Skip to main content
Acta Crystallographica Section E: Crystallographic Communications logoLink to Acta Crystallographica Section E: Crystallographic Communications
. 2015 May 13;71(Pt 6):o403. doi: 10.1107/S205698901500849X

Crystal structure of N,N′-[(thio­phene-2,5-di­yl)bis­(methanylyl­idene)]di-p-toluidine

Raina Boyle a, Guy Crundwell a,*, Neil M Glagovich a
PMCID: PMC4459348  PMID: 26090190

Abstract

The title compound, C20H18N2S, was synthesized by the condensation reaction between p-tolu­idine and thio­phene-2,5-dicarboxaldehye in refluxing toluene with p-toluene­sulfonic acid added as catalyst. The mol­ecule lies on a twofold rotation axis and adopts an E orientation with respect to the azomethine bonds. The dihedral angle between the unqiue benzene ring and the least-squares plane [maximum deviation = 0.0145 (14) Å] containing the azomethine and thio­phene groups is 32.31 (6)°.

Keywords: crystal structure, symmetrical diazo­methine

Related literature  

For the synthesis of the title compound, see: Vaysse & Pastour (1964). For the syntheses and crystal structures of mol­ecules related to the title compound, see: Bernès et al. (2013); Mendoza et al. (2014). For applications of symmetrical diazo­methines, see: Suganya et al. (2014); Skene & Dufresne (2006). For related structures, see: Bolduc et al. (2013).graphic file with name e-71-0o403-scheme1.jpg

Experimental  

Crystal data  

  • C20H18N2S

  • M r = 318.42

  • Monoclinic, Inline graphic

  • a = 37.166 (2) Å

  • b = 6.0292 (2) Å

  • c = 7.5814 (4) Å

  • β = 93.452 (7)°

  • V = 1695.78 (15) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.19 mm−1

  • T = 298 K

  • 0.32 × 0.24 × 0.07 mm

Data collection  

  • Oxford Diffraction Xcalibur Sapphire3 diffractometer

  • Absorption correction: multi-scan (CrysAlis PRO; Oxford Diffraction, 2009) T min = 0.713, T max = 1.000

  • 9577 measured reflections

  • 2861 independent reflections

  • 2153 reflections with I > 2σ(I)

  • R int = 0.044

Refinement  

  • R[F 2 > 2σ(F 2)] = 0.048

  • wR(F 2) = 0.145

  • S = 1.03

  • 2861 reflections

  • 106 parameters

  • H-atom parameters constrained

  • Δρmax = 0.27 e Å−3

  • Δρmin = −0.15 e Å−3

Data collection: CrysAlis CCD (Oxford Diffraction, 2009); cell refinement: CrysAlis RED (Oxford Diffraction, 2009); data reduction: CrysAlis RED; program(s) used to solve structure: SHELXS2014 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012); software used to prepare material for publication: SHELXL2014 (Sheldrick, 2015).

Supplementary Material

Crystal structure: contains datablock(s) I. DOI: 10.1107/S205698901500849X/lh5761sup1.cif

e-71-0o403-sup1.cif (299.5KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S205698901500849X/lh5761Isup2.hkl

e-71-0o403-Isup2.hkl (157.3KB, hkl)

x y z . DOI: 10.1107/S205698901500849X/lh5761fig1.tif

A view of the title compound (Farrugia, 1997). Displacement ellipsoids are drawn at the 50% probability level [symmetry code: (i) −x + 2, y, −z + Inline graphic].

CCDC reference: 1062484

Additional supporting information: crystallographic information; 3D view; checkCIF report

Acknowledgments

This research was funded by a CCSU–AAUP research grant.

supplementary crystallographic information

S1. Comment

Schiff base condensation reactions between between aldehydes and amines are commonplace in the chemical literature due to the ease of synthesis, isolation, and purification. The title compound was first synthesized by Vaysse & Pastour in 1964. Recent structural studies of symmetrical diazomethines have appeared in this journal and others due to interests in solvent-free reactions (Bernès, et al. 2013; Mendoza, et al. 2014), in cation sensors (Suganya, et al. 2014) and in photo-active materials (Skene & Dufresne, 2006).

