Skip to main content
Acta Crystallographica Section E: Crystallographic Communications logoLink to Acta Crystallographica Section E: Crystallographic Communications
. 2015 May 30;71(Pt 6):723–725. doi: 10.1107/S2056989015010075

Crystal structure and biological evaluation of 4-methyl­morpholin-4-ium 1,3-dimethyl-2,6-dioxo-5-(2,4,6-tri­nitro­phen­yl)-1,2,3,6-tetra­hydro­pyrimidin-4-olate

Jeganathan Gomathi a, Doraisamyraja Kalaivani a,*
PMCID: PMC4459352  PMID: 26090161

In the crystal of title mol­ecular salt, the protonated N atom of the 4-methyl­morpholin-4-ium cation forms a hydrogen bond with a carbonyl O atom of the barbiturate anion. This N—H⋯O hydrogen bond contributes to the good stability of the reported salt, which exhibits noticeable anti­convulsant and hypnotic activity.

Keywords: crystal structure, anti­convulsant activity, hypnotic activity, barbiturate, mol­ecular salt, hydrogen bonding

Abstract

The title mol­ecular salt, C5H12NO+·C12H8N5O9 [common name: 4-methyl­morpholin-4-ium 1,3-dimethyl-5-(2,4,6-tri­nitro­phen­yl)barbiturate], possesses noticeable anti­convulsant and hypnotic activity. In the anion, the 1,3-di­methyl­barbituric acid ring and the symmetrically substituted tri­nitro­phenyl ring, linked via a C—C bond, are not coplanar but subtend an angle of 44.88 (7)°. The six-membered ring of the 4-methyl­morpholin-4-ium cation has a chair conformation. In the crystal, the cation and anion are linked via an N—H⋯O hydrogen bond. The cation–anion units are linked by a number of C—H⋯O hydrogen bonds, forming a three-dimensional network.

Chemical context  

In biological systems, pyrimidine derivatives play a significant role. Substituted barbituric acid (barbiturates) are pyrimidine derivatives which have been used as hypnotic drugs and in the treatment of epilepsy. Morpholines also have pharmacological properties and are used in organic synthesis as bases, catalysts and chiral auxiliaries (Dave & Sasaki, 2004; Mayer & List, 2006; Mossé et al., 2006; Nelson & Wang, 2006; Qin & Pu, 2006). The mol­ecular salts previously synthesized in our laboratory from chloro­nitro­aromatics, barbituric acid and amines containing tertiary nitro­gen atoms possess noticeable anti­convulsant/hypnotic activity (Kalaivani & Buvaneswari, 2010; Buvaneswari & Kalaivani, 2013). In this context, we report herein on the crystal structure of a new mol­ecular salt isolated from ethano­lic solutions of 1-chloro-2,4,6-tri­nitro­benzene (TNCB), 1,3-dimethyl barbituric acid and 4-methyl­morpholine.graphic file with name e-71-00723-scheme1.jpg

Structural commentary  

The mol­ecular structure of the title mol­ecular salt is depicted in Fig. 1. The protonated nitro­gen atom of the N-methyl­morpholinium cation forms a hydrogen bond with the carbonyl group O atom of the 1,3-dimethyl-5-(2,4,6-tri­nitro­phen­yl) barbiturate anion (Table 1 and Fig. 2). This N—H⋯O hydrogen bond may well be the driving force for the formation of the title mol­ecular salt. All the bond lengths and bond angles are normal and comparable with those observed in related barbiturates (Gunaseelan & Doraisamyraja, 2014; Vaduganathan & Doraisamyraja, 2014). The six-membered morpholin-4-ium ring has a chair conformation. In the anion, the 1,3-dimethyl barbituric acid ring and the symmetrically substituted tri­nitro­phenyl ring, linked via the C4—C7 bond, are not co-planar but subtend an angle of 44.88 (7)°. The planes of the nitro groups substituted in the aromatic ring ortho with respect to the ring junction of the anion deviate to a greater extent than that of the para nitro group [dihedral angles of 42.66 (10) and 45.44 (9°) for the ortho nitro groups and 12.5 (8)° for the para nitro group]. Thus the para nitro group is more involved in delocalizing the charge of the anion than the ortho nitro groups, which imparts a red colour for the title mol­ecular salt.

