Skip to main content
Acta Crystallographica Section E: Crystallographic Communications logoLink to Acta Crystallographica Section E: Crystallographic Communications
. 2015 May 9;71(Pt 6):o391–o392. doi: 10.1107/S2056989015008713

Crystal structure of di­benzyl­dimethyl­silane

Lena Knauer a, Christopher Golz a, Ulrike Kroesen a, Stephan G Koller a, Carsten Strohmann a,*
PMCID: PMC4459354  PMID: 26090183

Abstract

In the title compound, C16H20Si, a geometry different from an ideal tetra­hedron can be observed at the Si atom. The bonds from Si to the benzylic C atoms [Si—C = 1.884 (1) and 1.883 (1) Å] are slightly elongated compared to the Si—Cmeth­yl bonds [Si—C = 1.856 (1) and 1.853 (1) Å]. The Cbenz­yl—Si—Cbenz­yl bond angle [C—Si—C = 107.60 (6)°] is decreased from the ideal tetra­hedral angle by 1.9°. These distortions can be explained easily by Bent’s rule. In the crystal, mol­ecules inter­act only by van der Waals forces.

Keywords: crystal structure, di­benzyl­dimethyl­silane, Bent’s rule

Related literature  

The chemistry of silicon exhibits several differences compared to carbon, its lighter congener. Being a representative of the third period, the silicon atom provides deviant reactivity and structural features including the formation of penta­valent inter­mediates (Chuit et al., 1993; Cypryk & Apeloig, 2002) as well as silicon-specific effects like the α- or β-effect (Whitmore & Sommer, 1946; Sommer & Whitmore, 1946). For the correlation of bond lengths and angles with the electronegativity of substituents, see: Bent (1961) and for the same effect in the related compound MePh2SiBn, see: Koller et al. (2015). For the reaction of silyllithium reagents to benzyl­silanes, see: Strohmann et al. (2004). For the α-li­thia­tion of methyl­silanes, see: Däschlein et al. (2010). For the structure and reactivity of α-li­thia­ted benzyl­silanes, see: Ott et al. (2008), Strohmann et al. (2002).graphic file with name e-71-0o391-scheme1.jpg

Experimental  

Crystal data  

  • C16H20Si

  • M r = 240.41

  • Monoclinic, Inline graphic

  • a = 6.1045 (2) Å

  • b = 19.8512 (6) Å

  • c = 11.8396 (3) Å

  • β = 98.069 (3)°

  • V = 1420.54 (7) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.14 mm−1

  • T = 173 K

  • 0.2 × 0.1 × 0.1 mm

Data collection  

  • Oxford Diffraction Xcalibur, Sapphire3 diffractometer

  • Absorption correction: multi-scan (CrysAlis PRO; Oxford Diffraction, 2010) T min = 0.940, T max = 1.000

  • 21539 measured reflections

  • 2800 independent reflections

  • 2280 reflections with I > 2σ(I)

  • R int = 0.035

Refinement  

  • R[F 2 > 2σ(F 2)] = 0.033

  • wR(F 2) = 0.088

  • S = 1.06

  • 2800 reflections

  • 156 parameters

  • H-atom parameters constrained

  • Δρmax = 0.29 e Å−3

  • Δρmin = −0.24 e Å−3

Data collection: CrysAlis PRO (Oxford Diffraction, 2010); cell refinement: CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015); molecular graphics: OLEX2 (Dolomanov et al., 2009); software used to prepare material for publication: OLEX2.

Supplementary Material

Crystal structure: contains datablock(s) I. DOI: 10.1107/S2056989015008713/fk2087sup1.cif

e-71-0o391-sup1.cif (802.6KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S2056989015008713/fk2087Isup2.hkl

e-71-0o391-Isup2.hkl (224KB, hkl)

Supporting information file. DOI: 10.1107/S2056989015008713/fk2087Isup3.cml

. DOI: 10.1107/S2056989015008713/fk2087fig1.tif

Mol­ecular structure of the title compound with anisotropic displacement ellipsoids drawn at 50% probability level.