The molecular structure of the title compound is shown in Fig. 1. The molecule lies on a twofold rotation axis thereby having exact C2 molecular symmetry. The molecule adopts an E orientation with respect to the azomethine bonds. The dihedral angle between the benzene ring (C4–C9) and the least-squares plane (with maximum deviaton 0.0145 (14)Å for C3) containing the azomethine and thiophene groups (S1/C1/C2/C1iC2i/N1/C3; symmetry code: (i) -x+2, y, -z+3/2) is 32.31 (6)°. The crystal structures of some related symmetrical azomethine compounds appear in the literature (Bolduc et al., 2013).

S2. Experimental

To a 100 ml round-bottomed flask equipped with a Dean–Stark trap and a reflux condenser were added p-toluidine (1.77 g, 16.5 mmol), 2,5-thiophenecarboxaldehye (0.7602 g, 5.4 mmol), p-toluenesulfonic acid (0.0010 g, 0.54 mmol) and toluene (50 ml) in a method similar to Suganya, et al., 2014). The resulting mixture was refluxed for 24 h and the yellow solution was concentrated open to the air, producing a yellow solid. The synthesis of the title compound was also accomplished using solvent-free direct grinding method (Bernès, et al. 2013; Mendoza, et al. 2014). The solid was purified by recrystallization in an equal volume mix of toluene and methanol. Crystals were grown from a p-xylene solution.

S3. Refinement

Hydrogen atoms on sp2 atoms were included in calculated positions with a C—H distance of 0.93 Å and were included in the refinement in riding motion approximation with Uiso = 1.2Ueq of the carrier atom.

Hydrogen atoms on sp3 atoms were included in calculated positions with a C—H distance of 0.98 Å and were included in the refinement in riding motion approximation with Uiso = 1.5Ueq of the carrier atom.

Figures

Fig. 1.

Fig. 1.

A view of the title compound (Farrugia, 2012). Displacement ellipsoids are drawn at the 50% probability level [symmetry code: (i) -x + 2, y, -z + 3/2].

Crystal data

C20H18N2S Dx = 1.247 Mg m3
Mr = 318.42 Melting point: 508 K
Monoclinic, C2/c Mo Kα radiation, λ = 0.71073 Å
a = 37.166 (2) Å Cell parameters from 5038 reflections
b = 6.0292 (2) Å θ = 4.3–32.6°
c = 7.5814 (4) Å µ = 0.19 mm1
β = 93.452 (7)° T = 298 K
V = 1695.78 (15) Å3 Plate, yellow
Z = 4 0.32 × 0.24 × 0.07 mm
F(000) = 672

Data collection

Oxford Diffraction Xcalibur Sapphire3 diffractometer 2861 independent reflections
Radiation source: Enhance (Mo) X-ray Source 2153 reflections with I > 2σ(I)
Graphite monochromator Rint = 0.044
Detector resolution: 16.1790 pixels mm-1 θmax = 32.6°, θmin = 4.3°
ω scans h = −55→44
Absorption correction: multi-scan (CrysAlis PRO; Oxford Diffraction, 2009) k = −8→9
Tmin = 0.713, Tmax = 1.000 l = −10→10
9577 measured reflections

Refinement

Refinement on F2 0 restraints
Least-squares matrix: full Hydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.048 H-atom parameters constrained
wR(F2) = 0.145 w = 1/[σ2(Fo2) + (0.0795P)2 + 0.2248P] where P = (Fo2 + 2Fc2)/3
S = 1.03 (Δ/σ)max = 0.001
2861 reflections Δρmax = 0.27 e Å3
106 parameters Δρmin = −0.15 e Å3

