Skip to main content
Acta Crystallographica Section E: Crystallographic Communications logoLink to Acta Crystallographica Section E: Crystallographic Communications
. 2015 May 7;71(Pt 6):574–577. doi: 10.1107/S2056989015008063

Crystal structures of methyl 3-(4-iso­propyl­phen­yl)-1-methyl-1,2,3,3a,4,9b-hexa­hydro­thio­chromeno[4,3-b]pyrrole-3a-carboxyl­ate, methyl 1-methyl-3-(o-tol­yl)-1,2,3,3a,4,9b-hexa­hydro­thio­chromeno[4,3-b]pyrrole-3a-carboxyl­ate and methyl 1-methyl-3-(o-tol­yl)-3,3a,4,9b-tetra­hydro-1H-thio­chromeno[4,3-c]isoxazole-3a-carboxyl­ate

R Raja a, M Suresh b, R Raghunathan b, A SubbiahPandi a,*
PMCID: PMC4459360  PMID: 26090125

Three thio­chromeno[4,3-b]pyrrole esters have very similar conformations. Structurally two of the compounds differ only by the substituent on the benzene ring, i.e. 4-iso­propyl­phenyl and o-tolyl, while two of the compounds differ only in that one has a pyrrole ring and one has an isoxazole ring.

Keywords: crystal structure, thio­chromene, isoxazole, pyrrole, chromeno­pyrrole, thio­pyran, C—H⋯π inter­actions

Abstract

In the title compounds, C23H27NO2S, (I), and C21H23NO2S, (II), the pyrrole rings have envelope conformations with the C atom substituted by the benzene ring as the flap. In the third title compound, C20H21NO3S, (III), the isoxazole ring has a twisted conformation on the C—C bond substituted by the benzene ring and the carboxyl­ate group. In all three compounds, the thio­pyran ring has a half-chair conformation. The mean plane of the pyrrole ring is inclined to the mean plane of the thio­pyran ring by 57.07 (9), 58.98 (9) and 60.34 (12)° in (I), (II) and (III), respectively. The benzene rings are inclined to one another by 73.26 (10)° in (I), 65.781)° in (II) and 63.37 (13)° in (III). In the crystals of all three compounds, there are no classical hydrogen bonds present. Only in the crystal of compound (I) are mol­ecules linked by a pair of C—H⋯π inter­actions, forming inversion dimers. The isopropyl group in compound (I) is disordered over two sets of sites and has a refined occupancy ratio of 0.586 (13):0.414 (13).

Chemical context  

Pyrrole derivatives are of considerable synthetic importance due to their extensive use in drug discovery (Toja et al., 1987) which is linked to their pharmacological activity such as anti-inflammatory (Muchowski et al., 1985), cytotoxicity (Dannhardt et al., 2000) and their use in the treatment of hyper­lipidemias (Holub et al., 2004) and as anti­tumour agents (Krowicki et al., 1988). Other pyrrole-containing heterocyclic compounds have been reported previously for biological studies (Almerico et al., 1998). Pyrrole derivatives have biological activity such as COX-1/COX-2 inhibitors (Dannhardt et al., 2000) as well as cytotoxic activity against a variety of marine and human tumour models (Evans et al., 2003). Isoxazoline derivatives have been shown to be efficient precursors for the preparation of many synthetic inter­mediates including γ-amino alcohols and β-hy­droxy ketones (Kozikowski, 1984). They display inter­esting biological properties such as herbicidal, plant-growth regulatory and anti­tumour activities (Howe & Shelton, 1990). Chromeno­pyrrole compounds are used in the treatment of impulsive disorders (Caine & Koob, 1993). Continuing our inter­est in such compounds, we have synthesized the title compounds and report herein on their crystal structures.graphic file with name e-71-00574-scheme1.jpg

Structural commentary  

The title compounds (I) and (II) differ only by the substituent on the benzene ring; 4-iso­propyl­phenyl in (I) and o-tolyl in (II). Compounds (II) and (III) differ only in that (II) has a pyrrole ring while (III) has an isoxazole ring.

The mol­ecular structure of compound (I) is shown in Fig. 1. The five-membered methyl-substituted pyrrole ring adopts an envelope conformation with atom C9 as the flap, deviating from the mean plane defined by the plane of the other ring atoms by 0.0167 Å. The puckering parameters of this ring are q 2 = 0.4713 (15) Å and φ2 = 41.27 (19)°. The thio­pyran ring has a half-chair conformation, with the lowest asymmetry parameters ΔC2(S1—C7) = 8.34 (16) Å. The mean plane of the pyrrole ring makes dihedral angles of 57.07 (9) and 63.29 (10)° with the mean plane of the thio­pyran ring and the benzene ring, respectively.

Figure 1.

Figure 1

The mol­ecular structure of compound (I), showing the atom labelling. Displacement ellipsoids are drawn at the 30% probability level.

The mol­ecular structure of the compound (II) is illustrated in Fig. 2. The bond lengths and bond angles are similar to those in compound (I). The pyrrole ring (N1/C8–C12) adopts an envelope conformation with atom C9 atom as the flap having asymmetry parameters (Nardelli, 1983) ΔCS(C9) = 4.51 Å and with puckering parameters q 2 = 0.4673 (18) Å, φ2 = 223.5 (2)°. As in (I), the thio­pyran ring has a half-chair conformation. The mean plane of the pyrrole ring is inclined to thio­pyran ring mean plane and the benzene ring by 58.98 (9) and 67.75 (11)°, respectively. The carboxyl­ate group assumes an extended conformation, as can be seen from the C8—C13—O2—C14 torsion angle of 175.4 (2)°.