Figure 1.

Figure 1

A view of the mol­ecular structure of the title mol­ecular salt, showing the atom labelling. Displacement ellipsoids are drawn at the 40% probability level.

Table 1. Hydrogen-bond geometry (, ).

DHA DH HA D A DHA
N6H6AO9i 0.90(1) 1.81(2) 2.6790(17) 162(2)
C12H12BO1ii 0.96 2.53 3.270(3) 134
C13H13BO8iii 0.97 2.42 3.046(2) 122
C15H15AO7iv 0.97 2.57 3.529(2) 169
C17H17AO7 0.96 2.43 3.297(2) 151
C17H17BO4 0.96 2.40 3.344(2) 168

Symmetry codes: (i) Inline graphic; (ii) Inline graphic; (iii) Inline graphic; (iv) Inline graphic.

Figure 2.

Figure 2

A view along the b axis of the crystal packing of the title mol­ecular salt. Hydrogen bonds are shown as dotted lines (see Table 1 for details).

Supra­molecular features  

In the crystal, in addition to the N—H⋯O hydrogen bond linking the cation and anion, there are a number of C—H⋯O hydrogen bonds present, leading to the formation of a three-dimensional network, enclosing two sizable Inline graphic(11) and Inline graphic(10) ring motifs (Table 1 and Fig. 2).

Database survey  

A search of the Cambridge Structural Database (Version 5.36, February 2015; Groom & Allen, 2014) for 5-phenyl-1,3-dimethyl barbiturates gave seven hits with various tertiary amines as cations. Two of these compounds involve 2,4-di­nitro­phenyl (CORWUD; Gunaseelan & Doraisamyraja, 2014; YAVSOF; Sridevi & Kalaivani, 2012), two involve 5-chloro-2,4-di­nitro­phenyl (DOQCUJ; Vaduganathan & Doraisamyraja, 2014), and the final three involve 2,4,6-tri­nitro­phenyl, as in the title barbiturate anion. These three compounds include the N,N-di­methyl­anilinium salt (JOKGIB: Babykala et al., 2014), the quinolinium salt (JOKGUN: Babykala et al., 2014) and the tri­ethyl­ammonium salt (LEGWIF; Rajamani & Kalaivani, 2012). In these compounds, the benzene ring is inclined to the plane of the 1,3-dimethyl barbiturate ring by 44.34, 42.88 and 46.88°, respectively, compared to 44.88 (7)° in the title salt.

Pharmacological activity  

Epilepsy is a medical condition that produces seizures affecting a variety of mental and physical functions. Barbituric acid derivatives are potential anti-epileptic agents. The title mol­ecular salt is a derivative of 1,3-di­methyl­barbituric acid and possesses anti­convulsant activity even at low dosage (25 mg kg−1), inferred from the Maximal Electro Shock method on albino rats (Misra et al., 1973; Kulkarni, 1999). The thera­peutic dose (100 mg kg−1) induces hypnosis in albino mice (Dewas, 1953) and the mol­ecular salt is non-cytotoxic on human embryonic kidney cell-HEK 293 (Mosmann, 1983).

Synthesis and crystallization  

1-Chloro-2,4,6-tri­nitro­benzene (TNCB: 2.5 g, 0.01 mol) dissolved in 30 ml of absolute ethanol was mixed with 1,3-di­methyl­barbituric acid (1.6 g, 0.01 mol) in 30 ml of absolute ethanol. After mixing these two solutions, 3 ml of N-methyl­morpholine (0.03 mol) was added and the mixture was shaken vigorously for 6 to 7 h. The solution was filtered and the filtrate was kept at room temperature. After a period of four weeks, dark shiny maroon–red-coloured crystals formed from the solution. The crystals were filtered and washed with 30 ml of dry ether and recrystallized from absolute ethanol (yield: 70%; m.p.: 483 K).

Refinement  

Crystal data, data collection and structure refinement details are summarized in Table 2. The NH H atom was located from a difference Fourier map and freely refined. The C-bound H atoms were included in calculated positions and refined as riding: C—H = 0.93–0.97 Å with U iso(H) = 1.5Ueq(C) for methyl H atoms and 1.2U eq(C) for other H atoms.

Table 2. Experimental details.