Special details

Experimental. mp 508 K; UV/Vis λmax(ε)=243 nm (12215 M-1cm-1), 384 nm (26116 M-1cm-1); IR (neat): 551.84 (m), 586.34 (m), 641.18 (m), 705.16 (m), 716.43 (m), 740.14 (m), 790.77 (m-s), 817.7, (versus), 838.08 (s), 863.88 (s), 937.29 (m), 955.06 (m), 966.85 (m), 1014.07 (m), 1060.05 (m), 1107.65 (m), 1166.55 (m), 1193.28 (m), 1211.1 (m), 1238.58 (m), 1274.86 (m), 1295.31(m), 1345.37 (w), 1375.47 (m), 1409.84 (m-s), 1456.61 (m), 1497.28 (s), 1508.13 (m), 1526.25 (m), 1586.19 (s-versus), 1612.45 (m), 1636.29 (w), 1807.98 (w), 1904.79 (w), 2725.8 (w), 2858.33 (w), 2914.98,(w), 3018.47 (w); 1H NMR (300 MHz, CDCl3): δ 8.60 (s, 2H), 7.49 (s, 2H), 7.12 (m, 8H), 2.40 (s, 6H); 13C NMR (300 MHz, CDCl3): δ 151.4258, 148.3818, 146.3021,136.5105, 131.4301, 129.9226, 129.8156, 121.0701, 21.0769
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
S1 1.0000 0.43225 (6) 0.7500 0.04723 (16)
C1 0.98232 (4) 0.8419 (2) 0.7119 (2) 0.0554 (3)
H1 0.9694 0.9702 0.6832 0.066*
C2 0.96895 (4) 0.63105 (19) 0.68436 (18) 0.0476 (3)
N1 0.92443 (3) 0.36610 (17) 0.59260 (16) 0.0488 (3)
C3 0.93398 (4) 0.56950 (19) 0.60827 (19) 0.0490 (3)
H3 0.9179 0.6800 0.5696 0.059*
C4 0.88949 (4) 0.31548 (19) 0.52032 (16) 0.0449 (3)
C5 0.85902 (4) 0.4422 (2) 0.5468 (2) 0.0529 (3)
H5 0.8612 0.5722 0.6126 0.063*
C6 0.82570 (4) 0.3767 (3) 0.4762 (2) 0.0582 (4)
H6 0.8057 0.4645 0.4943 0.070*
C7 0.82125 (4) 0.1822 (2) 0.37840 (19) 0.0553 (3)
C8 0.85167 (4) 0.0561 (2) 0.35382 (19) 0.0540 (3)
H8 0.8494 −0.0745 0.2889 0.065*
C9 0.88525 (4) 0.1194 (2) 0.42325 (19) 0.0498 (3)
H9 0.9052 0.0310 0.4053 0.060*
C10 0.78489 (6) 0.1105 (4) 0.3019 (3) 0.0832 (6)
H10A 0.7841 0.1239 0.1756 0.125*
H10B 0.7666 0.2030 0.3478 0.125*
H10C 0.7807 −0.0411 0.3336 0.125*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
S1 0.0603 (3) 0.0289 (2) 0.0533 (3) 0.000 0.0108 (2) 0.000
C1 0.0585 (8) 0.0306 (5) 0.0780 (9) 0.0020 (5) 0.0118 (7) 0.0022 (5)
C2 0.0570 (8) 0.0343 (5) 0.0527 (7) 0.0002 (5) 0.0140 (5) 0.0022 (5)
N1 0.0557 (6) 0.0379 (5) 0.0534 (6) −0.0001 (4) 0.0082 (5) 0.0000 (4)
C3 0.0573 (8) 0.0368 (6) 0.0538 (7) 0.0016 (5) 0.0115 (6) 0.0043 (5)
C4 0.0546 (7) 0.0352 (5) 0.0457 (6) −0.0002 (5) 0.0105 (5) 0.0030 (4)
C5 0.0613 (8) 0.0406 (6) 0.0579 (8) 0.0020 (5) 0.0134 (6) −0.0066 (5)
C6 0.0553 (8) 0.0543 (7) 0.0663 (9) 0.0067 (6) 0.0146 (6) −0.0026 (6)
C7 0.0586 (8) 0.0555 (8) 0.0521 (7) −0.0049 (6) 0.0075 (6) 0.0013 (6)
C8 0.0690 (9) 0.0418 (6) 0.0519 (7) −0.0047 (6) 0.0084 (6) −0.0050 (5)
C9 0.0601 (8) 0.0341 (5) 0.0560 (7) 0.0033 (5) 0.0108 (6) 0.0000 (5)
C10 0.0664 (11) 0.0948 (14) 0.0874 (13) −0.0101 (10) −0.0035 (10) −0.0136 (10)

Geometric parameters (Å, º)

