Skip to main content
Acta Crystallographica Section E: Crystallographic Communications logoLink to Acta Crystallographica Section E: Crystallographic Communications
. 2015 May 30;71(Pt 6):720–722. doi: 10.1107/S2056989015010002

Crystal structure of methyl (2Z)-3-(4-chloro­phen­yl)-2-[(3-methyl-1H-indol-1-yl)meth­yl]prop-2-enoate

S Selvanayagam a,*, B Sridhar b, S Kathiravan c, R Raghunathan c
PMCID: PMC4459359  PMID: 26090160

In the title indole derivative, the chloro­phenyl ring is almost perpendicular to the indole moiety, making a dihedral angle of 87.59 (6)°. In the crystal, mol­ecules are linked via C—H⋯π inter­actions, forming C(9) chains along the [10Inline graphic] direction.

Keywords: crystal structure, indole, methyl methacrylate, C—H⋯π inter­actions, π–π inter­actions

Abstract

In the title indole derivative, C20H18ClNO2, the chloro­phenyl ring is almost perpendicular to the indole moiety, making a dihedral angle of 87.6 (1)°. The mol­ecular packing is stabilized by C—H⋯π inter­actions, which form a C(9) chain motif along [10-1]. In addition, there are weak π–π inter­actions [centroid–centroid distance 3.851 (1) Å] between the chains, involving inversion-related chloro­phenyl rings.

Chemical context  

Indole derivatives inhibit hepatitis C virus replication through induction of pro-inflammatory cytokines (Lee et al., 2015) and these derivatives act as a new anti-hepatitis C virus agents (Andreev et al., 2015). These derivatives also act as potential mushroom tyrosinase inhibitors (Ferro et al., 2015). Indole derivatives also exhibit anti-proliferative (Parrino et al., 2015), anti-inflammatory (Chen et al., 2015) and anti-tumor (Ma et al., 2015) activities. In view of the many inter­esting applications of indole derivatives, we synthesized the title compound and report herein on its crystal structure.graphic file with name e-71-00720-scheme1.jpg

Structural commentary  

The mol­ecular structure of the title compound, (I), is illus­trated in Fig. 1. The geometry of the indole ring system (N1/C1–C8) in (I) is comparable with those reported for similar structures, namely 1-vinyl-1H-indole-3-carbaldehyde (II) (Selvanayagam et al., 2008) and methyl (2Z)-2-[(2-formyl-3-methyl-1H-indol-1-yl)meth­yl]-3-(4-meth­oxy­phen­yl)-prop-2-en­oate (III) (Selvanayagam et al., 2014). The superposition of the indole ring system of (I) with the related reported structures, using Qmol (Gans & Shalloway, 2001), gives an r.m.s. deviation of 0.025 Å between (I) and (II), and 0.030 Å between (I) and (III); see Fig. 2. The indole ring system is planar with an r.m.s. deviation of 0.017 Å [maximum deviation of 0.028 (2) Å for atom C3], and the methyl atom C9 deviates by 0.050 (2) Å from its mean plane. The chlorine atom, Cl1, deviates by 0.008 (1) Å from the benzene ring (C15–C20) to which it is attached. This ring is almost perpendicular to the indole ring system, making a dihedral angle of 87.59 (6)°. The sum of the angles at atom N1 of the indole ring (360°) is in accordance with sp 2 hybridization. The widening of the C16—C15—C14 bond angle to 125.2 (1)° is due to the short H⋯H contact (H10B⋯H16 = 2.10 Å). The mean plane of the methyl methacrylate unit [O1/O2/C10–C14; maximum deviation of 0.015 (2) Å for atom O1] is almost planar with the chlrophenyl ring, making a dihedral angle of 18.98 (17)°, but is normal to the indole ring system with a dihedral angle of 89.96 (5)°.

Figure 1.

Figure 1

The mol­ecular structure of the title compound, showing the atom labelling. Displacement ellipsoids are drawn at the 30% probability level.

Figure 2.

Figure 2

Superposition of (I) (cyan) with the similar reported structures (II) (yellow; Selvanayagam et al., 2008) and (III) (green; Selvanayagam et al., 2014).