Crystal data
Chemical formula C5H12NO+C12H8N5O9
M r 468.39
Crystal system, space group Monoclinic, P21/n
Temperature (K) 293
a, b, c () 12.0335(2), 12.5495(2), 14.2095(3)
() 110.619(1)
V (3) 2008.38(6)
Z 4
Radiation type Mo K
(mm1) 0.13
Crystal size (mm) 0.35 0.35 0.30
 
Data collection
Diffractometer Bruker Kappa APEXII CCD
Absorption correction Multi-scan (SADABS; Bruker, 2004)
T min, T max 0.944, 0.979
No. of measured, independent and observed [I > 2(I)] reflections 17785, 3531, 3100
R int 0.022
(sin /)max (1) 0.594
 
Refinement
R[F 2 > 2(F 2)], wR(F 2), S 0.033, 0.094, 1.02
No. of reflections 3531
No. of parameters 303
No. of restraints 1
H-atom treatment H atoms treated by a mixture of independent and constrained refinement
max, min (e 3) 0.29, 0.19

Computer programs: APEX2, SAINT and XPREP (Bruker, 2004), SIR92 (Altomare et al., 1993), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 2012), Mercury (Macrae et al., 2008) and PLATON (Spek, 2009).

Supplementary Material

Crystal structure: contains datablock(s) global, I. DOI: 10.1107/S2056989015010075/su5140sup1.cif

e-71-00723-sup1.cif (23.1KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S2056989015010075/su5140Isup2.hkl

e-71-00723-Isup2.hkl (173.2KB, hkl)

Supporting information file. DOI: 10.1107/S2056989015010075/su5140Isup3.cml

CCDC reference: 1006239

Additional supporting information: crystallographic information; 3D view; checkCIF report

Acknowledgments

The authors are grateful to the DST–SERB for financial support and the SAIF, IIT Madras, for the single-crystal XRD data collection.

supplementary crystallographic information

Crystal data

C5H12NO+·C12H8N5O9 F(000) = 976
Mr = 468.39 Dx = 1.549 Mg m3
Monoclinic, P21/n Mo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2yn Cell parameters from 5001 reflections
a = 12.0335 (2) Å θ = 2.4–31.0°
b = 12.5495 (2) Å µ = 0.13 mm1
c = 14.2095 (3) Å T = 293 K
β = 110.619 (1)° Block, red
V = 2008.38 (6) Å3 0.35 × 0.35 × 0.30 mm
Z = 4

Data collection

Bruker Kappa APEXII CCD diffractometer 3531 independent reflections
Radiation source: fine-focus sealed tube 3100 reflections with I > 2σ(I)
Graphite monochromator Rint = 0.022
ω and φ scan θmax = 25.0°, θmin = 2.2°
Absorption correction: multi-scan (SADABS; Bruker, 2004) h = −14→14
Tmin = 0.944, Tmax = 0.979 k = −14→14
17785 measured reflections l = −14→16

Refinement

Refinement on F2 Secondary atom site location: difference Fourier map
Least-squares matrix: full Hydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.033 H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.094 w = 1/[σ2(Fo2) + (0.0481P)2 + 0.8436P] where P = (Fo2 + 2Fc2)/3
S = 1.02 (Δ/σ)max < 0.001
3531 reflections Δρmax = 0.29 e Å3
303 parameters Δρmin = −0.19 e Å3
1 restraint Extinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methods Extinction coefficient: 0.0055 (8)