Figure 2.

Figure 2

The mol­ecular structure of compound (II), showing the atom labelling. Displacement ellipsoids are drawn at the 30% probability level.

The mol­ecular structure of mol­ecule (III) is shown in Fig. 3. The isoxazole ring (N1/O3/C11/C8/C9) has a twist conformation about bond C9–C8: puckering parameters q 2 = 0.466 (2) Å, φ2 = 275.7 (3)°. As in (I) and (II), the thio­pyran ring has a half-chair conformation. The dihedral angles between the mean plane of the isoxazole ring and the thio­pyran ring mean plane and the benzene ring are 60.34 (12) and 61.30 (14)°, respectively. The geometric parameters of mol­ecule (III) agree well with those reported for (I) and (II), and a closely related structure, 1-methyl-3-(naphthalen-1-yl)-3,3a,4,9b-tetra­hydro-1H-chromeno[4,3-c]isoxazole-3a-carbonitrile (Gangadharan et al., 2011).

Figure 3.

Figure 3

The mol­ecular structure of compound (III), showing the atom labelling. Displacement ellipsoids are drawn at the 30% probability level.

Supra­molecular features  

In the crystals of compounds (I), (II) and (III), there are no classical hydrogen bonds present. Only in compound (I) is there a C—H⋯π inter­action present, and mol­ecules are linked by a pair of these inter­actions forming inversion dimers (Table 1 and Fig. 4).

Table 1. Hydrogen-bond geometry (Å, °) for (I) .

Cg3 is the centroid of the C1–C6 ring.

D—H⋯A D—H H⋯A DA D—H⋯A
C17—H17⋯Cg3i 0.93 2.91 3.695 (2) 143

Symmetry code: (i) Inline graphic.

Figure 4.

Figure 4

A view along the b axis of the crystal packing of compound (I). The dashed cyan lines represent the C—H⋯centroid distances (see Table 1).

Database survey  

While a search of the Cambridge Structural Database (CSD, Version 5.36, November 2014; Groom & Allen, 2014) for chromenoisoxazole derivatives revealed over 30 hits, there were no hits for thio­chromeno­pyrroles or thio­chromenoisoxazoles.

Synthesis and crystallization  

Compound (I): To a solution of methyl (E)-2-{[(2-formyl­phen­yl)thio]­meth­yl}-3-phenyl­acrylate (1 mmol) and sarcosine (1.2 mmol) in aceto­nitrile (10 ml), was added pyridine (0.2 mmol) and the mixture was refluxed until completion of the reaction (monitored by TLC). The crude product was subjected to column chromatography on silica gel (100–200 mesh) using petroleum ether–ethyl acetate (9:1) as eluent, which successfully provided the pure product as a colourless solid. The product was dissolved in chloro­form and heated for 2 min. The resulting solution were allowed to evaporate slowly at room temperature and yielded colourless block-like crystals of compound (I).

Compound (II): Here methyl (E)-2-{[(2-formyl­phen­yl)thio]­meth­yl}-3-(o-tol­yl) acrylate (1 mmol) and sarcosine (1.2 mmol) in aceto­nitrile (10 ml) were reacted with pyridine following the same procedure as for compound (I), and colourless crystals of compound (II) were obtained.

Compound (III): Here methyl (E)-2-{[(2-formyl­phen­yl)thio]­meth­yl}-3-(o-tol­yl) acrylate(1 mmol) and N-methyl hydroxyl­amine hydro­chloride (1.1 mmol) in aceto­nitrile (10 ml) were reacted with pyridine following the same procedure as for compounds (I) and (II), and colourless crystals of compound (III) were obtained.

Refinement  

Crystal data, data collection and structure refinement details are summarized in Table 2. The C-bound H atoms were positioned geometrically (C—H = 0.93–0.98 Å) and allowed to ride on their parent atoms, with U iso(H) = 1.5U eq(C) for methyl H atoms and 1.2U eq(C) for other H atoms. The isopropyl group in compound (I), atoms C19–C21, is disordered over two sets of sites and has a refined occupancy ratio of 0.586 (13):0.414 (13).

Table 2. Experimental details.

  (I) (II) (III)
Crystal data
Chemical formula C23H27NO2S C21H21NO2S C20H21NO3S
M r 381.52 351.45 355.44
Crystal system, space group Monoclinic, P21/n Triclinic, P Inline graphic Orthorhombic, P b c a
Temperature (K) 293 293 293
a, b, c (Å) 10.7330 (3), 7.7568 (2), 24.9436 (7) 8.1882 (3), 10.4987 (4), 10.9594 (4) 11.2629 (11), 13.2117 (11), 24.041 (3)
α, β, γ (°) 90, 98.485 (1), 90 104.554 (1), 90.983 (1), 90.134 (1) 90, 90, 90
V3) 2053.92 (10) 911.74 (6) 3577.3 (6)
Z 4 2 8
Radiation type Mo Kα Mo Kα Mo Kα
μ (mm−1) 0.18 0.19 0.20
Crystal size (mm) 0.35 × 0.30 × 0.25 0.35 × 0.30 × 0.25 0.35 × 0.30 × 0.25
 
