Skip to main content
Acta Crystallographica Section E: Crystallographic Communications logoLink to Acta Crystallographica Section E: Crystallographic Communications
. 2015 May 7;71(Pt 6):o378. doi: 10.1107/S2056989015008385

Crystal structure of 2-amino-3-ethyl-4,5-di­hydro-1,3-thia­zol-3-ium 3-chloro­benzo­ate

Sara Maira M Hizam a, Bohari M Yamin a,*
PMCID: PMC4459344  PMID: 26090175

Abstract

The title salt, C5H11N2S+·C7H4ClO2 , comprises a 2-amino-3-ethyl-4,5-di­hydro-1,3-thia­zol-3-ium cation in which the five-membered ring adopts an envelope conformation with the methyl­ene C adjacent to the S atom being the flap, and a planar 3-chloro­benzoate anion (r.m.s. deviation for the 10 non-H atoms = 0.021 Å). The most prominent feature of the crystal packing are N—H⋯O hydrogen bonds whereby the two amine H atoms bridge two carboxyl­ate O atoms resulting in the formation of a centrosymmetric 12-membered {⋯HNH⋯OCO}2 synthon involving two cations and two anions. These aggregates are linked by C—H⋯O inter­actions to form a supra­molecular chain along the a-axis direction.

Keywords: crystal structure; salt; 3-chloro­benzoate anion; 2-amino-3-ethyl-4,5-di­hydro-1,3-thia­zol-3-ium cation; hydrogen bonding

Related literature  

For the crystal structure of a related compound, see: Yamin & Zulkifli (2011).graphic file with name e-71-0o378-scheme1.jpg

Experimental  

Crystal data  

  • C5H11N2S+·C7H4ClO2

  • M r = 286.77

  • Triclinic, Inline graphic

  • a = 7.3376 (7) Å

  • b = 8.7987 (9) Å

  • c = 11.7068 (11) Å

  • α = 70.728 (3)°

  • β = 80.269 (3)°

  • γ = 71.531 (3)°

  • V = 674.95 (11) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.43 mm−1

  • T = 296 K

  • 0.37 × 0.32 × 0.06 mm

Data collection  

  • Bruker SMART APEX CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2009) T min = 0.856, T max = 0.975

  • 16295 measured reflections

  • 3430 independent reflections

  • 1957 reflections with I > 2σ(I)

  • R int = 0.064

Refinement  

  • R[F 2 > 2σ(F 2)] = 0.063

  • wR(F 2) = 0.142

  • S = 1.02

  • 3430 reflections

  • 171 parameters

  • 2 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.31 e Å−3

  • Δρmin = −0.26 e Å−3

Data collection: SMART (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL and PLATON (Spek, 2009).

Supplementary Material

Crystal structure: contains datablock(s) global, I. DOI: 10.1107/S2056989015008385/tk5367sup1.cif

e-71-0o378-sup1.cif (21.9KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S2056989015008385/tk5367Isup2.hkl

e-71-0o378-Isup2.hkl (168.2KB, hkl)

Supporting information file. DOI: 10.1107/S2056989015008385/tk5367Isup3.cml

. DOI: 10.1107/S2056989015008385/tk5367fig1.tif

The mol­ecular structure of the title salt with displacement ellipsoids drawn at 50% probability level.

b . DOI: 10.1107/S2056989015008385/tk5367fig2.tif

A view of the crystal packing of the title salt viewed down b axis. The dashed lines indicate hydrogen bonds.

CCDC reference: 1062249

Additional supporting information: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (, ).

DHA DH HA D A DHA
N2H2BO1i 0.87(2) 1.89(2) 2.730(3) 164(2)
N2H2CO2 0.86(2) 1.83(2) 2.680(3) 169(2)
C10H10BO1ii 0.97 2.46 3.297(4) 145

Symmetry codes: (i) Inline graphic; (ii) Inline graphic.