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
C1 0.43707 (13) 0.03855 (13) 0.25436 (11) 0.0302 (3)
C2 0.38283 (12) 0.12808 (12) 0.27338 (11) 0.0289 (3)
H2 0.3864 0.1927 0.2425 0.035*
C3 0.32290 (12) 0.11897 (11) 0.33969 (10) 0.0260 (3)
C4 0.31666 (12) 0.02532 (11) 0.39227 (10) 0.0243 (3)
C5 0.37585 (12) −0.06119 (11) 0.36784 (10) 0.0255 (3)
C6 0.43254 (13) −0.05755 (12) 0.29902 (11) 0.0293 (3)
H6 0.4667 −0.1183 0.2833 0.035*
C7 0.25695 (12) 0.01764 (11) 0.46538 (10) 0.0258 (3)
C8 0.27868 (13) 0.09763 (12) 0.53973 (10) 0.0276 (3)
C9 0.15786 (14) −0.00393 (13) 0.61560 (12) 0.0351 (4)
C10 0.18464 (12) −0.07197 (11) 0.46323 (11) 0.0266 (3)
C11 0.06174 (16) −0.16822 (14) 0.54379 (14) 0.0426 (4)
H11A 0.0535 −0.2146 0.4880 0.064*
H11B −0.0151 −0.1428 0.5396 0.064*
H11C 0.0974 −0.2066 0.6056 0.064*
C12 0.23622 (19) 0.16819 (15) 0.68544 (14) 0.0512 (5)
H12A 0.2844 0.2243 0.6744 0.077*
H12B 0.2732 0.1402 0.7521 0.077*
H12C 0.1592 0.1958 0.6781 0.077*
C13 −0.12719 (15) 0.08388 (12) 0.08075 (13) 0.0376 (4)
H13A −0.0888 0.0936 0.0317 0.045*
H13B −0.1145 0.1478 0.1215 0.045*
C14 −0.25795 (15) 0.06698 (14) 0.02738 (14) 0.0455 (4)
H14A −0.2972 0.0616 0.0763 0.055*
H14B −0.2913 0.1274 −0.0159 0.055*
C15 −0.23768 (16) −0.11649 (14) 0.03294 (14) 0.0455 (4)
H15A −0.2566 −0.1813 −0.0068 0.055*
H15B −0.2785 −0.1189 0.0808 0.055*
C16 −0.10612 (15) −0.11112 (12) 0.08864 (12) 0.0371 (4)
H16A −0.0816 −0.1708 0.1347 0.045*
H16B −0.0648 −0.1161 0.0412 0.045*
C17 0.05704 (14) 0.00254 (14) 0.19529 (13) 0.0408 (4)
H17A 0.0886 −0.0586 0.2367 0.061*
H17B 0.0741 0.0656 0.2362 0.061*
H17C 0.0928 0.0083 0.1448 0.061*
N1 0.50516 (12) 0.04650 (12) 0.18734 (11) 0.0415 (4)
N2 0.26003 (11) 0.21678 (9) 0.34983 (9) 0.0300 (3)
N3 0.39089 (11) −0.16271 (10) 0.42314 (9) 0.0287 (3)
N4 0.22370 (12) 0.08312 (10) 0.61182 (9) 0.0346 (3)
N5 0.13701 (11) −0.07774 (10) 0.54094 (10) 0.0320 (3)
N6 −0.07361 (11) −0.00932 (10) 0.14601 (10) 0.0285 (3)
O1 0.53911 (14) −0.03584 (12) 0.16052 (11) 0.0625 (4)
O2 0.52504 (14) 0.13486 (12) 0.16192 (13) 0.0680 (4)
O3 0.31154 (11) 0.30113 (9) 0.35283 (9) 0.0441 (3)
O4 0.15911 (10) 0.20924 (9) 0.35025 (8) 0.0373 (3)
O5 0.37978 (11) −0.24515 (9) 0.37513 (9) 0.0412 (3)
O6 0.41853 (10) −0.15902 (9) 0.51449 (8) 0.0362 (3)
O7 0.16068 (9) −0.14407 (8) 0.40033 (8) 0.0336 (3)
O8 0.34225 (10) 0.17649 (8) 0.54788 (8) 0.0358 (3)
O9 0.11726 (13) −0.01616 (11) 0.68304 (10) 0.0554 (4)
O10 −0.27783 (11) −0.02750 (11) −0.03090 (9) 0.0518 (3)