Data collection
Diffractometer Bruker SMART APEXII CCD Bruker SMART APEXII CCD Bruker SMART APEXII CCD
Absorption correction Multi-scan (SADABS; Bruker, 2008) Multi-scan (SADABS; Bruker, 2008) Multi-scan (SADABS; Bruker, 2008)
T min, T max 0.941, 0.958 0.935, 0.953 0.932, 0.951
No. of measured, independent and observed [I > 2σ(I)] reflections 16824, 3616, 3170 19010, 3210, 2790 37913, 3151, 2536
R int 0.019 0.020 0.033
(sin θ/λ)max−1) 0.595 0.595 0.595
 
Refinement
R[F 2 > 2σ(F 2)], wR(F 2), S 0.041, 0.111, 1.06 0.038, 0.115, 1.07 0.046, 0.111, 1.12
No. of reflections 3616 3210 3151
No. of parameters 272 229 229
No. of restraints 107 0 0
H-atom treatment H-atom parameters constrained H-atom parameters constrained H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.24, −0.27 0.26, −0.32 0.22, −0.22

Computer programs: APEX2 and SAINT (Bruker, 2008), SHELXS97 and SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 2012), Mercury (Macrae et al., 2008) and PLATON (Spek, 2009).

Supplementary Material

Crystal structure: contains datablock(s) global, I, II, III. DOI: 10.1107/S2056989015008063/su5106sup1.cif

e-71-00574-sup1.cif (61.1KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S2056989015008063/su5106Isup2.hkl

e-71-00574-Isup2.hkl (177.3KB, hkl)

Structure factors: contains datablock(s) II. DOI: 10.1107/S2056989015008063/su5106IIsup3.hkl

e-71-00574-IIsup3.hkl (157.5KB, hkl)

Structure factors: contains datablock(s) III. DOI: 10.1107/S2056989015008063/su5106IIIsup4.hkl

e-71-00574-IIIsup4.hkl (154.7KB, hkl)

Supporting information file. DOI: 10.1107/S2056989015008063/su5106Isup5.cml

Supporting information file. DOI: 10.1107/S2056989015008063/su5106IIsup6.cml

Supporting information file. DOI: 10.1107/S2056989015008063/su5106IIIsup7.cml

CCDC references: 1061279, 1061278, 1061277

Additional supporting information: crystallographic information; 3D view; checkCIF report

Acknowledgments

The authors thank the Department of Chemistry, IIT, Chennai, India, for the X-ray intensity data collection.

supplementary crystallographic information

(I) Methyl 3-(4-isopropylphenyl)-1-methyl-1,2,3,3a,4,9b-hexahydrothiochromeno[4,3-b]pyrrole-3a-carboxylate . Crystal data

C23H27NO2S F(000) = 816
Mr = 381.52 Dx = 1.234 Mg m3
Monoclinic, P21/n Mo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2yn Cell parameters from 3170 reflections
a = 10.7330 (3) Å θ = 1.7–25.0°
b = 7.7568 (2) Å µ = 0.18 mm1
c = 24.9436 (7) Å T = 293 K
β = 98.485 (1)° Block, colourless
V = 2053.92 (10) Å3 0.35 × 0.30 × 0.25 mm
Z = 4

(I) Methyl 3-(4-isopropylphenyl)-1-methyl-1,2,3,3a,4,9b-hexahydrothiochromeno[4,3-b]pyrrole-3a-carboxylate . Data collection

Bruker SMART APEXII CCD diffractometer 3616 independent reflections
Radiation source: fine-focus sealed tube 3170 reflections with I > 2σ(I)
Graphite monochromator Rint = 0.019
ω and φ scans θmax = 25.0°, θmin = 1.7°
Absorption correction: multi-scan (SADABS; Bruker, 2008) h = −12→12
Tmin = 0.941, Tmax = 0.958 k = −9→9
16824 measured reflections l = −24→29

(I) Methyl 3-(4-isopropylphenyl)-1-methyl-1,2,3,3a,4,9b-hexahydrothiochromeno[4,3-b]pyrrole-3a-carboxylate . Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.041 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.111 H-atom parameters constrained
S = 1.06 w = 1/[σ2(Fo2) + (0.050P)2 + 1.0371P] where P = (Fo2 + 2Fc2)/3
3616 reflections (Δ/σ)max < 0.001
272 parameters Δρmax = 0.24 e Å3
107 restraints Δρmin = −0.27 e Å3

(I) Methyl 3-(4-isopropylphenyl)-1-methyl-1,2,3,3a,4,9b-hexahydrothiochromeno[4,3-b]pyrrole-3a-carboxylate . Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