Acknowledgments

The authors thank the Ministry of Higher Education of Malaysia and the Universiti Kebangsaan Malaysia for the research grant No. FGRS/2/2014/ST01/UKM/01/1.

supplementary crystallographic information

S1. Comment

It was reported previously that 3-nitro-4-chlorobenzoyl isothiocyanate reacted with piperidine to give 2,2,6,6-tetramethyl-4-oxopiperidin-1-ium 4-chloro-3-nitrobenzoate (Yamin & Zulkifli, 2011). Similarly, in this study, the reaction of 3-chlorobenzoyl isothiocyanate with 2-ethylaminoethanol also gave an unexpected product, i.e. the title salt, 3-ethylthiazoliden-3-ium-2-amine 3-chlorobenzoate (Fig. 1). The chlorobenzoate Cl1/(C1—C7)/O1/O2 anion is planar with maximum deviation of 0.018 (3) Å for the C3 atom from the least squares plane. The thiazoliden ring S1/N1/C8/C9/C10 is tilted with maximum deviation of 0.159 (3) Å for C10 atom from the least squares plane. The N1—C8 bond length of 1.320 (3) Å indicates the ring nitrogen atom N1 is protonated. In the crystal structure, the molecules are linked by intermolecular hydrogen bonds N2—H2B···O1, C2—H10B···O1, N2—H2C···O2 and C11—H11B···O2 (symmetry codes as in Table 1) to form a one-dimensional chain along the a axis (Fig. 2). A weak π.,.π interaction with the distance between (C1—C6) centroids of 3.534 () Å (2 - x, -1 - y ,3 - z) was observed.

S2. Experimental

An acetone solution (20 ml) of 2-(ethylamino)ethanol (0.01 mol, 0.8914 g m) was added into a two-necked round-bottomed flask containing an equimolar amount of 3-chlorobenzoylisothiocyanate (0.01 mol). The mixture was refluxed for about 3 h, filtered and left to evaporate at room temperature. The filtrate gave colourless crystals after 2 days of evaporation (yield 86.02%, m.pt: 368.2–369.5 K).

S3. Refinement

H atoms were positioned geometrically with C—H = 0.93–0.97 Å and constrained to ride on their parent atoms with Uiso(H)= 1.2Ueq(CH and CH2) and 1.5Ueq(CH3). The H atoms on the nitrogen were refined isotropically and with N—H = 0.86±0.01 Å.

Figures

Fig. 1.

Fig. 1.

The molecular structure of the title salt with displacement ellipsoids drawn at 50% probability level.

Fig. 2.

Fig. 2.

A view of the crystal packing of the title salt viewed down b axis. The dashed lines indicate hydrogen bonds.

Crystal data

C5H11N2S+·C7H4ClO2 Z = 2
Mr = 286.77 F(000) = 300
Triclinic, P1 Dx = 1.411 Mg m3
Hall symbol: -P 1 Mo Kα radiation, λ = 0.71073 Å
a = 7.3376 (7) Å Cell parameters from 6990 reflections
b = 8.7987 (9) Å θ = 2.9–28.6°
c = 11.7068 (11) Å µ = 0.43 mm1
α = 70.728 (3)° T = 296 K
β = 80.269 (3)° Slab, colourless
γ = 71.531 (3)° 0.37 × 0.32 × 0.06 mm
V = 674.95 (11) Å3

Data collection

Bruker SMART APEX CCD area-detector diffractometer 3430 independent reflections
Radiation source: fine-focus sealed tube 1957 reflections with I > 2σ(I)
Graphite monochromator Rint = 0.064
Detector resolution: 83.66 pixels mm-1 θmax = 28.6°, θmin = 2.9°
ω scan h = −9→9
Absorption correction: multi-scan (SADABS; Bruker, 2009) k = −11→11
Tmin = 0.856, Tmax = 0.975 l = −15→15
16295 measured reflections

