Skip to main content
Acta Crystallographica Section E: Crystallographic Communications logoLink to Acta Crystallographica Section E: Crystallographic Communications
. 2015 May 23;71(Pt 6):m135–m136. doi: 10.1107/S2056989015009548

Crystal structure of catena-poly[[[di­aqua­cobalt(II)]-bis­(μ-hex-3-enedi­nitrile-κ2 N:N′)] bis­(tetra­fluorido­borate)]

Jung-Su Son a,, Sung-Chul Lim a,, Hochun Lee a,*, Seung-Tae Hong a,*
PMCID: PMC4459353  PMID: 26090169

Abstract

In the structure of the title salt, [Co(C6H6N2)2(H2O)2](BF4)2, the CoII atom is located on an inversion centre. The transition metal is in a slightly distorted octa­hedral coordination environment, defined by the cyano N atoms of four hex-3-enedi­nitrile ligands in equatorial positions and the O atoms of two water mol­ecules in axial positions. The bridging mode of the hex-3-enedi­nitrile ligands leads to the formation of cationic chains extending parallel to [1-10]. The BF4 counter-anion is disordered over two sets of sites [occupancy ratio = 0.512 (19):0.489 (19)]. It is located in the voids between the cationic chains and is connected to the aqua ligands of the latter through O—H⋯F hydrogen bonds. One methyl­ene H atom of the hex-3-enedi­nitrile ligand forms another and weak C—H⋯O hydrogen bond with a water O atom of a neighbouring chain, thus consolidating the three-dimensional network structure.

Keywords: crystal structure, cobalt, hex-3-enedi­nitrile, hydrogen bonding

Related literature  

Aliphatic di­nitriles have gained much attention not only due to their rich coordination chemistry with transition-metal ions (Storhoff & Lewis, 1977; Heller & Sheldrick, 2004; Blount et al., 1969), but also due to their applications as functional electrolyte additives for lithium ion batteries (Kim et al., 2011, 2014a ,b ). While the coordination complexes of saturated aliphatic di­nitrile ligands have been extensively studied (Storhoff & Lewis, 1977; Heller & Sheldrick, 2004; Blount et al., 1969), those of unsaturated di­nitrile ligands like in the title compound have hardly been reported so far. graphic file with name e-71-0m135-scheme1.jpg

Experimental  

Crystal data  

  • [Co(C6H6N2)(H2O)2](BF4)2

  • M r = 480.84

  • Triclinic, Inline graphic

  • a = 7.9839 (11) Å

  • b = 8.3434 (11) Å

  • c = 8.8441 (13) Å

  • α = 71.380 (5)°

  • β = 88.458 (5)°

  • γ = 66.184 (4)°

  • V = 507.21 (12) Å3

  • Z = 1

  • Mo Kα radiation

  • μ = 0.93 mm−1

  • T = 103 K

  • 0.20 × 0.20 × 0.20 mm

Data collection  

  • Bruker APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2006) T min = 0.60, T max = 0.75

  • 14705 measured reflections

  • 2501 independent reflections

  • 2233 reflections with I > 2σ(I)

  • R int = 0.038

Refinement  

  • R[F 2 > 3σ(F 2)] = 0.033

  • wR(F 2) = 0.068

  • S = 0.87

  • 2202 reflections

  • 170 parameters

  • 20 restraints

  • H-atom parameters constrained

  • Δρmax = 0.83 e Å−3

  • Δρmin = −0.62 e Å−3

Data collection: APEX2 (Bruker, 2006); cell refinement: SAINT (Bruker, 2006); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: CRYSTALS (Betteridge et al., 2003); molecular graphics: ATOMS (Dowty, 2000); software used to prepare material for publication: CRYSTALS.

Supplementary Material

Crystal structure: contains datablock(s) I. DOI: 10.1107/S2056989015009548/wm5160sup1.cif

e-71-0m135-sup1.cif (20.3KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S2056989015009548/wm5160Isup2.hkl

e-71-0m135-Isup2.hkl (157.1KB, hkl)

4 − . DOI: 10.1107/S2056989015009548/wm5160fig1.tif

The cationic chain structure of the title compound with displacement ellipsoids drawn at the 50% probability level. The BF4 anion is shown only with the major part of the disorder.

4 − . DOI: 10.1107/S2056989015009548/wm5160fig2.tif

The crystal packing of the title compound with displacement ellipsoids drawn at the 50% probability level. The BF4 anion is shown only with the major part of the disorder. (Colour code: dark blue: Co, purple: N, blue: C, red: O, cyan: B, green: F, grey: H).

CCDC reference: 1401602

Additional supporting information: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (, ).