(I) Methyl 3-(4-isopropylphenyl)-1-methyl-1,2,3,3a,4,9b-hexahydrothiochromeno[4,3-b]pyrrole-3a-carboxylate . Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq Occ. (<1)
C1 0.64364 (15) 0.4800 (2) 0.14949 (7) 0.0333 (4)
C2 0.60663 (18) 0.4940 (3) 0.20060 (8) 0.0468 (5)
H2 0.5834 0.6015 0.2124 0.056*
C3 0.6033 (2) 0.3533 (3) 0.23429 (9) 0.0584 (6)
H3 0.5765 0.3660 0.2679 0.070*
C4 0.6398 (2) 0.1946 (3) 0.21793 (9) 0.0606 (6)
H4 0.6379 0.0994 0.2405 0.073*
C5 0.67929 (19) 0.1762 (3) 0.16824 (9) 0.0511 (5)
H5 0.7052 0.0687 0.1576 0.061*
C6 0.68086 (16) 0.3175 (2) 0.13353 (7) 0.0361 (4)
C7 0.70294 (16) 0.4766 (2) 0.03604 (7) 0.0327 (4)
H7A 0.7507 0.4820 0.0060 0.039*
H7B 0.6142 0.4775 0.0212 0.039*
C8 0.73260 (14) 0.6355 (2) 0.07149 (6) 0.0279 (4)
C9 0.64648 (14) 0.6410 (2) 0.11561 (7) 0.0301 (4)
H9 0.6724 0.7380 0.1399 0.036*
C10 0.42438 (19) 0.7312 (3) 0.11351 (10) 0.0568 (6)
H10A 0.4083 0.6368 0.1364 0.085*
H10B 0.3492 0.7573 0.0889 0.085*
H10C 0.4495 0.8305 0.1354 0.085*
C11 0.55213 (17) 0.8256 (2) 0.04721 (8) 0.0399 (4)
H11A 0.5384 0.9360 0.0636 0.048*
H11B 0.4980 0.8183 0.0125 0.048*
C12 0.69127 (16) 0.8060 (2) 0.03967 (7) 0.0324 (4)
H12 0.7370 0.9003 0.0600 0.039*
C13 0.87070 (15) 0.6497 (2) 0.09487 (7) 0.0347 (4)
C14 1.07866 (18) 0.6040 (4) 0.07703 (11) 0.0687 (7)
H14A 1.1210 0.5552 0.0493 0.103*
H14B 1.1034 0.5433 0.1105 0.103*
H14C 1.1010 0.7234 0.0818 0.103*
C15 0.72199 (16) 0.8169 (2) −0.01743 (7) 0.0333 (4)
C16 0.64436 (17) 0.7505 (2) −0.06219 (7) 0.0420 (4)
H16 0.5687 0.6984 −0.0575 0.050*
C17 0.67758 (19) 0.7603 (3) −0.11355 (8) 0.0486 (5)
H17 0.6232 0.7158 −0.1428 0.058*
C18 0.7893 (2) 0.8346 (3) −0.12255 (8) 0.0515 (5)
C19 0.8153 (7) 0.8254 (11) −0.1815 (2) 0.0583 (18) 0.586 (13)
H19 0.7602 0.7432 −0.2035 0.070* 0.586 (13)
C20 0.8006 (10) 1.0118 (12) −0.2041 (3) 0.102 (3) 0.586 (13)
H20A 0.7144 1.0475 −0.2061 0.153* 0.586 (13)
H20B 0.8248 1.0152 −0.2396 0.153* 0.586 (13)
H20C 0.8536 1.0882 −0.1805 0.153* 0.586 (13)
C21 0.9546 (11) 0.7867 (18) −0.1814 (5) 0.091 (3) 0.586 (13)
H21A 0.9717 0.7809 −0.2181 0.137* 0.586 (13)
H21B 0.9752 0.6784 −0.1637 0.137* 0.586 (13)
H21C 1.0044 0.8765 −0.1624 0.137* 0.586 (13)
C19' 0.8449 (11) 0.8718 (19) −0.1752 (3) 0.073 (3) 0.414 (13)
H19' 0.8974 0.9752 −0.1685 0.087* 0.414 (13)
C20' 0.7403 (12) 0.915 (2) −0.2199 (4) 0.104 (4) 0.414 (13)
H20D 0.6884 1.0039 −0.2079 0.156* 0.414 (13)
H20E 0.6902 0.8143 −0.2295 0.156* 0.414 (13)
H20F 0.7753 0.9552 −0.2509 0.156* 0.414 (13)
C21' 0.9299 (17) 0.728 (2) −0.1893 (8) 0.088 (4) 0.414 (13)
H21D 0.9944 0.7061 −0.1591 0.132* 0.414 (13)
H21E 0.9681 0.7605 −0.2203 0.132* 0.414 (13)
H21F 0.8810 0.6248 −0.1976 0.132* 0.414 (13)
C22 0.8668 (2) 0.9020 (3) −0.07806 (9) 0.0568 (6)
H22 0.9427 0.9532 −0.0829 0.068*
C23 0.83327 (18) 0.8944 (3) −0.02667 (8) 0.0462 (5)
H23 0.8865 0.9422 0.0023 0.055*
N1 0.52473 (13) 0.68409 (19) 0.08280 (6) 0.0361 (3)
O1 0.90964 (14) 0.7164 (3) 0.13667 (7) 0.0840 (7)
O2 0.94460 (11) 0.5889 (2) 0.06139 (6) 0.0505 (4)
S1 0.73931 (5) 0.27778 (6) 0.07238 (2) 0.04255 (16)