Supra­molecular features  

In the crystal, C—H⋯π inter­actions link the mol­ecules, forming C(9) chains propagating along [10Inline graphic]; see Fig. 3 and Table 1. Between the chains there are weak π–π inter­actions involving inversion-related chloro­phenyl rings (C15–C20), stabilizing the mol­ecular packing [centroid-to-centroid distance = 3.851 (1) Å]; see Fig. 4.

Figure 3.

Figure 3

The mol­ecular packing of the title compound, viewed along the b axis. C—H⋯π inter­actions (Table 1) are shown as dashed lines. For clarity, H atoms not involved in these inter­actions have been omitted.

Table 1. Hydrogen-bond geometry (, ).

Cg is the centroid of ring C1C6.

DHA DH HA D A DHA
C13H13A Cg i 0.96 2.69 3.581(2) 154

Symmetry code: (i) Inline graphic.

Figure 4.

Figure 4

Mol­ecular packing of the title compound, showing the π–π inter­actions as dashed lines. For clarity, H atoms not involved in these inter­actions have been omitted.

Synthesis and crystallization  

Substituted (Z)-methyl-2-(bromo­meth­yl)-3-phenyl­acrylate (1 mmol), tetra-butyl-ammonium bromide (0.5 mmol), and 50% NaOH (20 ml) were added to a solution of 3-methyl indole (1 mmol) in benzene (55 ml). The mixture was stirred vigorously at room temperature for 5–6 h. The organic layer was separated, washed with water and dried over MgSO4. The solvent was evaporated under reduced pressure (yield: 70%). Suitable crystals were obtained by slow evaporation of a solution of the title compound in methanol at room temperature.

Refinement  

Crystal data, data collection and structure refinement details are summarized in Table 2. H atoms were placed in idealized positions and allowed to ride on their parent atoms: C—H = 0.93–0.97 Å, with U iso(H) = 1.5U eq(C) for methyl H atoms and 1.2U eq(C) for other H atoms.

Table 2. Experimental details.

Crystal data
Chemical formula C20H18ClNO2
M r 339.80
Crystal system, space group Monoclinic, P21/n
Temperature (K) 292
a, b, c () 9.5867(5), 15.9077(8), 10.8902(6)
() 94.787(1)
V (3) 1654.99(15)
Z 4
Radiation type Mo K
(mm1) 0.24
Crystal size (mm) 0.20 0.18 0.16
 
Data collection
Diffractometer Bruker SMART APEX CCD area detector
No. of measured, independent and observed [I > 2(I)] reflections 19078, 3944, 3313
R int 0.026
(sin /)max (1) 0.661
 
Refinement
R[F 2 > 2(F 2)], wR(F 2), S 0.044, 0.127, 1.02
No. of reflections 3944
No. of parameters 219
H-atom treatment H-atom parameters constrained
max, min (e 3) 0.30, 0.23

Computer programs: SMART and SAINT (Bruker, 2001), SHELXS1997 (Sheldrick, 2008), SHELXL2013 (Sheldrick, 2015), ORTEP-3 for Windows (Farrugia, 2012) and PLATON (Spek, 2009).

Supplementary Material

Crystal structure: contains datablock(s) I, global. DOI: 10.1107/S2056989015010002/su5135sup1.cif

e-71-00720-sup1.cif (576.9KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S2056989015010002/su5135Isup2.hkl

e-71-00720-Isup2.hkl (314.5KB, hkl)

Supporting information file. DOI: 10.1107/S2056989015010002/su5135Isup3.cml

CCDC reference: 1402521

Additional supporting information: crystallographic information; 3D view; checkCIF report

Acknowledgments

SS thanks the Principal and Management of Kings College of Engineering, Punalkulam, for their support and encouragement.

supplementary crystallographic information

Crystal data

C20H18ClNO2 F(000) = 712
Mr = 339.80 Dx = 1.364 Mg m3
Monoclinic, P21/n Mo Kα radiation, λ = 0.71073 Å
a = 9.5867 (5) Å Cell parameters from 12437 reflections
b = 15.9077 (8) Å θ = 2.3–27.7°
c = 10.8902 (6) Å µ = 0.24 mm1
β = 94.787 (1)° T = 292 K
V = 1654.99 (15) Å3 Block, colourless
Z = 4 0.20 × 0.18 × 0.16 mm

Data collection

Bruker SMART APEX CCD area-detector diffractometer Rint = 0.026
Radiation source: fine-focus sealed tube θmax = 28.0°, θmin = 2.3°
ω scans h = −12→12
19078 measured reflections k = −20→20
3944 independent reflections l = −14→14
3313 reflections with I > 2σ(I)