CCDC reference: 1063257

Additional supporting information: crystallographic information; 3D view; checkCIF report

Acknowledgments

We are grateful to the Deutsche Forschungsgemeinschaft (DFG) for financial support.

supplementary crystallographic information

S1. Structural commentary

The chemistry of silicon exhibits several differences compared to carbon, its lighter congener. Being a representative of the third period, the silicon atom provides deviant reactivity and structural features. Among others, the formation of penta­valent inter­mediates (Chuit et al., 1993; Cypryk & Apeloig, 2002) as well as silicon-specific effects like the α- or β-effect (Whitmore & Sommer, 1946; Sommer & Whitmore, 1946) can be listed. Last but not least, the low electronegativity of silicon compared to carbon is a feature that has to be considered.

In the title compound, two different types of Si–C bonds can be observed. Comparing the Si–Cmethyl bonds Si1–C1 [1.856 (1) Å] and Si1–C2 [1.853 (1) Å] to the Si–Cbenzyl bonds Si1–C3 [1.884 (1) Å] and Si1–C10 [1.883 (1) Å], a difference of 0.03 Å becomes obvious. This divergence can be explained by Bent's rule (Bent, 1961): atomic s-character is concentrated in orbitals forming bonds with electropositive substituents. In return, the orbitals of bonds with electronegative substituents are featured by a high p-character, thus leading to elongated bond lengths and bond angles shifted towards 90°. In the title compound, the carbon atoms directly bonded to the silicon center exhibit unequal electronegativities. Due to the ability of benzylic carbon atoms to stabilize a negative charge, they are of higher electronegativity than carbon atoms of methyl groups. According to Bent's rule, atomic p-character is concentrated in the orbitals forming the Si–Cbenzyl bonds to a higher level than in the Si–Cmethyl bonds. This assumption is furthermore affirmed by the C—Si—C bond angles observed in the title compound. The bond angle between the methyl carbon atoms is very close to the ideal tetra­hedral angle [C1–Si1–C2 109.89 (7)°], the angle between the benzyl carbon atoms is slightly smaller [C3–Si1–C10 107.60 (6)°], as it would be expected for bonds formed by orbitals with increased p-character.

The same effect can be observed in the related compound MePh2SiBn (Koller et al., 2015). According to the title compound, the Si–Cmethyl bond is the shortest [1.853 (1) Å], and the Si–Cbenzyl bond is the longest [1.876 (2) Å]. The Si–Cphenyl bonds are settled in between at 1.873 (1) Å and 1.869 (1) Å, respectively.

S2. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 1.

Hydrogen atoms were located from difference Fourier maps, refined at idealized positions riding on the carbon atoms with isotropic displacement parameters Uiso(H) = 1.2Ueq(C) or 1.5Ueq(-CH3) and C–H = 0.95-0.99 Å. All CH3 hydrogen atoms were allowed to rotate but not to tip.

Figures

Fig. 1.

Fig. 1.

Molecular structure of the title compound with anisotropic displacement ellipsoids drawn at 50% probability level.

Crystal data

C16H20Si F(000) = 520
Mr = 240.41 Dx = 1.124 Mg m3
Monoclinic, P21/n Mo Kα radiation, λ = 0.71073 Å
a = 6.1045 (2) Å Cell parameters from 10295 reflections
b = 19.8512 (6) Å θ = 2.7–29.2°
c = 11.8396 (3) Å µ = 0.14 mm1
β = 98.069 (3)° T = 173 K
V = 1420.54 (7) Å3 Block, colourless
Z = 4 0.2 × 0.1 × 0.1 mm

Data collection

Oxford Diffraction Xcalibur, Sapphire3 diffractometer 2800 independent reflections
Radiation source: Enhance (Mo) X-ray Source 2280 reflections with I > 2σ(I)
Graphite monochromator Rint = 0.035
Detector resolution: 16.0560 pixels mm-1 θmax = 26.0°, θmin = 2.7°
ω scans h = −7→7
Absorption correction: multi-scan (CrysAlis PRO; Oxford Diffraction, 2010) k = −24→24
Tmin = 0.940, Tmax = 1.000 l = −14→14
21539 measured reflections

Refinement

Refinement on F2 0 restraints
Least-squares matrix: full Hydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.033 H-atom parameters constrained
wR(F2) = 0.088 w = 1/[σ2(Fo2) + (0.0528P)2 + 0.0485P] where P = (Fo2 + 2Fc2)/3
S = 1.06 (Δ/σ)max < 0.001
2800 reflections Δρmax = 0.29 e Å3
156 parameters Δρmin = −0.24 e Å3