(I) Methyl 3-(4-isopropylphenyl)-1-methyl-1,2,3,3a,4,9b-hexahydrothiochromeno[4,3-b]pyrrole-3a-carboxylate . Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
C1 0.0291 (8) 0.0381 (9) 0.0328 (9) −0.0026 (7) 0.0045 (7) 0.0019 (7)
C2 0.0467 (11) 0.0570 (12) 0.0382 (10) −0.0011 (9) 0.0113 (8) 0.0033 (9)
C3 0.0558 (12) 0.0821 (17) 0.0382 (11) −0.0046 (12) 0.0099 (9) 0.0161 (11)
C4 0.0603 (13) 0.0663 (15) 0.0530 (13) −0.0048 (11) 0.0011 (10) 0.0293 (12)
C5 0.0538 (12) 0.0402 (11) 0.0565 (13) −0.0005 (9) −0.0007 (10) 0.0140 (9)
C6 0.0327 (9) 0.0353 (9) 0.0387 (10) −0.0027 (7) 0.0000 (7) 0.0054 (8)
C7 0.0379 (9) 0.0283 (8) 0.0321 (9) −0.0001 (7) 0.0060 (7) −0.0029 (7)
C8 0.0293 (8) 0.0258 (8) 0.0297 (8) 0.0000 (6) 0.0075 (6) −0.0021 (7)
C9 0.0293 (8) 0.0287 (8) 0.0336 (9) −0.0008 (7) 0.0087 (7) −0.0037 (7)
C10 0.0387 (10) 0.0608 (13) 0.0763 (15) 0.0117 (10) 0.0258 (10) 0.0141 (12)
C11 0.0406 (10) 0.0338 (9) 0.0469 (11) 0.0094 (8) 0.0122 (8) 0.0075 (8)
C12 0.0366 (9) 0.0247 (8) 0.0367 (9) −0.0019 (7) 0.0079 (7) −0.0007 (7)
C13 0.0316 (9) 0.0373 (9) 0.0362 (10) −0.0008 (7) 0.0086 (7) −0.0024 (8)
C14 0.0303 (10) 0.0772 (17) 0.1015 (19) 0.0028 (11) 0.0199 (11) −0.0011 (15)
C15 0.0360 (9) 0.0279 (8) 0.0361 (9) −0.0006 (7) 0.0055 (7) 0.0050 (7)
C16 0.0374 (9) 0.0444 (11) 0.0431 (11) −0.0042 (8) 0.0022 (8) 0.0043 (8)
C17 0.0507 (11) 0.0549 (12) 0.0377 (11) 0.0014 (10) −0.0015 (9) 0.0009 (9)
C18 0.0574 (12) 0.0605 (13) 0.0378 (11) 0.0086 (10) 0.0110 (9) 0.0093 (10)
C19 0.056 (3) 0.082 (4) 0.037 (3) −0.016 (3) 0.010 (2) −0.003 (2)
C20 0.128 (6) 0.122 (6) 0.063 (4) 0.034 (5) 0.039 (4) 0.048 (4)
C21 0.100 (6) 0.128 (8) 0.057 (5) 0.017 (5) 0.046 (5) 0.013 (5)
C19' 0.090 (6) 0.088 (6) 0.043 (4) −0.009 (5) 0.018 (4) 0.001 (4)
C20' 0.127 (8) 0.132 (9) 0.053 (5) 0.016 (6) 0.012 (5) 0.031 (5)
C21' 0.085 (7) 0.122 (10) 0.058 (5) 0.015 (7) 0.016 (5) −0.012 (6)
C22 0.0504 (12) 0.0700 (15) 0.0533 (13) −0.0146 (11) 0.0186 (10) 0.0108 (11)
C23 0.0446 (10) 0.0521 (12) 0.0418 (11) −0.0145 (9) 0.0059 (8) 0.0025 (9)
N1 0.0288 (7) 0.0338 (8) 0.0468 (9) 0.0040 (6) 0.0097 (6) 0.0054 (7)
O1 0.0382 (8) 0.1496 (19) 0.0630 (10) −0.0111 (9) 0.0038 (7) −0.0553 (12)
O2 0.0319 (6) 0.0652 (9) 0.0575 (8) 0.0022 (6) 0.0169 (6) −0.0123 (7)
S1 0.0551 (3) 0.0263 (2) 0.0470 (3) 0.00570 (19) 0.0104 (2) −0.00152 (19)

(I) Methyl 3-(4-isopropylphenyl)-1-methyl-1,2,3,3a,4,9b-hexahydrothiochromeno[4,3-b]pyrrole-3a-carboxylate . Geometric parameters (Å, º)