H6A −0.1019 (14) −0.0097 (13) 0.1966 (12) 0.033 (4)*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
C1 0.0272 (7) 0.0396 (9) 0.0254 (7) −0.0018 (6) 0.0114 (6) 0.0027 (6)
C2 0.0295 (7) 0.0289 (8) 0.0265 (8) −0.0053 (6) 0.0078 (6) 0.0037 (6)
C3 0.0282 (7) 0.0240 (7) 0.0246 (7) −0.0022 (6) 0.0078 (6) −0.0017 (6)
C4 0.0258 (7) 0.0248 (7) 0.0204 (7) −0.0042 (5) 0.0058 (5) −0.0020 (5)
C5 0.0282 (7) 0.0241 (7) 0.0231 (7) −0.0021 (6) 0.0076 (6) 0.0008 (6)
C6 0.0298 (7) 0.0313 (8) 0.0271 (8) 0.0026 (6) 0.0102 (6) −0.0003 (6)
C7 0.0319 (7) 0.0243 (7) 0.0231 (7) 0.0011 (6) 0.0121 (6) 0.0010 (6)
C8 0.0328 (8) 0.0271 (8) 0.0227 (7) 0.0037 (6) 0.0094 (6) 0.0020 (6)
C9 0.0393 (8) 0.0402 (9) 0.0310 (8) 0.0067 (7) 0.0187 (7) 0.0053 (7)
C10 0.0283 (7) 0.0267 (8) 0.0259 (7) 0.0042 (6) 0.0110 (6) 0.0040 (6)
C11 0.0441 (9) 0.0396 (9) 0.0531 (11) −0.0032 (7) 0.0282 (8) 0.0068 (8)
C12 0.0744 (13) 0.0478 (11) 0.0387 (10) 0.0034 (9) 0.0288 (9) −0.0116 (8)
C13 0.0439 (9) 0.0263 (8) 0.0447 (9) 0.0015 (7) 0.0184 (8) 0.0067 (7)
C14 0.0424 (10) 0.0432 (10) 0.0501 (10) 0.0077 (8) 0.0153 (8) 0.0108 (8)
C15 0.0506 (10) 0.0381 (10) 0.0482 (10) −0.0104 (8) 0.0180 (8) −0.0111 (8)
C16 0.0481 (9) 0.0256 (8) 0.0386 (9) −0.0002 (7) 0.0166 (7) −0.0072 (7)
C17 0.0376 (9) 0.0427 (10) 0.0384 (9) 0.0004 (7) 0.0088 (7) −0.0066 (7)
N1 0.0377 (7) 0.0522 (9) 0.0408 (8) 0.0049 (7) 0.0214 (6) 0.0110 (7)
N2 0.0398 (7) 0.0241 (7) 0.0267 (7) −0.0009 (5) 0.0127 (5) 0.0017 (5)
N3 0.0305 (6) 0.0262 (7) 0.0303 (7) 0.0015 (5) 0.0116 (5) 0.0023 (5)
N4 0.0475 (8) 0.0340 (7) 0.0266 (7) 0.0033 (6) 0.0186 (6) −0.0028 (5)
N5 0.0367 (7) 0.0325 (7) 0.0327 (7) −0.0003 (5) 0.0197 (6) 0.0032 (5)
N6 0.0370 (7) 0.0260 (7) 0.0256 (6) −0.0001 (5) 0.0147 (5) −0.0027 (5)
O1 0.0751 (10) 0.0663 (9) 0.0688 (10) 0.0253 (8) 0.0537 (8) 0.0156 (7)
O2 0.0828 (11) 0.0593 (9) 0.0880 (11) −0.0058 (8) 0.0624 (10) 0.0168 (8)
O3 0.0609 (8) 0.0232 (6) 0.0526 (7) −0.0081 (5) 0.0252 (6) −0.0014 (5)
O4 0.0385 (6) 0.0355 (6) 0.0407 (7) 0.0057 (5) 0.0175 (5) 0.0028 (5)
O5 0.0580 (7) 0.0246 (6) 0.0446 (7) 0.0008 (5) 0.0224 (6) −0.0032 (5)
O6 0.0435 (6) 0.0368 (6) 0.0264 (6) 0.0030 (5) 0.0100 (5) 0.0074 (5)
O7 0.0404 (6) 0.0290 (6) 0.0342 (6) −0.0065 (4) 0.0166 (5) −0.0050 (5)
O8 0.0457 (6) 0.0293 (6) 0.0325 (6) −0.0058 (5) 0.0137 (5) −0.0057 (5)
O9 0.0725 (9) 0.0674 (9) 0.0433 (7) −0.0055 (7) 0.0417 (7) −0.0029 (6)
O10 0.0483 (7) 0.0606 (9) 0.0375 (7) −0.0019 (6) 0.0040 (6) −0.0023 (6)