Refinement

Refinement on F2 0 restraints
Least-squares matrix: full Hydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.044 H-atom parameters constrained
wR(F2) = 0.127 w = 1/[σ2(Fo2) + (0.0722P)2 + 0.3404P] where P = (Fo2 + 2Fc2)/3
S = 1.02 (Δ/σ)max = 0.002
3944 reflections Δρmax = 0.30 e Å3
219 parameters Δρmin = −0.23 e Å3

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
Cl1 0.85221 (5) 1.06092 (3) 0.06559 (4) 0.05976 (16)
O1 0.23237 (16) 0.66473 (11) −0.05769 (11) 0.0775 (4)
O2 0.21544 (12) 0.62293 (7) 0.13579 (10) 0.0524 (3)
N1 0.32743 (12) 0.78373 (7) 0.30864 (10) 0.0366 (3)
C1 0.32983 (13) 0.78740 (8) 0.43477 (12) 0.0333 (3)
C2 0.40942 (15) 0.74169 (9) 0.52459 (13) 0.0405 (3)
H2 0.4756 0.7027 0.5035 0.049*
C3 0.38621 (16) 0.75652 (10) 0.64588 (13) 0.0472 (4)
H3 0.4365 0.7262 0.7077 0.057*
C4 0.28848 (17) 0.81630 (11) 0.67783 (13) 0.0487 (4)
H4 0.2759 0.8254 0.7605 0.058*
C5 0.21077 (15) 0.86187 (9) 0.58952 (13) 0.0421 (3)
H5 0.1468 0.9018 0.6120 0.051*
C6 0.22927 (13) 0.84726 (8) 0.46513 (12) 0.0341 (3)
C7 0.16518 (14) 0.87978 (9) 0.35139 (13) 0.0384 (3)
C8 0.22748 (14) 0.83989 (9) 0.25968 (13) 0.0390 (3)
H8 0.2059 0.8491 0.1759 0.047*
C9 0.05055 (18) 0.94375 (11) 0.33648 (17) 0.0551 (4)
H9A 0.0297 0.9559 0.2506 0.083*
H9B 0.0800 0.9943 0.3792 0.083*
H9C −0.0316 0.9221 0.3701 0.083*
C10 0.41548 (15) 0.72823 (9) 0.24128 (12) 0.0391 (3)
H10A 0.4063 0.6711 0.2708 0.047*
H10B 0.5126 0.7449 0.2578 0.047*
C11 0.37749 (15) 0.73022 (9) 0.10415 (12) 0.0395 (3)
C12 0.26941 (16) 0.67031 (10) 0.05008 (14) 0.0457 (3)
C13 0.1091 (2) 0.56359 (11) 0.0915 (2) 0.0622 (5)
H13A 0.0294 0.5934 0.0543 0.093*
H13B 0.0815 0.5306 0.1592 0.093*
H13C 0.1457 0.5272 0.0316 0.093*
C14 0.43561 (15) 0.78067 (10) 0.02431 (13) 0.0427 (3)
H14 0.4052 0.7706 −0.0577 0.051*
C15 0.53784 (15) 0.84850 (9) 0.04181 (13) 0.0418 (3)
C16 0.57356 (18) 0.89031 (11) 0.15350 (14) 0.0499 (4)
H16 0.5315 0.8742 0.2238 0.060*
C17 0.66983 (18) 0.95481 (11) 0.16082 (15) 0.0516 (4)
H17 0.6930 0.9818 0.2355 0.062*