C1—C2 1.394 (2) C14—H14A 0.9600
C1—C6 1.398 (2) C14—H14B 0.9600
C1—C9 1.510 (2) C14—H14C 0.9600
C2—C3 1.382 (3) C15—C23 1.386 (2)
C2—H2 0.9300 C15—C16 1.390 (2)
C3—C4 1.372 (4) C16—C17 1.382 (3)
C3—H3 0.9300 C16—H16 0.9300
C4—C5 1.375 (3) C17—C18 1.378 (3)
C4—H4 0.9300 C17—H17 0.9300
C5—C6 1.398 (3) C18—C22 1.387 (3)
C5—H5 0.9300 C18—C19 1.539 (5)
C6—S1 1.7599 (19) C18—C19' 1.546 (7)
C7—C8 1.523 (2) C19—C21 1.524 (12)
C7—S1 1.8024 (17) C19—C20 1.551 (11)
C7—H7A 0.9700 C19—H19 0.9800
C7—H7B 0.9700 C20—H20A 0.9600
C8—C13 1.515 (2) C20—H20B 0.9600
C8—C9 1.539 (2) C20—H20C 0.9600
C8—C12 1.572 (2) C21—H21A 0.9600
C9—N1 1.474 (2) C21—H21B 0.9600
C9—H9 0.9800 C21—H21C 0.9600
C10—N1 1.457 (2) C19'—C20' 1.500 (14)
C10—H10A 0.9600 C19'—C21' 1.519 (15)
C10—H10B 0.9600 C19'—H19' 0.9800
C10—H10C 0.9600 C20'—H20D 0.9600
C11—N1 1.468 (2) C20'—H20E 0.9600
C11—C12 1.540 (2) C20'—H20F 0.9600
C11—H11A 0.9700 C21'—H21D 0.9600
C11—H11B 0.9700 C21'—H21E 0.9600
C12—C15 1.511 (2) C21'—H21F 0.9600
C12—H12 0.9800 C22—C23 1.383 (3)
C13—O1 1.184 (2) C22—H22 0.9300
C13—O2 1.321 (2) C23—H23 0.9300
C14—O2 1.439 (2)
C2—C1—C6 117.55 (17) C23—C15—C16 117.15 (16)
C2—C1—C9 118.63 (16) C23—C15—C12 119.62 (15)
C6—C1—C9 123.77 (15) C16—C15—C12 123.22 (15)
C3—C2—C1 122.1 (2) C17—C16—C15 121.20 (17)
C3—C2—H2 119.0 C17—C16—H16 119.4
C1—C2—H2 119.0 C15—C16—H16 119.4
C4—C3—C2 119.6 (2) C18—C17—C16 121.59 (18)
C4—C3—H3 120.2 C18—C17—H17 119.2
C2—C3—H3 120.2 C16—C17—H17 119.2
C3—C4—C5 120.0 (2) C17—C18—C22 117.43 (18)
C3—C4—H4 120.0 C17—C18—C19 114.9 (3)
C5—C4—H4 120.0 C22—C18—C19 127.6 (3)
C4—C5—C6 120.7 (2) C17—C18—C19' 132.0 (5)
C4—C5—H5 119.7 C22—C18—C19' 110.4 (5)
C6—C5—H5 119.7 C19—C18—C19' 18.3 (5)
C1—C6—C5 120.03 (18) C21—C19—C18 108.9 (7)
C1—C6—S1 123.93 (13) C21—C19—C20 103.4 (9)
C5—C6—S1 115.96 (15) C18—C19—C20 106.3 (6)
C8—C7—S1 112.92 (11) C21—C19—H19 112.6
C8—C7—H7A 109.0 C18—C19—H19 112.6
S1—C7—H7A 109.0 C20—C19—H19 112.6
C8—C7—H7B 109.0 C19—C20—H20A 109.5
S1—C7—H7B 109.0 C19—C20—H20B 109.5
H7A—C7—H7B 107.8 H20A—C20—H20B 109.5
C13—C8—C7 113.01 (13) C19—C20—H20C 109.5
C13—C8—C9 112.32 (13) H20A—C20—H20C 109.5
C7—C8—C9 109.95 (13) H20B—C20—H20C 109.5
C13—C8—C12 108.71 (13) C19—C21—H21A 109.5
C7—C8—C12 111.61 (13) C19—C21—H21B 109.5
C9—C8—C12 100.59 (12) H21A—C21—H21B 109.5
N1—C9—C1 114.12 (13) C19—C21—H21C 109.5
N1—C9—C8 100.71 (13) H21A—C21—H21C 109.5
C1—C9—C8 116.20 (13) H21B—C21—H21C 109.5
N1—C9—H9 108.5 C20'—C19'—C21' 113.7 (14)
C1—C9—H9 108.5 C20'—C19'—C18 109.5 (8)
C8—C9—H9 108.5 C21'—C19'—C18 112.4 (12)
N1—C10—H10A 109.5 C20'—C19'—H19' 107.0
N1—C10—H10B 109.5 C21'—C19'—H19' 107.0
H10A—C10—H10B 109.5 C18—C19'—H19' 107.0
N1—C10—H10C 109.5 C19'—C20'—H20D 109.5
H10A—C10—H10C 109.5 C19'—C20'—H20E 109.5
H10B—C10—H10C 109.5 H20D—C20'—H20E 109.5