Special details

Experimental. CrysAlisPro, Oxford Diffraction Ltd., Version 1.171.33.55 (release 05-01-2010 CrysAlis171 .NET) (compiled Jan 5 2010,16:28:46) Empirical absorption correction using spherical harmonics, implemented in SCALE3 ABSPACK scaling algorithm.
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
Si1 0.13789 (6) 0.14013 (2) 0.03688 (3) 0.01945 (12)
C11 0.1208 (2) 0.10937 (7) −0.19747 (11) 0.0221 (3)
C9 0.4409 (2) 0.16077 (7) 0.32428 (12) 0.0286 (3)
H9 0.5690 0.1513 0.2898 0.034*
C12 −0.0953 (2) 0.10519 (8) −0.25332 (12) 0.0301 (3)
H12 −0.2001 0.1387 −0.2402 0.036*
C16 0.2691 (2) 0.05980 (7) −0.22010 (12) 0.0299 (3)
H16 0.4177 0.0616 −0.1833 0.036*
C5 0.0758 (2) 0.20416 (7) 0.31346 (12) 0.0284 (3)
H5 −0.0500 0.2252 0.2716 0.034*
C3 0.2631 (2) 0.20813 (7) 0.13668 (11) 0.0243 (3)
H3A 0.4179 0.2157 0.1238 0.029*
H3B 0.1805 0.2506 0.1185 0.029*
C10 0.1896 (2) 0.16338 (7) −0.11131 (11) 0.0243 (3)
H10A 0.1076 0.2052 −0.1350 0.029*
H10B 0.3493 0.1727 −0.1100 0.029*
C4 0.2605 (2) 0.19144 (7) 0.26040 (11) 0.0220 (3)
C8 0.4376 (3) 0.14376 (8) 0.43742 (13) 0.0368 (4)
H8 0.5636 0.1233 0.4800 0.044*
C2 0.2653 (2) 0.05739 (7) 0.07812 (12) 0.0263 (3)
H2A 0.2290 0.0443 0.1531 0.039*
H2B 0.4263 0.0607 0.0816 0.039*
H2C 0.2081 0.0234 0.0215 0.039*
C1 −0.1645 (2) 0.13650 (8) 0.04158 (13) 0.0306 (3)
H1A −0.2328 0.1042 −0.0153 0.046*
H1B −0.2293 0.1812 0.0248 0.046*
H1C −0.1912 0.1222 0.1177 0.046*
C6 0.0720 (3) 0.18677 (8) 0.42632 (13) 0.0356 (4)
H6 −0.0561 0.1959 0.4610 0.043*
C13 −0.1588 (3) 0.05285 (9) −0.32761 (12) 0.0401 (4)
H13 −0.3072 0.0506 −0.3646 0.048*
C14 −0.0101 (3) 0.00404 (9) −0.34877 (12) 0.0444 (5)
H14 −0.0549 −0.0320 −0.3997 0.053*
C7 0.2521 (3) 0.15639 (8) 0.48868 (13) 0.0378 (4)
H7 0.2489 0.1442 0.5660 0.045*
C15 0.2045 (3) 0.00808 (8) −0.29506 (13) 0.0414 (4)
H15 0.3090 −0.0251 −0.3098 0.050*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
Si1 0.0205 (2) 0.0177 (2) 0.0207 (2) −0.00025 (15) 0.00477 (14) −0.00023 (15)
C11 0.0291 (7) 0.0214 (7) 0.0167 (6) −0.0014 (6) 0.0054 (5) 0.0054 (5)
C9 0.0277 (8) 0.0259 (8) 0.0318 (8) −0.0007 (6) 0.0030 (6) −0.0024 (6)
C12 0.0329 (8) 0.0329 (9) 0.0239 (7) 0.0003 (7) 0.0021 (6) 0.0089 (6)
C16 0.0351 (8) 0.0315 (8) 0.0240 (7) 0.0050 (7) 0.0076 (6) 0.0017 (6)
C5 0.0306 (8) 0.0268 (8) 0.0281 (7) 0.0025 (6) 0.0051 (6) −0.0074 (6)
C3 0.0268 (7) 0.0211 (7) 0.0251 (7) −0.0015 (6) 0.0047 (6) −0.0010 (6)
C10 0.0288 (8) 0.0201 (7) 0.0245 (7) −0.0011 (6) 0.0054 (6) 0.0024 (6)
C4 0.0264 (7) 0.0162 (7) 0.0233 (7) −0.0040 (5) 0.0032 (6) −0.0054 (5)
C8 0.0434 (9) 0.0314 (9) 0.0324 (8) −0.0012 (7) −0.0063 (7) 0.0023 (7)
C2 0.0294 (8) 0.0221 (8) 0.0277 (7) 0.0009 (6) 0.0054 (6) 0.0026 (6)
C1 0.0244 (7) 0.0329 (9) 0.0352 (8) 0.0005 (6) 0.0062 (6) −0.0046 (7)
C6 0.0447 (9) 0.0331 (9) 0.0320 (8) −0.0048 (7) 0.0156 (7) −0.0109 (7)
C13 0.0446 (9) 0.0497 (11) 0.0230 (8) −0.0177 (8) −0.0053 (7) 0.0082 (7)
C14 0.0786 (13) 0.0339 (9) 0.0212 (7) −0.0190 (9) 0.0084 (8) −0.0050 (7)
C7 0.0630 (11) 0.0301 (9) 0.0206 (7) −0.0107 (8) 0.0067 (7) −0.0029 (6)
C15 0.0659 (12) 0.0296 (9) 0.0318 (8) 0.0052 (8) 0.0175 (8) −0.0025 (7)

