318 (3) 0.22036 (7) 0.0403 (4)
C4 0.85831 (11) −0.0592 (4) 0.18022 (7) 0.0388 (4)
C5 0.92043 (11) 0.1218 (4) 0.20563 (8) 0.0429 (4)
C6 0.94524 (10) 0.1320 (4) 0.26705 (8) 0.0405 (4)
C7 0.76158 (14) −0.2364 (4) 0.09510 (8) 0.0551 (5)
C8 0.87505 (14) 0.0873 (5) 0.07706 (8) 0.0565 (5)
C9 0.93057 (10) −0.0546 (4) 0.37229 (7) 0.0407 (4)
C10 1.10238 (11) 0.3347 (4) 0.42509 (8) 0.0452 (4)
C11 1.12802 (12) 0.6732 (4) 0.33101 (9) 0.0496 (4)
C12 1.15878 (11) 0.5323 (3) 0.27685 (9) 0.0439 (4)
C13 1.11147 (11) 0.6348 (4) 0.21775 (9) 0.0459 (4)
C14 1.13850 (13) 0.5022 (4) 0.16172 (9) 0.0487 (5)
C15 1.08905 (13) 0.5981 (5) 0.10294 (10) 0.0565 (5)
C16 1.11550 (17) 0.4573 (6) 0.04766 (10) 0.0715 (7)
H1 0.8248 −0.3418 0.3072 0.0470*
H2 0.7812 −0.3567 0.2050 0.0484*
H3 0.9459 0.2399 0.1797 0.0515*
H4 0.9866 0.2584 0.2826 0.0486*
H5 0.7793 −0.4136 0.1039 0.0662*
H6 0.7511 −0.2124 0.0512 0.0662*
H7 0.7067 −0.1982 0.1137 0.0662*
H8 0.8469 0.0556 0.0360 0.0678*
H9 0.9385 0.0427 0.0792 0.0678*
H10 0.8689 0.2682 0.0871 0.0678*
H11 0.8968 −0.1807 0.3906 0.0488*
H12 1.0623 0.6556 0.3298 0.0595*
H13 1.1414 0.8569 0.3267 0.0595*
H14 1.1459 0.3479 0.2804 0.0527*
H15 1.2241 0.5531 0.2765 0.0527*
H16 1.0462 0.6158 0.2189 0.0551*
H17 1.1245 0.8193 0.2148 0.0551*
H18 1.1275 0.3168 0.1654 0.0584*
H19 1.2034 0.5264 0.1598 0.0584*
H20 1.0240 0.5780 0.1050 0.0678*
H21 1.1015 0.7823 0.0985 0.0678*
H22 1.1790 0.4859 0.0438 0.0858*
H23 1.0800 0.5210 0.0114 0.0858*
H24 1.1046 0.2742 0.0522 0.0858*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
Cu1 0.02944 (16) 0.0819 (3) 0.03109 (16) −0.01276 (13) 0.00126 (11) −0.01776 (13)
S1 0.0422 (3) 0.1173 (5) 0.0373 (3) −0.0323 (3) −0.00378 (18) −0.0104 (3)
S2 0.0418 (3) 0.0645 (3) 0.0554 (3) −0.0158 (2) −0.0040 (2) −0.0138 (3)
N1 0.0291 (7) 0.0632 (9) 0.0353 (7) −0.0061 (6) 0.0014 (6) −0.0142 (7)
N2 0.0318 (7) 0.0544 (8) 0.0393 (7) −0.0057 (6) −0.0004 (6) −0.0139 (6)
N3 0.0543 (10) 0.0814 (12) 0.0336 (8) −0.0194 (9) −0.0065 (7) 0.0048 (8)
C1 0.0267 (7) 0.0471 (9) 0.0337 (8) 0.0006 (6) −0.0019 (6) −0.0090 (6)
C2 0.0361 (8) 0.0464 (9) 0.0341 (8) −0.0067 (7) −0.0012 (6) −0.0027 (7)
C3 0.0387 (8) 0.0443 (9) 0.0363 (8) −0.0055 (7) −0.0049 (7) −0.0045 (7)
C4 0.0333 (8) 0.0477 (9) 0.0341 (8) 0.0025 (7) −0.0024 (6) −0.0016 (7)
C5 0.0360 (8) 0.0486 (9) 0.0430 (9) −0.0039 (7) −0.0016 (7) 0.0045 (7)
C6 0.0317 (8) 0.0439 (9) 0.0445 (9) −0.0043 (6) −0.0040 (7) −0.0050 (7)
C7 0.0637 (12) 0.0624 (12) 0.0358 (9) −0.0053 (9) −0.0127 (8) −0.0041 (8)
C8 0.0594 (12) 0.0718 (13) 0.0379 (9) 0.0012 (10) 0.0025 (8) 0.0085 (9)
C9 0.0279 (7) 0.0589 (10) 0.0350 (8) −0.0053 (7) 0.0016 (6) −0.0101 (7)
C10 0.0325 (8) 0.0612 (10) 0.0418 (9) −0.0057 (7) 0.0025 (7) −0.0180 (8)
C11 0.0399 (9) 0.0428 (9) 0.0647 (12) −0.0006 (7) −0.0017 (8) −0.0078 (8)
C12 0.0339 (8) 0.0409 (8) 0.0559 (11) 0.0017 (6) −0.0010 (7) 0.0008 (7)
C13 0.0355 (8) 0.0374 (8) 0.0636 (11) 0.0020 (7) −0.0015 (8) 0.0082 (8)
C14 0.0400 (9) 0.0490 (10) 0.0561 (11) 0.0058 (7) 0.0000 (8) 0.0137 (8)
C15 0.0447 (10) 0.0612 (11) 0.0625 (12) 0.0047 (9) −0.0002 (9) 0.0239 (10)
C16 0.0617 (14) 0.1008 (18) 0.0516 (12) 0.0101 (12) 0.0035 (10) 0.0275 (12)