N1—C11—C12 106.52 (13) C19'—C20'—H20F 109.5
N1—C11—H11A 110.4 H20D—C20'—H20F 109.5
C12—C11—H11A 110.4 H20E—C20'—H20F 109.5
N1—C11—H11B 110.4 C19'—C21'—H21D 109.5
C12—C11—H11B 110.4 C19'—C21'—H21E 109.5
H11A—C11—H11B 108.6 H21D—C21'—H21E 109.5
C15—C12—C11 117.38 (14) C19'—C21'—H21F 109.5
C15—C12—C8 116.04 (13) H21D—C21'—H21F 109.5
C11—C12—C8 103.18 (13) H21E—C21'—H21F 109.5
C15—C12—H12 106.5 C23—C22—C18 121.21 (19)
C11—C12—H12 106.5 C23—C22—H22 119.4
C8—C12—H12 106.5 C18—C22—H22 119.4
O1—C13—O2 123.11 (16) C22—C23—C15 121.41 (18)
O1—C13—C8 124.68 (16) C22—C23—H23 119.3
O2—C13—C8 112.07 (14) C15—C23—H23 119.3
O2—C14—H14A 109.5 C10—N1—C11 111.09 (15)
O2—C14—H14B 109.5 C10—N1—C9 115.36 (15)
H14A—C14—H14B 109.5 C11—N1—C9 105.37 (13)
O2—C14—H14C 109.5 C13—O2—C14 117.99 (16)
H14A—C14—H14C 109.5 C6—S1—C7 101.98 (8)
H14B—C14—H14C 109.5
C6—C1—C2—C3 −1.5 (3) C8—C12—C15—C23 −93.3 (2)
C9—C1—C2—C3 −179.07 (17) C11—C12—C15—C16 −36.9 (2)
C1—C2—C3—C4 1.4 (3) C8—C12—C15—C16 85.7 (2)
C2—C3—C4—C5 −0.1 (3) C23—C15—C16—C17 0.5 (3)
C3—C4—C5—C6 −1.0 (3) C12—C15—C16—C17 −178.64 (17)
C2—C1—C6—C5 0.4 (3) C15—C16—C17—C18 0.7 (3)
C9—C1—C6—C5 177.81 (16) C16—C17—C18—C22 −1.0 (3)
C2—C1—C6—S1 −176.06 (13) C16—C17—C18—C19 176.5 (4)
C9—C1—C6—S1 1.3 (2) C16—C17—C18—C19' −175.7 (7)
C4—C5—C6—C1 0.8 (3) C17—C18—C19—C21 −140.0 (8)
C4—C5—C6—S1 177.59 (16) C22—C18—C19—C21 37.2 (10)
S1—C7—C8—C13 61.01 (16) C19'—C18—C19—C21 58 (2)
S1—C7—C8—C9 −65.37 (15) C17—C18—C19—C20 109.2 (7)
S1—C7—C8—C12 −176.10 (11) C22—C18—C19—C20 −73.6 (8)
C2—C1—C9—N1 −86.08 (19) C19'—C18—C19—C20 −52 (2)
C6—C1—C9—N1 96.55 (19) C17—C18—C19'—C20' 33.7 (16)
C2—C1—C9—C8 157.34 (15) C22—C18—C19'—C20' −141.3 (12)
C6—C1—C9—C8 −20.0 (2) C19—C18—C19'—C20' 57 (2)
C13—C8—C9—N1 161.82 (13) C17—C18—C19'—C21' −93.5 (12)
C7—C8—C9—N1 −71.42 (15) C22—C18—C19'—C21' 91.4 (13)
C12—C8—C9—N1 46.38 (14) C19—C18—C19'—C21' −71 (2)
C13—C8—C9—C1 −74.36 (18) C17—C18—C22—C23 0.2 (3)
C7—C8—C9—C1 52.41 (18) C19—C18—C22—C23 −177.0 (4)
C12—C8—C9—C1 170.21 (13) C19'—C18—C22—C23 176.0 (6)
N1—C11—C12—C15 132.25 (15) C18—C22—C23—C15 1.0 (3)
N1—C11—C12—C8 3.27 (17) C16—C15—C23—C22 −1.3 (3)
C13—C8—C12—C15 81.94 (17) C12—C15—C23—C22 177.85 (19)
C7—C8—C12—C15 −43.37 (18) C12—C11—N1—C10 152.28 (16)
C9—C8—C12—C15 −159.95 (14) C12—C11—N1—C9 26.68 (18)
C13—C8—C12—C11 −148.26 (14) C1—C9—N1—C10 65.7 (2)
C7—C8—C12—C11 86.43 (16) C8—C9—N1—C10 −169.06 (15)
C9—C8—C12—C11 −30.15 (15) C1—C9—N1—C11 −171.39 (14)
C7—C8—C13—O1 −150.6 (2) C8—C9—N1—C11 −46.15 (16)
C9—C8—C13—O1 −25.5 (3) O1—C13—O2—C14 0.5 (3)
C12—C8—C13—O1 84.9 (2) C8—C13—O2—C14 176.23 (17)
C7—C8—C13—O2 33.7 (2) C1—C6—S1—C7 −11.94 (17)
C9—C8—C13—O2 158.85 (15) C5—C6—S1—C7 171.45 (14)
C12—C8—C13—O2 −90.74 (17) C8—C7—S1—C6 43.36 (13)
C11—C12—C15—C23 144.07 (17)