Geometric parameters (Å, º)

C1—C6 1.373 (2) C12—H12B 0.9600
C1—C2 1.373 (2) C12—H12C 0.9600
C1—N1 1.462 (2) C13—N6 1.491 (2)
C2—C3 1.378 (2) C13—C14 1.502 (2)
C2—H2 0.9300 C13—H13A 0.9700
C3—C4 1.409 (2) C13—H13B 0.9700
C3—N2 1.4753 (18) C14—O10 1.417 (2)
C4—C5 1.407 (2) C14—H14A 0.9700
C4—C7 1.4597 (19) C14—H14B 0.9700
C5—C6 1.376 (2) C15—O10 1.412 (2)
C5—N3 1.4742 (18) C15—C16 1.502 (2)
C6—H6 0.9300 C15—H15A 0.9700
C7—C8 1.413 (2) C15—H15B 0.9700
C7—C10 1.416 (2) C16—N6 1.4917 (19)
C8—O8 1.2311 (18) C16—H16A 0.9700
C8—N4 1.4134 (19) C16—H16B 0.9700
C9—O9 1.2291 (19) C17—N6 1.486 (2)
C9—N4 1.362 (2) C17—H17A 0.9600
C9—N5 1.363 (2) C17—H17B 0.9600
C10—O7 1.2325 (18) C17—H17C 0.9600
C10—N5 1.4137 (18) N1—O2 1.2158 (19)
C11—N5 1.462 (2) N1—O1 1.220 (2)
C11—H11A 0.9600 N2—O3 1.2198 (16)
C11—H11B 0.9600 N2—O4 1.2201 (16)
C11—H11C 0.9600 N3—O5 1.2203 (16)
C12—N4 1.465 (2) N3—O6 1.2221 (16)
C12—H12A 0.9600 N6—H6A 0.897 (14)
C6—C1—C2 121.94 (13) H13A—C13—H13B 108.1
C6—C1—N1 118.92 (14) O10—C14—C13 110.15 (14)
C2—C1—N1 119.11 (14) O10—C14—H14A 109.6
C1—C2—C3 117.77 (13) C13—C14—H14A 109.6
C1—C2—H2 121.1 O10—C14—H14B 109.6
C3—C2—H2 121.1 C13—C14—H14B 109.6
C2—C3—C4 124.77 (13) H14A—C14—H14B 108.1
C2—C3—N2 114.05 (12) O10—C15—C16 111.21 (14)
C4—C3—N2 121.16 (12) O10—C15—H15A 109.4
C5—C4—C3 112.75 (12) C16—C15—H15A 109.4
C5—C4—C7 122.91 (12) O10—C15—H15B 109.4
C3—C4—C7 124.33 (12) C16—C15—H15B 109.4
C6—C5—C4 124.77 (13) H15A—C15—H15B 108.0
C6—C5—N3 114.14 (12) N6—C16—C15 110.58 (13)
C4—C5—N3 120.87 (12) N6—C16—H16A 109.5
C1—C6—C5 117.90 (14) C15—C16—H16A 109.5
C1—C6—H6 121.0 N6—C16—H16B 109.5
C5—C6—H6 121.0 C15—C16—H16B 109.5
C8—C7—C10 122.06 (13) H16A—C16—H16B 108.1
C8—C7—C4 118.51 (12) N6—C17—H17A 109.5
C10—C7—C4 119.34 (12) N6—C17—H17B 109.5
O8—C8—C7 125.91 (13) H17A—C17—H17B 109.5
O8—C8—N4 117.99 (13) N6—C17—H17C 109.5
C7—C8—N4 116.08 (13) H17A—C17—H17C 109.5
O9—C9—N4 121.84 (15) H17B—C17—H17C 109.5
O9—C9—N5 120.48 (15) O2—N1—O1 123.84 (14)
N4—C9—N5 117.69 (13) O2—N1—C1 118.02 (15)
O7—C10—N5 118.24 (13) O1—N1—C1 118.14 (14)
O7—C10—C7 125.72 (13) O3—N2—O4 124.16 (13)
N5—C10—C7 116.04 (13) O3—N2—C3 116.98 (12)
N5—C11—H11A 109.5 O4—N2—C3 118.78 (12)