DHA DH HA D A DHA
C2H22O1i 0.97 2.52 3.348(3) 143(1)
O1H12F1ii 0.83 1.89 2.72(2) 175(1)
O1H11F2i 0.82 1.87 2.669(13) 163(1)

Symmetry codes: (i) Inline graphic; (ii) Inline graphic.

Acknowledgments

This work was supported by the DGIST R&D Program of Ministry of Science, ICT and Future Planning of Korea (grant No. 15-HRLA-01).

supplementary crystallographic information

S1. Experimental

A solvent was prepared first by mixing ethyl­ene carbonate (EC) and ethyl methyl carbonate (EMC) in an 1:2 volume ratio (3.3 ml and 6.6 ml, respectively). 0.934 g of lithium tetra­fluoridoborate (LiBF4) were added to the solvent, and it was stirred for about 5 hours to dissolve the salt completely to form an 1M solution. 0.60 g (5 wt.%) of cobalt(II) tetra­fluoridoborate hexahydrate and 0.24 g (2 wt.%) hex-3-enedi­nitrile were added and dissolved in the solution. The solution was kept for 48 hours in an argon-atmosphere glove-box at room temperature, resulting in the growth of red crystals. The crystals were washed with pure EMC solvent three times in the argon-atmosphere glove-box.

S2. Refinement

H atoms attached to C atoms of the title compound were placed in geometrically idealized positions and treated as rigid bodies with C—H distances constrained to 0.92–0.97 Å. Water H atoms were located from a difference map and refined with a distance of 0.82 Å. The BF4- counter anion was refined with a positional disorder model where F2, F3 and F4 atoms are split into two positions while B1 and F1 atoms are not. Such a disorder model resulted in a slightly better refinement, reducing the R1 factor values from 0.041 to 0.033.

Figures

Fig. 1.

Fig. 1.

The cationic chain structure of the title compound with displacement ellipsoids drawn at the 50% probability level. The BF4- anion is shown only with the major part of the disorder.

Fig. 2.

Fig. 2.

The crystal packing of the title compound with displacement ellipsoids drawn at the 50% probability level. The BF4- anion is shown only with the major part of the disorder. (Colour code: dark blue: Co, purple: N, blue: C, red: O, cyan: B, green: F, grey: H).

Crystal data

[Co(C6H6N2)(H2O)2](BF4)2 Z = 1
Mr = 480.84 F(000) = 241
Triclinic, P1 Dx = 1.575 Mg m3
Hall symbol: -P 1 Mo Kα radiation, λ = 0.71073 Å
a = 7.9839 (11) Å Cell parameters from 0 reflections
b = 8.3434 (11) Å θ = 0–0°
c = 8.8441 (13) Å µ = 0.93 mm1
α = 71.380 (5)° T = 103 K
β = 88.458 (5)° Cuboid, yellow
γ = 66.184 (4)° 0.20 × 0.20 × 0.20 mm
V = 507.21 (12) Å3

Data collection

Bruker APEXII CCD diffractometer 2233 reflections with I > 2σ(I)
Graphite monochromator Rint = 0.038
φ & ω scans θmax = 28.5°, θmin = 2.8°
Absorption correction: multi-scan (SADABS; Bruker, 2006) h = −10→10
Tmin = 0.60, Tmax = 0.75 k = −11→11
14705 measured reflections l = −11→11
2501 independent reflections

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Hydrogen site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.033 H-atom parameters constrained
wR(F2) = 0.068 Weighting scheme based on measured s.u.'s W = 1
S = 0.87 (Δ/σ)max = 0.0002
2202 reflections Δρmax = 0.83 e Å3
170 parameters Δρmin = −0.62 e Å3
20 restraints