Geometric parameters (Å, º)

Si1—C3 1.8838 (14) C3—C4 1.5040 (18)
Si1—C10 1.8832 (13) C10—H10A 0.9900
Si1—C2 1.8534 (14) C10—H10B 0.9900
Si1—C1 1.8563 (14) C8—H8 0.9500
C11—C12 1.3928 (19) C8—C7 1.381 (2)
C11—C16 1.3887 (19) C2—H2A 0.9800
C11—C10 1.4988 (19) C2—H2B 0.9800
C9—H9 0.9500 C2—H2C 0.9800
C9—C4 1.3861 (19) C1—H1A 0.9800
C9—C8 1.384 (2) C1—H1B 0.9800
C12—H12 0.9500 C1—H1C 0.9800
C12—C13 1.381 (2) C6—H6 0.9500
C16—H16 0.9500 C6—C7 1.375 (2)
C16—C15 1.378 (2) C13—H13 0.9500
C5—H5 0.9500 C13—C14 1.375 (2)
C5—C4 1.3888 (19) C14—H14 0.9500
C5—C6 1.383 (2) C14—C15 1.376 (2)
C3—H3A 0.9900 C7—H7 0.9500
C3—H3B 0.9900 C15—H15 0.9500
C10—Si1—C3 107.60 (6) C9—C4—C5 117.79 (13)
C2—Si1—C3 110.57 (6) C9—C4—C3 120.81 (12)
C2—Si1—C10 110.09 (6) C5—C4—C3 121.37 (12)
C2—Si1—C1 109.89 (7) C9—C8—H8 119.8
C1—Si1—C3 109.07 (6) C7—C8—C9 120.35 (15)
C1—Si1—C10 109.58 (6) C7—C8—H8 119.8
C12—C11—C10 121.48 (13) Si1—C2—H2A 109.5
C16—C11—C12 117.78 (13) Si1—C2—H2B 109.5
C16—C11—C10 120.68 (12) Si1—C2—H2C 109.5
C4—C9—H9 119.4 H2A—C2—H2B 109.5
C8—C9—H9 119.4 H2A—C2—H2C 109.5
C8—C9—C4 121.11 (14) H2B—C2—H2C 109.5
C11—C12—H12 119.7 Si1—C1—H1A 109.5
C13—C12—C11 120.64 (15) Si1—C1—H1B 109.5
C13—C12—H12 119.7 Si1—C1—H1C 109.5
C11—C16—H16 119.4 H1A—C1—H1B 109.5
C15—C16—C11 121.11 (14) H1A—C1—H1C 109.5
C15—C16—H16 119.4 H1B—C1—H1C 109.5
C4—C5—H5 119.5 C5—C6—H6 119.7
C6—C5—H5 119.5 C7—C6—C5 120.51 (15)
C6—C5—C4 121.09 (14) C7—C6—H6 119.7
Si1—C3—H3A 108.9 C12—C13—H13 119.6
Si1—C3—H3B 108.9 C14—C13—C12 120.86 (15)
H3A—C3—H3B 107.7 C14—C13—H13 119.6
C4—C3—Si1 113.22 (9) C13—C14—H14 120.5
C4—C3—H3A 108.9 C13—C14—C15 119.01 (15)
C4—C3—H3B 108.9 C15—C14—H14 120.5
Si1—C10—H10A 109.0 C8—C7—H7 120.4
Si1—C10—H10B 109.0 C6—C7—C8 119.14 (14)
C11—C10—Si1 113.02 (9) C6—C7—H7 120.4
C11—C10—H10A 109.0 C16—C15—H15 119.7
C11—C10—H10B 109.0 C14—C15—C16 120.60 (15)
H10A—C10—H10B 107.8 C14—C15—H15 119.7
Si1—C3—C4—C9 93.41 (13) C10—C11—C12—C13 −176.30 (13)
Si1—C3—C4—C5 −84.53 (15) C10—C11—C16—C15 176.82 (13)
C11—C12—C13—C14 −0.5 (2) C4—C9—C8—C7 0.8 (2)
C11—C16—C15—C14 −0.5 (2) C4—C5—C6—C7 0.0 (2)
C9—C8—C7—C6 −0.8 (2) C8—C9—C4—C5 −0.4 (2)
C12—C11—C16—C15 −0.2 (2) C8—C9—C4—C3 −178.39 (13)
C12—C11—C10—Si1 86.49 (14) C2—Si1—C3—C4 −52.05 (11)
C12—C13—C14—C15 −0.3 (2) C2—Si1—C10—C11 52.86 (11)
C16—C11—C12—C13 0.7 (2) C1—Si1—C3—C4 68.89 (11)
C16—C11—C10—Si1 −90.42 (14) C1—Si1—C10—C11 −68.10 (11)
C5—C6—C7—C8 0.4 (2) C6—C5—C4—C9 0.0 (2)
C3—Si1—C10—C11 173.44 (9) C6—C5—C4—C3 177.97 (13)
C10—Si1—C3—C4 −172.32 (9) C13—C14—C15—C16 0.8 (2)