N5—C11—H11B 109.5 O5—N3—O6 124.13 (12)
H11A—C11—H11B 109.5 O5—N3—C5 117.77 (12)
N5—C11—H11C 109.5 O6—N3—C5 118.02 (12)
H11A—C11—H11C 109.5 C9—N4—C8 124.01 (13)
H11B—C11—H11C 109.5 C9—N4—C12 118.14 (14)
N4—C12—H12A 109.5 C8—N4—C12 117.84 (14)
N4—C12—H12B 109.5 C9—N5—C10 123.98 (13)
H12A—C12—H12B 109.5 C9—N5—C11 116.88 (13)
N4—C12—H12C 109.5 C10—N5—C11 119.14 (13)
H12A—C12—H12C 109.5 C17—N6—C13 111.63 (12)
H12B—C12—H12C 109.5 C17—N6—C16 111.94 (12)
N6—C13—C14 110.49 (13) C13—N6—C16 111.05 (12)
N6—C13—H13A 109.6 C17—N6—H6A 105.1 (11)
C14—C13—H13A 109.6 C13—N6—H6A 107.4 (11)
N6—C13—H13B 109.6 C16—N6—H6A 109.4 (11)
C14—C13—H13B 109.6 C15—O10—C14 109.69 (13)
C6—C1—C2—C3 0.1 (2) C6—C1—N1—O1 11.8 (2)
N1—C1—C2—C3 −177.70 (13) C2—C1—N1—O1 −170.27 (15)
C1—C2—C3—C4 2.4 (2) C2—C3—N2—O3 −40.93 (17)
C1—C2—C3—N2 −175.69 (13) C4—C3—N2—O3 140.92 (14)
C2—C3—C4—C5 −1.9 (2) C2—C3—N2—O4 135.91 (13)
N2—C3—C4—C5 176.08 (12) C4—C3—N2—O4 −42.23 (19)
C2—C3—C4—C7 177.42 (13) C6—C5—N3—O5 −44.54 (17)
N2—C3—C4—C7 −4.6 (2) C4—C5—N3—O5 140.67 (13)
C3—C4—C5—C6 −1.1 (2) C6—C5—N3—O6 132.46 (13)
C7—C4—C5—C6 179.58 (13) C4—C5—N3—O6 −42.33 (18)
C3—C4—C5—N3 173.08 (12) O9—C9—N4—C8 175.76 (15)
C7—C4—C5—N3 −6.2 (2) N5—C9—N4—C8 −4.8 (2)
C2—C1—C6—C5 −2.8 (2) O9—C9—N4—C12 −5.7 (2)
N1—C1—C6—C5 174.99 (13) N5—C9—N4—C12 173.71 (15)
C4—C5—C6—C1 3.4 (2) O8—C8—N4—C9 −175.43 (14)
N3—C5—C6—C1 −171.15 (13) C7—C8—N4—C9 3.2 (2)
C5—C4—C7—C8 132.29 (14) O8—C8—N4—C12 6.0 (2)
C3—C4—C7—C8 −46.92 (19) C7—C8—N4—C12 −175.31 (14)
C5—C4—C7—C10 −44.30 (19) O9—C9—N5—C10 −177.15 (15)
C3—C4—C7—C10 136.49 (14) N4—C9—N5—C10 3.4 (2)
C10—C7—C8—O8 178.39 (14) O9—C9—N5—C11 2.1 (2)
C4—C7—C8—O8 1.9 (2) N4—C9—N5—C11 −177.34 (14)
C10—C7—C8—N4 −0.2 (2) O7—C10—N5—C9 179.21 (14)
C4—C7—C8—N4 −176.65 (12) C7—C10—N5—C9 −0.6 (2)
C8—C7—C10—O7 179.15 (14) O7—C10—N5—C11 0.0 (2)
C4—C7—C10—O7 −4.4 (2) C7—C10—N5—C11 −179.82 (13)
C8—C7—C10—N5 −1.0 (2) C14—C13—N6—C17 176.77 (14)
C4—C7—C10—N5 175.41 (12) C14—C13—N6—C16 51.09 (18)
N6—C13—C14—O10 −57.98 (18) C15—C16—N6—C17 −175.33 (14)
O10—C15—C16—N6 55.94 (19) C15—C16—N6—C13 −49.82 (17)
C6—C1—N1—O2 −167.86 (16) C16—C15—O10—C14 −63.10 (18)
C2—C1—N1—O2 10.0 (2) C13—C14—O10—C15 63.87 (18)