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.063 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.142 H atoms treated by a mixture of independent and constrained refinement
S = 1.02 w = 1/[σ2(Fo2) + (0.0715P)2] where P = (Fo2 + 2Fc2)/3
3430 reflections (Δ/σ)max < 0.001
171 parameters Δρmax = 0.31 e Å3
2 restraints Δρmin = −0.26 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
Cl1 1.18120 (11) −0.25267 (10) 1.66658 (6) 0.0724 (3)
S1 0.48369 (9) 0.37155 (8) 0.90259 (5) 0.0493 (2)
O1 1.0531 (3) −0.2998 (2) 1.16212 (16) 0.0570 (5)
O2 0.9540 (3) −0.0771 (3) 1.22844 (19) 0.0855 (7)
N1 0.4326 (3) 0.1591 (3) 1.10804 (19) 0.0523 (6)
N2 0.7549 (3) 0.1491 (3) 1.0431 (2) 0.0514 (6)
H2B 0.835 (3) 0.189 (3) 0.9867 (19) 0.064 (9)*
H2C 0.810 (3) 0.068 (2) 1.1024 (17) 0.059 (8)*
C1 1.1263 (3) −0.3301 (3) 1.3595 (2) 0.0383 (5)
C2 1.2154 (3) −0.4996 (3) 1.3822 (2) 0.0459 (6)
H2A 1.2237 −0.5512 1.3230 0.055*
C3 1.2921 (4) −0.5927 (3) 1.4918 (2) 0.0545 (7)
H3A 1.3509 −0.7072 1.5065 0.065*
C4 1.2829 (4) −0.5184 (3) 1.5798 (2) 0.0523 (7)
H4A 1.3353 −0.5812 1.6537 0.063*
C5 1.1949 (3) −0.3501 (3) 1.5564 (2) 0.0441 (6)
C6 1.1164 (3) −0.2547 (3) 1.4475 (2) 0.0416 (6)
H6A 1.0571 −0.1405 1.4335 0.050*
C7 1.0367 (3) −0.2280 (3) 1.2403 (2) 0.0468 (6)
C8 0.5708 (3) 0.2094 (3) 1.0315 (2) 0.0406 (6)
C9 0.2384 (4) 0.2374 (4) 1.0666 (3) 0.0713 (9)
H9A 0.1472 0.2595 1.1336 0.086*
H9B 0.2010 0.1635 1.0351 0.086*
C10 0.2390 (3) 0.3967 (4) 0.9701 (3) 0.0609 (8)
H10A 0.1996 0.4898 1.0043 0.073*
H10B 0.1511 0.4184 0.9096 0.073*
C11 0.4633 (5) 0.0131 (4) 1.2191 (3) 0.0694 (9)
H11A 0.3912 −0.0612 1.2173 0.083*
H11B 0.5988 −0.0486 1.2200 0.083*
C12 0.4029 (5) 0.0639 (4) 1.3300 (3) 0.0829 (10)
H12A 0.4251 −0.0338 1.3995 0.124*
H12B 0.2683 0.1232 1.3303 0.124*
H12C 0.4758 0.1357 1.3330 0.124*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
Cl1 0.0822 (6) 0.0905 (6) 0.0555 (5) −0.0246 (5) −0.0093 (4) −0.0333 (4)
S1 0.0453 (4) 0.0562 (4) 0.0395 (4) −0.0020 (3) −0.0132 (3) −0.0117 (3)
O1 0.0605 (11) 0.0701 (13) 0.0473 (10) −0.0239 (9) −0.0116 (9) −0.0172 (10)
O2 0.1099 (18) 0.0587 (14) 0.0682 (14) 0.0216 (12) −0.0489 (13) −0.0156 (10)
N1 0.0438 (12) 0.0556 (14) 0.0474 (12) −0.0072 (10) −0.0040 (10) −0.0085 (10)
N2 0.0411 (13) 0.0547 (15) 0.0449 (13) 0.0008 (11) −0.0117 (11) −0.0065 (11)
C1 0.0318 (12) 0.0416 (14) 0.0396 (13) −0.0133 (10) −0.0043 (10) −0.0060 (10)
C2 0.0431 (14) 0.0437 (15) 0.0527 (15) −0.0128 (11) −0.0046 (12) −0.0154 (12)
C3 0.0549 (16) 0.0369 (15) 0.0627 (18) −0.0070 (12) −0.0120 (14) −0.0050 (13)
C4 0.0476 (15) 0.0547 (18) 0.0445 (14) −0.0119 (13) −0.0136 (12) 0.0011 (13)
C5 0.0371 (13) 0.0566 (16) 0.0417 (14) −0.0189 (12) −0.0008 (11) −0.0138 (12)
C6 0.0366 (13) 0.0378 (13) 0.0473 (14) −0.0087 (10) −0.0045 (11) −0.0096 (11)
C7 0.0361 (13) 0.0573 (18) 0.0436 (14) −0.0125 (12) −0.0091 (11) −0.0080 (13)
C8 0.0463 (15) 0.0370 (13) 0.0376 (13) −0.0010 (11) −0.0101 (11) −0.0167 (11)
C9 0.0454 (17) 0.095 (2) 0.0659 (19) −0.0181 (16) −0.0046 (14) −0.0148 (18)
C10 0.0399 (15) 0.0683 (19) 0.0718 (19) −0.0033 (13) −0.0153 (14) −0.0231 (16)
C11 0.074 (2) 0.0483 (17) 0.068 (2) −0.0075 (15) −0.0001 (16) −0.0059 (15)
C12 0.100 (3) 0.075 (2) 0.063 (2) −0.0175 (19) −0.0161 (19) −0.0080 (18)