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles, and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq Occ. (<1)
Co1 0.0000 1.0000 0.5000 0.0158
N1 0.2687 (2) 0.8866 (2) 0.6299 (2) 0.0199
N2 0.1190 (2) 0.9254 (2) 0.3036 (2) 0.0192
C1 0.4140 (2) 0.8397 (3) 0.6904 (2) 0.0179
C2 0.6004 (3) 0.7780 (3) 0.7691 (3) 0.0221
C3 0.7036 (2) 0.5683 (3) 0.8382 (2) 0.0200
C4 0.6448 (3) 0.4468 (3) 0.8245 (2) 0.0201
C5 0.7535 (3) 0.2388 (3) 0.9045 (2) 0.0244
C6 0.8244 (2) 0.1444 (2) 0.7878 (2) 0.0181
O1 0.02105 (18) 1.25018 (18) 0.41358 (16) 0.0197
B1 0.7569 (3) 0.7200 (3) 0.2131 (3) 0.0287
F1 0.77132 (18) 0.55820 (17) 0.18696 (15) 0.0295
F2 0.8571 (16) 0.6724 (15) 0.3523 (13) 0.0555 0.512 (19)
F3 0.8368 (13) 0.8076 (13) 0.0834 (11) 0.0630 0.512 (19)
F4 0.5804 (9) 0.8300 (10) 0.2014 (15) 0.0585 0.512 (19)
F21 0.9052 (8) 0.6606 (13) 0.3357 (11) 0.0255 0.489 (19)
F31 0.7671 (17) 0.8497 (11) 0.0853 (10) 0.0551 0.489 (19)
F41 0.5866 (9) 0.7929 (11) 0.2810 (16) 0.0534 0.489 (19)
H11 0.0413 1.2954 0.4771 0.034 (4)*
H12 −0.0554 1.3393 0.3416 0.043 (4)*
H21 0.5897 0.8291 0.8529 0.034 (4)*
H22 0.6694 0.8293 0.6919 0.033 (4)*
H31 0.8174 0.5253 0.8931 0.034 (4)*
H41 0.5301 0.4889 0.7639 0.035 (4)*
H51 0.6801 0.1848 0.9680 0.036 (4)*
H52 0.8570 0.2189 0.9701 0.034 (4)*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
Co1 0.01363 (18) 0.01074 (17) 0.0198 (2) −0.00181 (13) −0.00123 (13) −0.00526 (14)
N1 0.0166 (8) 0.0169 (8) 0.0222 (8) −0.0025 (6) −0.0014 (6) −0.0070 (6)
N2 0.0170 (7) 0.0163 (8) 0.0211 (8) −0.0039 (6) 0.0006 (6) −0.0060 (6)
C1 0.0173 (7) 0.0138 (8) 0.0201 (9) −0.0033 (7) 0.0015 (7) −0.0067 (7)
C2 0.0153 (7) 0.0209 (9) 0.0292 (10) −0.0055 (7) −0.0023 (7) −0.0093 (8)
C3 0.0139 (7) 0.0221 (9) 0.0194 (9) −0.0018 (7) −0.0025 (7) −0.0081 (7)
C4 0.0170 (7) 0.0207 (9) 0.0178 (9) −0.0024 (7) 0.0018 (7) −0.0076 (7)
C5 0.0266 (7) 0.0216 (10) 0.0182 (9) −0.0031 (8) 0.0026 (8) −0.0074 (8)
C6 0.0172 (7) 0.0135 (8) 0.0176 (9) −0.0032 (7) −0.0023 (7) −0.0015 (7)
O1 0.0223 (7) 0.0126 (6) 0.0219 (7) −0.0052 (5) −0.0021 (5) −0.0056 (5)
B1 0.0252 (12) 0.0159 (10) 0.0380 (14) −0.0057 (9) −0.0119 (10) −0.0028 (10)
F1 0.0363 (7) 0.0211 (6) 0.0283 (7) −0.0096 (5) −0.0101 (5) −0.0067 (5)
F2 0.072 (4) 0.036 (3) 0.049 (4) −0.010 (4) −0.032 (4) −0.017 (2)
F3 0.046 (3) 0.047 (4) 0.071 (3) −0.026 (3) −0.009 (3) 0.022 (3)
F4 0.0361 (18) 0.039 (3) 0.088 (5) 0.0039 (18) 0.000 (3) −0.031 (3)
F21 0.0208 (19) 0.021 (2) 0.032 (2) −0.0030 (16) −0.0089 (16) −0.0115 (15)
F31 0.072 (4) 0.031 (3) 0.046 (2) −0.028 (3) −0.025 (3) 0.019 (2)
F41 0.0304 (19) 0.042 (3) 0.088 (5) −0.0067 (18) 0.010 (3) −0.034 (3)

Geometric parameters (Å, º)