C18 0.73146 (16) 0.97890 (9) 0.05648 (14) 0.0447 (3)
C19 0.69899 (19) 0.93986 (11) −0.05510 (15) 0.0521 (4)
H19 0.7414 0.9567 −0.1248 0.063*
C20 0.60262 (18) 0.87549 (11) −0.06176 (14) 0.0495 (4)
H20 0.5800 0.8492 −0.1371 0.059*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
Cl1 0.0659 (3) 0.0532 (3) 0.0606 (3) −0.00944 (19) 0.0072 (2) 0.00371 (18)
O1 0.0809 (9) 0.1119 (12) 0.0386 (7) −0.0357 (9) −0.0008 (6) −0.0147 (7)
O2 0.0572 (7) 0.0500 (6) 0.0490 (6) −0.0075 (5) −0.0016 (5) −0.0016 (5)
N1 0.0384 (6) 0.0420 (6) 0.0293 (5) 0.0067 (5) 0.0016 (4) −0.0017 (4)
C1 0.0341 (6) 0.0353 (6) 0.0304 (6) −0.0008 (5) 0.0024 (5) −0.0030 (5)
C2 0.0428 (7) 0.0411 (7) 0.0371 (7) 0.0080 (6) −0.0005 (6) −0.0006 (6)
C3 0.0524 (9) 0.0538 (9) 0.0341 (7) 0.0067 (7) −0.0031 (6) 0.0035 (6)
C4 0.0528 (9) 0.0641 (10) 0.0292 (7) 0.0029 (7) 0.0041 (6) −0.0049 (6)
C5 0.0407 (7) 0.0468 (8) 0.0394 (7) 0.0032 (6) 0.0070 (6) −0.0069 (6)
C6 0.0328 (6) 0.0344 (6) 0.0351 (7) −0.0016 (5) 0.0025 (5) −0.0014 (5)
C7 0.0360 (7) 0.0397 (7) 0.0390 (7) 0.0028 (5) 0.0013 (5) 0.0002 (6)
C8 0.0391 (7) 0.0446 (7) 0.0324 (7) 0.0043 (6) −0.0010 (5) 0.0031 (5)
C9 0.0504 (9) 0.0552 (10) 0.0591 (10) 0.0181 (7) 0.0013 (7) 0.0038 (8)
C10 0.0403 (7) 0.0446 (7) 0.0321 (7) 0.0069 (6) 0.0016 (5) −0.0041 (5)
C11 0.0400 (7) 0.0478 (8) 0.0306 (7) 0.0066 (6) 0.0019 (5) −0.0069 (6)
C12 0.0450 (8) 0.0538 (9) 0.0384 (8) 0.0033 (7) 0.0034 (6) −0.0098 (6)
C13 0.0606 (11) 0.0505 (9) 0.0739 (12) −0.0092 (8) −0.0043 (9) −0.0039 (8)
C14 0.0433 (8) 0.0540 (8) 0.0305 (7) 0.0056 (6) 0.0007 (6) −0.0064 (6)
C15 0.0441 (8) 0.0463 (8) 0.0349 (7) 0.0072 (6) 0.0024 (6) −0.0006 (6)
C16 0.0583 (9) 0.0570 (9) 0.0357 (8) −0.0043 (7) 0.0108 (7) −0.0050 (7)
C17 0.0602 (10) 0.0545 (9) 0.0406 (8) −0.0044 (7) 0.0075 (7) −0.0088 (7)
C18 0.0456 (8) 0.0406 (8) 0.0476 (8) 0.0049 (6) 0.0024 (6) 0.0041 (6)
C19 0.0626 (10) 0.0563 (10) 0.0384 (8) −0.0001 (7) 0.0095 (7) 0.0067 (7)
C20 0.0606 (9) 0.0555 (9) 0.0319 (7) −0.0002 (7) 0.0015 (6) −0.0003 (6)