Geometric parameters (Å, º)

Cl1—C5 1.743 (3) C3—H3A 0.9300
S1—C8 1.746 (2) C4—C5 1.368 (4)
S1—C10 1.811 (3) C4—H4A 0.9300
O1—C7 1.245 (3) C5—C6 1.377 (3)
O2—C7 1.243 (3) C6—H6A 0.9300
N1—C8 1.320 (3) C9—C10 1.483 (4)
N1—C9 1.460 (3) C9—H9A 0.9700
N1—C11 1.485 (3) C9—H9B 0.9700
N2—C8 1.298 (3) C10—H10A 0.9700
N2—H2B 0.866 (10) C10—H10B 0.9700
N2—H2C 0.862 (10) C11—C12 1.465 (4)
C1—C6 1.379 (3) C11—H11A 0.9700
C1—C2 1.379 (3) C11—H11B 0.9700
C1—C7 1.514 (3) C12—H12A 0.9600
C2—C3 1.376 (3) C12—H12B 0.9600
C2—H2A 0.9300 C12—H12C 0.9600
C3—C4 1.373 (4)
C8—S1—C10 90.90 (12) N2—C8—N1 126.9 (2)
C8—N1—C9 115.4 (2) N2—C8—S1 120.1 (2)
C8—N1—C11 125.1 (2) N1—C8—S1 112.98 (17)
C9—N1—C11 118.6 (2) N1—C9—C10 107.9 (2)
C8—N2—H2B 120.1 (19) N1—C9—H9A 110.1
C8—N2—H2C 126.2 (18) C10—C9—H9A 110.1
H2B—N2—H2C 114 (3) N1—C9—H9B 110.1
C6—C1—C2 119.3 (2) C10—C9—H9B 110.1
C6—C1—C7 120.2 (2) H9A—C9—H9B 108.4
C2—C1—C7 120.5 (2) C9—C10—S1 106.45 (18)
C3—C2—C1 120.3 (2) C9—C10—H10A 110.4
C3—C2—H2A 119.8 S1—C10—H10A 110.4
C1—C2—H2A 119.8 C9—C10—H10B 110.4
C4—C3—C2 120.7 (2) S1—C10—H10B 110.4
C4—C3—H3A 119.7 H10A—C10—H10B 108.6
C2—C3—H3A 119.7 C12—C11—N1 112.1 (3)
C5—C4—C3 118.6 (2) C12—C11—H11A 109.2
C5—C4—H4A 120.7 N1—C11—H11A 109.2
C3—C4—H4A 120.7 C12—C11—H11B 109.2
C4—C5—C6 121.6 (2) N1—C11—H11B 109.2
C4—C5—Cl1 119.55 (19) H11A—C11—H11B 107.9
C6—C5—Cl1 118.8 (2) C11—C12—H12A 109.5
C5—C6—C1 119.5 (2) C11—C12—H12B 109.5
C5—C6—H6A 120.3 H12A—C12—H12B 109.5
C1—C6—H6A 120.3 C11—C12—H12C 109.5
O2—C7—O1 125.3 (2) H12A—C12—H12C 109.5
O2—C7—C1 116.6 (2) H12B—C12—H12C 109.5
O1—C7—C1 118.1 (2)
C6—C1—C2—C3 0.5 (4) C2—C1—C7—O1 −3.0 (3)
C7—C1—C2—C3 −178.3 (2) C9—N1—C8—N2 −174.0 (3)
C1—C2—C3—C4 −0.6 (4) C11—N1—C8—N2 −5.0 (4)
C2—C3—C4—C5 0.3 (4) C9—N1—C8—S1 4.8 (3)
C3—C4—C5—C6 0.0 (4) C11—N1—C8—S1 173.7 (2)
C3—C4—C5—Cl1 179.99 (19) C10—S1—C8—N2 −171.3 (2)
C4—C5—C6—C1 −0.1 (4) C10—S1—C8—N1 9.8 (2)
Cl1—C5—C6—C1 179.95 (18) C8—N1—C9—C10 −20.9 (4)
C2—C1—C6—C5 −0.2 (3) C11—N1—C9—C10 169.4 (3)
C7—C1—C6—C5 178.6 (2) N1—C9—C10—S1 26.1 (3)
C6—C1—C7—O2 −1.0 (3) C8—S1—C10—C9 −20.7 (2)
C2—C1—C7—O2 177.8 (2) C8—N1—C11—C12 112.8 (3)
C6—C1—C7—O1 178.2 (2) C9—N1—C11—C12 −78.6 (4)