Geometric parameters (Å, º)

Cu1—S1 2.2557 (6) C2—H1 0.950
Cu1—S1i 2.2557 (6) C3—H2 0.950
Cu1—N1 2.0060 (14) C5—H3 0.950
Cu1—N1i 2.0060 (14) C6—H4 0.950
S1—C10 1.7333 (19) C7—H5 0.980
S2—C10 1.7540 (19) C7—H6 0.980
S2—C11 1.807 (2) C7—H7 0.980
N1—N2 1.405 (2) C8—H8 0.980
N1—C9 1.300 (2) C8—H9 0.980
N2—C10 1.295 (2) C8—H10 0.980
N3—C4 1.365 (3) C9—H11 0.950
N3—C7 1.448 (3) C11—H12 0.990
N3—C8 1.442 (3) C11—H13 0.990
C1—C2 1.409 (3) C12—H14 0.990
C1—C6 1.401 (3) C12—H15 0.990
C1—C9 1.450 (3) C13—H16 0.990
C2—C3 1.372 (3) C13—H17 0.990
C3—C4 1.408 (3) C14—H18 0.990
C4—C5 1.409 (3) C14—H19 0.990
C5—C6 1.378 (3) C15—H20 0.990
C11—C12 1.521 (3) C15—H21 0.990
C12—C13 1.526 (3) C16—H22 0.980
C13—C14 1.515 (3) C16—H23 0.980
C14—C15 1.522 (3) C16—H24 0.980
C15—C16 1.518 (4)
S1—Cu1—S1i 180.00 (3) N3—C7—H7 109.471
S1—Cu1—N1 84.41 (5) H5—C7—H6 109.470
S1—Cu1—N1i 95.59 (5) H5—C7—H7 109.466
S1i—Cu1—N1 95.59 (5) H6—C7—H7 109.470
S1i—Cu1—N1i 84.41 (5) N3—C8—H8 109.474
N1—Cu1—N1i 180.00 (9) N3—C8—H9 109.468
Cu1—S1—C10 94.61 (6) N3—C8—H10 109.474
C10—S2—C11 103.41 (9) H8—C8—H9 109.477
Cu1—N1—N2 119.84 (10) H8—C8—H10 109.470
Cu1—N1—C9 123.85 (13) H9—C8—H10 109.464
N2—N1—C9 116.27 (14) N1—C9—H11 113.512
N1—N2—C10 112.12 (14) C1—C9—H11 113.515
C4—N3—C7 121.09 (17) S2—C11—H12 108.342
C4—N3—C8 121.64 (17) S2—C11—H13 108.340
C7—N3—C8 117.24 (15) C12—C11—H12 108.348
C2—C1—C6 116.61 (14) C12—C11—H13 108.348
C2—C1—C9 115.46 (15) H12—C11—H13 107.429
C6—C1—C9 127.93 (15) C11—C12—H14 109.470
C1—C2—C3 122.46 (16) C11—C12—H15 109.469
C2—C3—C4 120.79 (15) C13—C12—H14 109.463
N3—C4—C3 121.06 (16) C13—C12—H15 109.473
N3—C4—C5 121.94 (17) H14—C12—H15 108.061
C3—C4—C5 117.00 (15) C12—C13—H16 108.791
C4—C5—C6 121.71 (16) C12—C13—H17 108.792
C1—C6—C5 121.43 (15) C14—C13—H16 108.801
N1—C9—C1 132.97 (16) C14—C13—H17 108.796
S1—C10—S2 112.88 (10) H16—C13—H17 107.674
S1—C10—N2 127.03 (15) C13—C14—H18 108.802
S2—C10—N2 120.09 (14) C13—C14—H19 108.799
S2—C11—C12 115.75 (13) C15—C14—H18 108.789
C11—C12—C13 110.86 (14) C15—C14—H19 108.785
C12—C13—C14 113.82 (15) H18—C14—H19 107.662
C13—C14—C15 113.83 (16) C14—C15—H20 109.040
C14—C15—C16 112.79 (18) C14—C15—H21 109.036
C1—C2—H1 118.769 C16—C15—H20 109.026
C3—C2—H1 118.774 C16—C15—H21 109.020
C2—C3—H2 119.601 H20—C15—H21 107.805
C4—C3—H2 119.605 C15—C16—H22 109.477
C4—C5—H3 119.145 C15—C16—H23 109.474
C6—C5—H3 119.143 C15—C16—H24 109.466
C1—C6—H4 119.289 H22—C16—H23 109.466
C5—C6—H4 119.283 H22—C16—H24 109.475
N3—C7—H5 109.479 H23—C16—H24 109.470
N3—C7—H6 109.472