Hydrogen-bond geometry (Å, º)

D—H···A D—H H···A D···A D—H···A
N6—H6A···O9i 0.90 (1) 1.81 (2) 2.6790 (17) 162 (2)
C12—H12B···O1ii 0.96 2.53 3.270 (3) 134
C13—H13B···O8iii 0.97 2.42 3.046 (2) 122
C15—H15A···O7iv 0.97 2.57 3.529 (2) 169
C17—H17A···O7 0.96 2.43 3.297 (2) 151
C17—H17B···O4 0.96 2.40 3.344 (2) 168

Symmetry codes: (i) −x, −y, −z+1; (ii) −x+1, −y, −z+1; (iii) x−1/2, −y+1/2, z−1/2; (iv) x−1/2, −y−1/2, z−1/2.

References

  1. Altomare, A., Cascarano, G., Giacovazzo, C. & Guagliardi, A. (1993). J. Appl. Cryst. 26, 343–350.
  2. Babykala, R., Rajamani, K., Muthulakshmi, S. & Kalaivani, D. (2014). J. Chem. Crystallogr. 44, 243–254.
  3. Bruker (2004). APEX2, SAINT, XPREP and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.
  4. Buvaneswari, M. & Kalaivani, D. (2013). J. Chem. Crystallogr. 43, 561–567.
  5. Dave, R. & Sasaki, N. A. (2004). Org. Lett. 6, 15–18. [DOI] [PubMed]
  6. Dewas, P. B. (1953). Br. J. Pharmacol. 6, 46–48.
  7. Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.
  8. Groom, C. R. & Allen, F. H. (2014). Angew. Chem. Int. Ed. 53, 662–671. [DOI] [PubMed]
  9. Gunaseelan, S. & Doraisamyraja, K. (2014). Acta Cryst. E70, o1102–o1103. [DOI] [PMC free article] [PubMed]
  10. Kalaivani, D. & Buvaneswari, M. (2010). Recent. Adv. Clin. Med. pp. 255–260 Cambridge, UK: WSEAS Publications.
  11. Kulkarni, S. K. (1999). Handbook of experimental pharmacology, p. 131. Mumbai: Vallabh Prakashan.
  12. Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470.
  13. Mayer, S. & List, B. (2006). Angew. Chem. Int. Ed. 45, 4193–4195. [DOI] [PubMed]
  14. Misra, A. K., Dandiya, P. C. & Kulkarni, S. K. (1973). Indian J. Pharmacol. 5, 449–450.
  15. Mosmann, T. (1983). J. Immunol. Methods, 65, 55–63. [DOI] [PubMed]
  16. Mossé, S., Laars, M., Kriis, K., Kanger, T. & Alexakis, A. (2006). Org. Lett. 8, 2559–2562. [DOI] [PubMed]
  17. Nelson, S. G. & Wang, K. (2006). J. Am. Chem. Soc. 128, 4232–4233. [DOI] [PubMed]
  18. Qin, Y. & Pu, L. (2006). Angew. Chem. Int. Ed. 45, 273–277.
  19. Rajamani, K. & Kalaivani, D. (2012). Acta Cryst. E68, o2395. [DOI] [PMC free article] [PubMed]
  20. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  21. Spek, A. L. (2009). Acta Cryst. D65, 148–155. [DOI] [PMC free article] [PubMed]
  22. Sridevi, G. & Kalaivani, D. (2012). Acta Cryst. E68, o1044. [DOI] [PMC free article] [PubMed]
  23. Vaduganathan, M. & Doraisamyraja, K. (2014). Acta Cryst. E70, 256–258. [DOI] [PMC free article] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) global, I. DOI: 10.1107/S2056989015010075/su5140sup1.cif

e-71-00723-sup1.cif (23.1KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S2056989015010075/su5140Isup2.hkl

e-71-00723-Isup2.hkl (173.2KB, hkl)

Supporting information file. DOI: 10.1107/S2056989015010075/su5140Isup3.cml

CCDC reference: 1006239

Additional supporting information: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Crystallographic Communications are provided here courtesy of International Union of Crystallography

RESOURCES