Footnotes

Supporting information for this paper is available from the IUCr electronic archives (Reference: FK2087).

References

  1. Bent, H. A. (1961). Chem. Rev. 61, 275–311.
  2. Chuit, C., Corriu, R. J. P., Reye, C. & Young, J. C. (1993). Chem. Rev. 93, 1371–1448.
  3. Cypryk, M. & Apeloig, Y. (2002). Organometallics, 21, 2165–2175.
  4. Däschlein, C., Gessner, V. H. & Strohmann, C. (2010). Chem. Eur. J. 16, 4048–4062. [DOI] [PubMed]
  5. Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.
  6. Koller, S. G., Kroesen, U. & Strohmann, C. (2015). Chem. Eur. J. 21, 641–647. [DOI] [PubMed]
  7. Ott, H., Däschlein, C., Leusser, D., Schildbach, D., Seibel, T., Stalke, D. & Strohmann, C. (2008). J. Am. Chem. Soc. 130, 11901–11911. [DOI] [PubMed]
  8. Oxford Diffraction (2010). CrysAlis PRO. Oxford Diffraction Ltd, Yarnton, Oxfordshire, England.
  9. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  10. Sheldrick, G. M. (2015). Acta Cryst. C71, 3–8.
  11. Sommer, L. H. & Whitmore, F. C. (1946). J. Am. Chem. Soc. 68, 485–487. [DOI] [PubMed]
  12. Strohmann, C., Bindl, M., Fraass, V. C. & Hörnig, J. (2004). Angew. Chem. Int. Ed. 43, 1011–1014. [DOI] [PubMed]
  13. Strohmann, C., Lehmen, K., Wild, K. & Schildbach, D. (2002). Organometallics, 21, 3079–3081.
  14. Whitmore, F. C. & Sommer, L. H. (1946). J. Am. Chem. Soc. 68, 481–484. [DOI] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) I. DOI: 10.1107/S2056989015008713/fk2087sup1.cif

e-71-0o391-sup1.cif (802.6KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S2056989015008713/fk2087Isup2.hkl

e-71-0o391-Isup2.hkl (224KB, hkl)

Supporting information file. DOI: 10.1107/S2056989015008713/fk2087Isup3.cml

. DOI: 10.1107/S2056989015008713/fk2087fig1.tif

Mol­ecular structure of the title compound with anisotropic displacement ellipsoids drawn at 50% probability level.

CCDC reference: 1063257

Additional supporting information: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Crystallographic Communications are provided here courtesy of International Union of Crystallography

RESOURCES