Co1—N1i 2.1486 (17) C4—H41 0.946
Co1—N2i 2.1050 (17) C5—C6 1.460 (6)
Co1—O1i 2.0560 (15) C5—H51 0.946
Co1—N1 2.1486 (17) C5—H52 0.949
Co1—N2 2.1050 (17) O1—H11 0.821
Co1—O1 2.0560 (15) O1—H12 0.826
N1—C1 1.148 (6) B1—F1 1.401 (3)
N2—C6ii 1.125 (5) B1—F2 1.341 (12)
C1—C2 1.474 (8) B1—F3 1.435 (11)
C2—C3 1.514 (9) B1—F4 1.320 (9)
C2—H21 0.953 B1—F1 1.401 (3)
C2—H22 0.967 B1—F21 1.440 (12)
C3—C4 1.315 (4) B1—F31 1.319 (11)
C3—H31 0.916 B1—F41 1.450 (10)
C4—C5 1.516 (3)
N1i—Co1—N2i 90.57 (6) C4—C3—H31 118.7
N1i—Co1—O1i 87.29 (6) C3—C4—C5 122.3 (3)
N2i—Co1—O1i 91.15 (6) C3—C4—H41 119.7
N1i—Co1—N1 179.995 C5—C4—H41 118.0
N2i—Co1—N1 89.4 (8) C4—C5—C6 112.18 (14)
O1i—Co1—N1 92.7 (4) C4—C5—H51 110.9
N1i—Co1—N2 89.4 (4) C6—C5—H51 108.7
N2i—Co1—N2 179.995 C4—C5—H52 108.2
O1i—Co1—N2 88.9 (6) C6—C5—H52 107.0
N1—Co1—N2 90.57 (6) H51—C5—H52 109.8
N1i—Co1—O1 92.7 (8) C5—C6—N2ii 178.3 (2)
N2i—Co1—O1 88.9 (3) Co1—O1—H11 119.4
O1i—Co1—O1 179.994 Co1—O1—H12 121.0
N1—Co1—O1 87.29 (6) H11—O1—H12 105.0
N2—Co1—O1 91.15 (6) F1—B1—F2 109.0 (6)
Co1—N1—C1 173.92 (16) F1—B1—F3 105.3 (7)
Co1—N2—C6ii 166.34 (18) F2—B1—F3 109.1 (7)
N1—C1—C2 179.5 (2) F1—B1—F4 108.3 (6)
C1—C2—C3 113.2 (2) F2—B1—F4 115.9 (6)
C1—C2—H21 108.5 F3—B1—F4 108.7 (6)
C3—C2—H21 109.3 F1—B1—F21 105.8 (6)
C1—C2—H22 108.7 F1—B1—F31 115.0 (6)
C3—C2—H22 109.9 F21—B1—F31 109.8 (7)
H21—C2—H22 107.0 F1—B1—F41 108.4 (6)
C2—C3—C4 125.87 (19) F21—B1—F41 106.8 (6)
C2—C3—H31 115.5 F31—B1—F41 110.7 (8)

Symmetry codes: (i) −x, −y+2, −z+1; (ii) −x+1, −y+1, −z+1.

Hydrogen-bond geometry (Å, º)

D—H···A D—H H···A D···A D—H···A
C2—H22···O1iii 0.97 2.52 3.348 (3) 143 (1)
O1—H12···F1iv 0.83 1.89 2.72 (2) 175 (1)
O1—H11···F2iii 0.82 1.87 2.669 (13) 163 (1)

Symmetry codes: (iii) −x+1, −y+2, −z+1; (iv) x−1, y+1, z.

Footnotes

Supporting information for this paper is available from the IUCr electronic archives (Reference: WM5160).

References

  1. Betteridge, P. W., Carruthers, J. R., Cooper, R. I., Prout, K. & Watkin, D. J. (2003). J. Appl. Cryst. 36, 1487.
  2. Blount, J. F., Freeman, H. C., Hemmerich, P. & Sigwart, C. (1969). Acta Cryst. B25, 1518–1524.
  3. Bruker (2006). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.
  4. Dowty, E. (2000). ATOMS for Windows. Shape Software, Kingsport, Tennessee, USA.
  5. Heller, M. & Sheldrick, W. S. (2004). Z. Anorg. Allg. Chem. 630, 1869–1874.
  6. Kim, Y. S., Kim, T. H., Lee, H. & Song, H. K. (2011). Energ. Environ. Sci. 4, 4038–4045.
  7. Kim, Y. S., Lee, S. H., Son, M. Y., Jung, Y. M., Song, H. K. & Lee, H. (2014a). ACS Appl. Mat. Interfaces, 6, 2039–2043. [DOI] [PubMed]
  8. Kim, Y. S., Lee, H. & Song, H. K. (2014b). ACS Appl. Mater. Interfaces, 6, 8913–8920. [DOI] [PubMed]
  9. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  10. Storhoff, B. N. & Lewis, H. C. Jr (1977). Coord. Chem. Rev. 23, 1–29.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) I. DOI: 10.1107/S2056989015009548/wm5160sup1.cif

e-71-0m135-sup1.cif (20.3KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S2056989015009548/wm5160Isup2.hkl

e-71-0m135-Isup2.hkl (157.1KB, hkl)

4 − . DOI: 10.1107/S2056989015009548/wm5160fig1.tif

The cationic chain structure of the title compound with displacement ellipsoids drawn at the 50% probability level. The BF4 anion is shown only with the major part of the disorder.

4 − . DOI: 10.1107/S2056989015009548/wm5160fig2.tif

The crystal packing of the title compound with displacement ellipsoids drawn at the 50% probability level. The BF4 anion is shown only with the major part of the disorder. (Colour code: dark blue: Co, purple: N, blue: C, red: O, cyan: B, green: F, grey: H).

CCDC reference: 1401602

Additional supporting information: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Crystallographic Communications are provided here courtesy of International Union of Crystallography

RESOURCES