Symmetry code: (i) −x+2, −y, −z+1.

References

  1. Ali, M. A., Mirza, A. H., Butcher, R. J., Tarafder, M. T. H., Keat, T. B. & Ali Manaf, A. (2002). J. Inorg. Biochem 92, 141–148. [DOI] [PubMed]
  2. Altomare, A., Cascarano, G., Giacovazzo, C., Guagliardi, A., Burla, M. C., Polidori, G. & Camalli, M. (1994). J. Appl. Cryst. 27, 435.
  3. Begum, M. S., Howlader, M. B. H., Sheikh, M. C., Miyatake, R. & Zangrando, E. (2015). Acta Cryst. E71, m63–m64. [DOI] [PMC free article] [PubMed]
  4. Chan, M. E., Crouse, K. A., Tahir, M. I. M., Rosli, R., Umar-Tsafe, N. & Cowley, A. R. (2008). Polyhedron, 27, 1141–1149.
  5. Chew, K. B., Tarafder, M. T. H., Crouse, K. A., Ali, A. M., Yamin, B. M. & Fun, H. K. (2004). Polyhedron, 23, 1385–1392.
  6. Crouse, K. A., Chew, K. B., Tarafder, M. T. H., Kasbollah, A., Ali, A. M., Yamin, B. M. & Fun, H. K. (2004). Polyhedron, 23, 161–168.
  7. How, F. N. F., Crouse, K. A., Tahir, M. I. M., Tarafder, M. T. H. & Cowley, A. R. (2008). Polyhedron, 27, 3325–3329.
  8. Howlader, M. B. H., Begum, M. S., Sheikh, M. C., Miyatake, R. & Zangrando, E. (2015). Acta Cryst. E71, m26–m27. [DOI] [PMC free article] [PubMed]
  9. Manan, M. A. F. A., Tahir, M. I. M., Crouse, K. A., Rosli, R., How, F. N.-F. & Watkin, D. J. (2011). J. Chem. Crystallogr. 41, 1866–1871.
  10. Rigaku (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.
  11. Rigaku (2001). RAPID-AUTO. Rigaku Corporation, Tokyo, Japan.
  12. Rigaku (2010). Crystal Structure. Rigaku Corporation, Tokyo, Japan.
  13. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  14. Tarafder, M. T. H., Islam, M. T., Islam, M. A. A. A. A., Chantra­promma, S. & Fun, H.-K. (2008). Acta Cryst. E64, m416–m417. [DOI] [PMC free article] [PubMed]
  15. Tian, Y.-P., Duan, C.-Y., You, X.-Z., Mak, T. C. W., Luo, Q. & Zhou, J.-Y. (1998). Transition Met. Chem. 23, 17–20.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) General, I. DOI: 10.1107/S2056989015009342/ff2136sup1.cif

e-71-00706-sup1.cif (17.8KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S2056989015009342/ff2136Isup2.hkl

e-71-00706-Isup2.hkl (195KB, hkl)

CCDC reference: 1057813

Additional supporting information: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Crystallographic Communications are provided here courtesy of International Union of Crystallography

RESOURCES