Geometric parameters (Å, º)

Cl1—C18 1.7417 (16) C9—H9B 0.9600
O1—C12 1.2007 (19) C9—H9C 0.9600
O2—C12 1.3370 (19) C10—C11 1.5077 (18)
O2—C13 1.442 (2) C10—H10A 0.9700
N1—C1 1.3731 (16) C10—H10B 0.9700
N1—C8 1.3839 (17) C11—C14 1.338 (2)
N1—C10 1.4607 (17) C11—C12 1.492 (2)
C1—C2 1.3940 (19) C13—H13A 0.9600
C1—C6 1.4138 (18) C13—H13B 0.9600
C2—C3 1.378 (2) C13—H13C 0.9600
C2—H2 0.9300 C14—C15 1.460 (2)
C3—C4 1.399 (2) C14—H14 0.9300
C3—H3 0.9300 C15—C20 1.400 (2)
C4—C5 1.373 (2) C15—C16 1.403 (2)
C4—H4 0.9300 C16—C17 1.378 (2)
C5—C6 1.4001 (19) C16—H16 0.9300
C5—H5 0.9300 C17—C18 1.378 (2)
C6—C7 1.4327 (19) C17—H17 0.9300
C7—C8 1.363 (2) C18—C19 1.377 (2)
C7—C9 1.497 (2) C19—C20 1.377 (2)
C8—H8 0.9300 C19—H19 0.9300
C9—H9A 0.9600 C20—H20 0.9300
C12—O2—C13 116.06 (13) N1—C10—H10B 109.1
C1—N1—C8 108.14 (11) C11—C10—H10B 109.1
C1—N1—C10 124.46 (11) H10A—C10—H10B 107.8
C8—N1—C10 127.39 (11) C14—C11—C12 116.07 (13)
N1—C1—C2 129.96 (12) C14—C11—C10 125.23 (13)
N1—C1—C6 107.92 (11) C12—C11—C10 118.67 (13)
C2—C1—C6 122.09 (12) O1—C12—O2 122.72 (15)
C3—C2—C1 117.42 (13) O1—C12—C11 124.88 (16)
C3—C2—H2 121.3 O2—C12—C11 112.39 (12)
C1—C2—H2 121.3 O2—C13—H13A 109.5
C2—C3—C4 121.32 (14) O2—C13—H13B 109.5
C2—C3—H3 119.3 H13A—C13—H13B 109.5
C4—C3—H3 119.3 O2—C13—H13C 109.5
C5—C4—C3 121.33 (13) H13A—C13—H13C 109.5
C5—C4—H4 119.3 H13B—C13—H13C 109.5
C3—C4—H4 119.3 C11—C14—C15 132.06 (13)
C4—C5—C6 119.00 (13) C11—C14—H14 114.0
C4—C5—H5 120.5 C15—C14—H14 114.0
C6—C5—H5 120.5 C20—C15—C16 117.42 (15)
C5—C6—C1 118.81 (12) C20—C15—C14 117.37 (13)
C5—C6—C7 134.17 (13) C16—C15—C14 125.19 (14)
C1—C6—C7 107.01 (11) C17—C16—C15 121.12 (15)
C8—C7—C6 106.44 (12) C17—C16—H16 119.4
C8—C7—C9 126.87 (14) C15—C16—H16 119.4
C6—C7—C9 126.68 (13) C18—C17—C16 119.37 (15)
C7—C8—N1 110.49 (12) C18—C17—H17 120.3
C7—C8—H8 124.8 C16—C17—H17 120.3
N1—C8—H8 124.8 C19—C18—C17 121.42 (15)
C7—C9—H9A 109.5 C19—C18—Cl1 119.23 (12)
C7—C9—H9B 109.5 C17—C18—Cl1 119.34 (12)
H9A—C9—H9B 109.5 C18—C19—C20 118.89 (15)
C7—C9—H9C 109.5 C18—C19—H19 120.6
H9A—C9—H9C 109.5 C20—C19—H19 120.6
H9B—C9—H9C 109.5 C19—C20—C15 121.77 (15)
N1—C10—C11 112.50 (11) C19—C20—H20 119.1
N1—C10—H10A 109.1 C15—C20—H20 119.1
C11—C10—H10A 109.1
C8—N1—C1—C2 178.13 (14) C8—N1—C10—C11 −6.0 (2)
C10—N1—C1—C2 −1.0 (2) N1—C10—C11—C14 92.47 (17)
C8—N1—C1—C6 −0.08 (15) N1—C10—C11—C12 −89.24 (16)
C10—N1—C1—C6 −179.21 (12) C13—O2—C12—O1 0.2 (2)
N1—C1—C2—C3 −177.65 (14) C13—O2—C12—C11 179.53 (13)
C6—C1—C2—C3 0.3 (2) C14—C11—C12—O1 0.0 (2)
C1—C2—C3—C4 −1.2 (2) C10—C11—C12—O1 −178.46 (16)
C2—C3—C4—C5 0.7 (3) C14—C11—C12—O2 −179.30 (13)
C3—C4—C5—C6 0.7 (2) C10—C11—C12—O2 2.25 (19)
C4—C5—C6—C1 −1.5 (2) C12—C11—C14—C15 176.82 (14)
C4—C5—C6—C7 177.51 (15) C10—C11—C14—C15 −4.9 (3)
N1—C1—C6—C5 179.37 (12) C11—C14—C15—C20 164.77 (16)
C2—C1—C6—C5 1.0 (2) C11—C14—C15—C16 −17.0 (3)
N1—C1—C6—C7 0.14 (15) C20—C15—C16—C17 −0.7 (2)
C2—C1—C6—C7 −178.25 (13) C14—C15—C16—C17 −178.87 (15)
C5—C6—C7—C8 −179.20 (15) C15—C16—C17—C18 0.3 (3)
C1—C6—C7—C8 −0.14 (15) C16—C17—C18—C19 0.0 (3)
C5—C6—C7—C9 −0.3 (3) C16—C17—C18—Cl1 179.55 (13)
C1—C6—C7—C9 178.81 (15) C17—C18—C19—C20 0.1 (3)
C6—C7—C8—N1 0.09 (16) Cl1—C18—C19—C20 −179.51 (13)
C9—C7—C8—N1 −178.86 (14) C18—C19—C20—C15 −0.4 (3)
C1—N1—C8—C7 0.00 (16) C16—C15—C20—C19 0.7 (2)
C10—N1—C8—C7 179.09 (13) C14—C15—C20—C19 179.06 (15)
C1—N1—C10—C11 172.92 (13)