Hydrogen-bond geometry (Å, º)

D—H···A D—H H···A D···A D—H···A
N2—H2B···O1i 0.87 (2) 1.89 (2) 2.730 (3) 164 (2)
N2—H2C···O2 0.86 (2) 1.83 (2) 2.680 (3) 169 (2)
C10—H10B···O1ii 0.97 2.46 3.297 (4) 145

Symmetry codes: (i) −x+2, −y, −z+2; (ii) −x+1, −y, −z+2.

Footnotes

Supporting information for this paper is available from the IUCr electronic archives (Reference: TK5367).

References

  1. Bruker (2009). SADABS, SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.
  2. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  3. Spek, A. L. (2009). Acta Cryst. D65, 148–155. [DOI] [PMC free article] [PubMed]
  4. Yamin, B. M. & Zulkifli, N. Z. (2011). Acta Cryst. E67, o1920. [DOI] [PMC free article] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) global, I. DOI: 10.1107/S2056989015008385/tk5367sup1.cif

e-71-0o378-sup1.cif (21.9KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S2056989015008385/tk5367Isup2.hkl

e-71-0o378-Isup2.hkl (168.2KB, hkl)

Supporting information file. DOI: 10.1107/S2056989015008385/tk5367Isup3.cml

. DOI: 10.1107/S2056989015008385/tk5367fig1.tif

The mol­ecular structure of the title salt with displacement ellipsoids drawn at 50% probability level.

b . DOI: 10.1107/S2056989015008385/tk5367fig2.tif

A view of the crystal packing of the title salt viewed down b axis. The dashed lines indicate hydrogen bonds.

CCDC reference: 1062249

Additional supporting information: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Crystallographic Communications are provided here courtesy of International Union of Crystallography

RESOURCES