S1—C2i 1.7167 (13) C5—H5 0.9300
S1—C2 1.7168 (13) C6—C7 1.392 (2)
C1—C2 1.3762 (17) C6—H6 0.9300
C1—C1i 1.403 (3) C7—C8 1.384 (2)
C1—H1 0.9300 C7—C10 1.501 (2)
C2—C3 1.439 (2) C8—C9 1.379 (2)
N1—C3 1.2802 (16) C8—H8 0.9300
N1—C4 1.4122 (18) C9—H9 0.9300
C3—H3 0.9300 C10—H10A 0.9600
C4—C5 1.3907 (19) C10—H10B 0.9600
C4—C9 1.3963 (17) C10—H10C 0.9600
C5—C6 1.377 (2)
C2i—S1—C2 91.43 (9) C5—C6—H6 119.2
C2—C1—C1i 112.53 (9) C7—C6—H6 119.2
C2—C1—H1 123.7 C8—C7—C6 117.54 (14)
C1i—C1—H1 123.7 C8—C7—C10 120.90 (15)
C1—C2—C3 127.48 (12) C6—C7—C10 121.56 (15)
C1—C2—S1 111.75 (11) C9—C8—C7 121.63 (12)
C3—C2—S1 120.76 (9) C9—C8—H8 119.2
C3—N1—C4 119.09 (12) C7—C8—H8 119.2
N1—C3—C2 121.53 (12) C8—C9—C4 120.43 (13)
N1—C3—H3 119.2 C8—C9—H9 119.8
C2—C3—H3 119.2 C4—C9—H9 119.8
C5—C4—C9 118.30 (13) C7—C10—H10A 109.5
C5—C4—N1 124.28 (11) C7—C10—H10B 109.5
C9—C4—N1 117.35 (12) H10A—C10—H10B 109.5
C6—C5—C4 120.49 (12) C7—C10—H10C 109.5
C6—C5—H5 119.8 H10A—C10—H10C 109.5
C4—C5—H5 119.8 H10B—C10—H10C 109.5
C5—C6—C7 121.62 (14)
C1i—C1—C2—C3 −179.60 (16) N1—C4—C5—C6 −177.78 (13)
C1i—C1—C2—S1 −0.6 (2) C4—C5—C6—C7 0.7 (2)
C2i—S1—C2—C1 0.23 (8) C5—C6—C7—C8 −0.2 (2)
C2i—S1—C2—C3 179.28 (15) C5—C6—C7—C10 179.82 (17)
C4—N1—C3—C2 178.67 (12) C6—C7—C8—C9 0.1 (2)
C1—C2—C3—N1 −178.68 (14) C10—C7—C8—C9 −179.95 (16)
S1—C2—C3—N1 2.4 (2) C7—C8—C9—C4 −0.4 (2)
C3—N1—C4—C5 −35.2 (2) C5—C4—C9—C8 0.9 (2)
C3—N1—C4—C9 148.02 (13) N1—C4—C9—C8 177.88 (12)
C9—C4—C5—C6 −1.0 (2)

Symmetry code: (i) −x+2, y, −z+3/2.

Footnotes

Supporting information for this paper is available from the IUCr electronic archives (Reference: LH5761).

References

  1. Bernès, S., Hernández-Téllez, G., Sharma, M., Portillo-Moreno, O. & Gutiérrez, R. (2013). Acta Cryst. E69, o1428. [DOI] [PMC free article] [PubMed]
  2. Bolduc, A., Dufresne, S. & Skene, W. G. (2013). Acta Cryst. C69, 1196–1199. [DOI] [PubMed]
  3. Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.
  4. Mendoza, A., Bernès, S., Hernández-Téllez, G., Portillo-Moreno, O. & Gutiérrez, R. (2014). Acta Cryst. E70, o345. [DOI] [PMC free article] [PubMed]
  5. Oxford Diffraction (2009). CrysAlis CCD, CrysAlis PRO and CrysAlis RED. Oxford Diffraction Ltd, Abington, Oxfordshire, England.
  6. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  7. Sheldrick, G. M. (2015). Acta Cryst. C71, 3–8.
  8. Skene, W. G. & Dufresne, S. (2006). Acta Cryst. E62, o1116–o1117.
  9. Suganya, S., Velmathi, S. & MubarakAli, D. (2014). Dyes Pigments, 104, 116–122.
  10. Vaysse, M. & Pastour, P. (1964). Compt. Rend. 256, 2657–2659.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) I. DOI: 10.1107/S205698901500849X/lh5761sup1.cif

e-71-0o403-sup1.cif (299.5KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S205698901500849X/lh5761Isup2.hkl

e-71-0o403-Isup2.hkl (157.3KB, hkl)

x y z . DOI: 10.1107/S205698901500849X/lh5761fig1.tif

A view of the title compound (Farrugia, 1997). Displacement ellipsoids are drawn at the 50% probability level [symmetry code: (i) −x + 2, y, −z + Inline graphic].

CCDC reference: 1062484

Additional supporting information: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Crystallographic Communications are provided here courtesy of International Union of Crystallography

RESOURCES