Hydrogen-bond geometry (Å, º)

Cg is the centroid of ring C1–C6.

D—H···A D—H H···A D···A D—H···A
C13—H13A···Cgi 0.96 2.69 3.581 (2) 154

Symmetry code: (i) x−1/2, −y−1/2, z−1/2.

References

  1. Andreev, I. A., Manvar, D., Barreca, M. L., Belov, D. S., Basu, A., Sweeney, N. L., Ratmanova, N. K., Lukyanenko, E. R., Manfroni, G., Cecchetti, V., Frick, D. N., Altieri, A., Kaushik-Basu, N. & Kurkin, A. V. (2015). Eur. J. Med. Chem. 96, 250–258. [DOI] [PMC free article] [PubMed]
  2. Bruker (2001). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.
  3. Chen, Y. R., Tseng, C. H., Chen, Y. L., Hwang, T. L. & Tzeng, C. C. (2015). Int. J. Mol. Sci. 16, 6532–6544. [DOI] [PMC free article] [PubMed]
  4. Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.
  5. Ferro, S., Certo, G., De Luca, L., Germano, M. P., Rapisarda, A. & Gitto, R. (2015). J. Enzyme. Inhib. Med. Chem. 31, 1–6. [DOI] [PubMed]
  6. Gans, J. D. & Shalloway, D. (2001). J. Mol. Graphics Modell. 19, 557–559. [DOI] [PubMed]
  7. Lee, S., Jin, G., Kim, D., Son, S., Lee, K. & Lee, C. (2015). Acta Virol. 59, 64–77. [DOI] [PubMed]
  8. Ma, J., Bao, G., Wang, L., Li, W., Xu, B., Du, B., Lv, J., Zhai, X. & Gong, P. (2015). Eur. J. Med. Chem. 96, 173–186. [DOI] [PubMed]
  9. Parrino, B., Carbone, A., Di Vita, G., Ciancimino, C., Attanzio, A., Spano, V., Montalbano, A., Barraja, P., Tesoriere, L., Livera, M. A., Diana, P. & Cirrincione, G. (2015). Mar. Drugs, 13, 1901–1924. [DOI] [PMC free article] [PubMed]
  10. Selvanayagam, S., Sridhar, B., Kathiravan, S. & Raghunathan, R. (2014). Acta Cryst. E70, o431–o432. [DOI] [PMC free article] [PubMed]
  11. Selvanayagam, S., Sridhar, B., Ravikumar, K., Kathiravan, S. & Raghunathan, R. (2008). Acta Cryst. E64, o1163. [DOI] [PMC free article] [PubMed]
  12. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  13. Sheldrick, G. M. (2015). Acta Cryst. C71, 3–8.
  14. Spek, A. L. (2009). Acta Cryst. D65, 148–155. [DOI] [PMC free article] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) I, global. DOI: 10.1107/S2056989015010002/su5135sup1.cif

e-71-00720-sup1.cif (576.9KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S2056989015010002/su5135Isup2.hkl

e-71-00720-Isup2.hkl (314.5KB, hkl)

Supporting information file. DOI: 10.1107/S2056989015010002/su5135Isup3.cml

CCDC reference: 1402521

Additional supporting information: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Crystallographic Communications are provided here courtesy of International Union of Crystallography

RESOURCES