(I) Methyl 3-(4-isopropylphenyl)-1-methyl-1,2,3,3a,4,9b-hexahydrothiochromeno[4,3-b]pyrrole-3a-carboxylate . Hydrogen-bond geometry (Å, º)

Cg3 is the centroid of the C1–C6 ring.

D—H···A D—H H···A D···A D—H···A
C17—H17···Cg3i 0.93 2.91 3.695 (2) 143

Symmetry code: (i) −x+1, −y+1, −z.

(II) Methyl 1-methyl-3-(o-tolyl)-1,2,3,3a,4,9b-hexahydrothiochromeno[4,3-b]pyrrole-3a-carboxylate . Crystal data

C21H21NO2S Z = 2
Mr = 351.45 F(000) = 372
Triclinic, P1 Dx = 1.280 Mg m3
Hall symbol: -P 1 Mo Kα radiation, λ = 0.71073 Å
a = 8.1882 (3) Å Cell parameters from 2790 reflections
b = 10.4987 (4) Å θ = 1.9–25.0°
c = 10.9594 (4) Å µ = 0.19 mm1
α = 104.554 (1)° T = 293 K
β = 90.983 (1)° Block, colourless
γ = 90.134 (1)° 0.35 × 0.30 × 0.25 mm
V = 911.74 (6) Å3

(II) Methyl 1-methyl-3-(o-tolyl)-1,2,3,3a,4,9b-hexahydrothiochromeno[4,3-b]pyrrole-3a-carboxylate . Data collection

Bruker SMART APEXII CCD diffractometer 3210 independent reflections
Radiation source: fine-focus sealed tube 2790 reflections with I > 2σ(I)
Graphite monochromator Rint = 0.020
ω and φ scans θmax = 25.0°, θmin = 1.9°
Absorption correction: multi-scan (SADABS; Bruker, 2008) h = −9→9
Tmin = 0.935, Tmax = 0.953 k = −12→12
19010 measured reflections l = −13→13

(II) Methyl 1-methyl-3-(o-tolyl)-1,2,3,3a,4,9b-hexahydrothiochromeno[4,3-b]pyrrole-3a-carboxylate . Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.038 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.115 H-atom parameters constrained
S = 1.07 w = 1/[σ2(Fo2) + (0.0591P)2 + 0.2766P] where P = (Fo2 + 2Fc2)/3
3210 reflections (Δ/σ)max < 0.001
229 parameters Δρmax = 0.26 e Å3
0 restraints Δρmin = −0.32 e Å3

(II) Methyl 1-methyl-3-(o-tolyl)-1,2,3,3a,4,9b-hexahydrothiochromeno[4,3-b]pyrrole-3a-carboxylate . Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

(II) Methyl 1-methyl-3-(o-tolyl)-1,2,3,3a,4,9b-hexahydrothiochromeno[4,3-b]pyrrole-3a-carboxylate . Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
C1 0.1321 (2) 0.62046 (16) 0.33099 (15) 0.0424 (4)
C2 0.0560 (3) 0.6916 (2) 0.43961 (18) 0.0589 (5)
H2 −0.0253 0.6509 0.4748 0.071*
C3 0.0976 (3) 0.8203 (2) 0.4965 (2) 0.0759 (7)
H3 0.0434 0.8661 0.5679 0.091*
C4 0.2199 (4) 0.8801 (2) 0.4468 (2) 0.0768 (7)
H4 0.2487 0.9670 0.4845 0.092*
C5 0.2994 (3) 0.81250 (19) 0.3421 (2) 0.0614 (5)
H5 0.3836 0.8534 0.3102 0.074*
C6 0.2560 (2) 0.68236 (17) 0.28217 (16) 0.0444 (4)
C7 0.2650 (2) 0.45327 (17) 0.09015 (16) 0.0435 (4)
H7A 0.1727 0.4687 0.0392 0.052*
H7B 0.3373 0.3921 0.0356 0.052*
C8 0.20327 (18) 0.39039 (15) 0.19172 (15) 0.0389 (4)
C9 0.07923 (18) 0.48030 (16) 0.27409 (15) 0.0397 (4)
H9 0.0487 0.4408 0.3426 0.048*
C10 −0.2119 (2) 0.5208 (2) 0.2449 (2) 0.0627 (5)
H10A −0.3002 0.4990 0.1844 0.094*
H10B −0.2028 0.6148 0.2747 0.094*
H10C −0.2328 0.4835 0.3146 0.094*
C11 −0.0773 (2) 0.3283 (2) 0.1264 (2) 0.0678 (6)
H11A −0.1131 0.3147 0.0392 0.081*
H11B −0.1569 0.2884 0.1702 0.081*
C12 0.0921 (2) 0.26691 (17) 0.13364 (18) 0.0475 (4)
H12 0.0856 0.2166 0.1976 0.057*
C15 0.1522 (2) 0.17354 (16) 0.01548 (17) 0.0480 (4)
C16 0.1305 (3) 0.2006 (2) −0.10163 (19) 0.0648 (6)
H14 0.0742 0.2760 −0.1067 0.078*
C17 0.1898 (3) 0.1190 (2) −0.2106 (2) 0.0800 (7)
H15 0.1722 0.1387 −0.2878 0.096*
C18 0.2745 (3) 0.0093 (2) −0.2041 (2) 0.0790 (7)
H16 0.3181 −0.0447 −0.2767 0.095*
C19 0.2953 (3) −0.02130 (19) −0.0912 (2) 0.0669 (6)
H17 0.3519 −0.0972 −0.0884 0.080*
C20 0.2343 (2) 0.05785 (17) 0.02048 (19) 0.0520 (4)
C21 0.2546 (3) 0.0131 (2) 0.1378 (2) 0.0727 (6)
H19A 0.3050 −0.0719 0.1187 0.109*
H19B 0.1495 0.0075 0.1738 0.109*
H19C 0.3223 0.0748 0.1969 0.109*
C13 0.3469 (2) 0.34856 (16) 0.26130 (16) 0.0431 (4)
C14 0.4427 (3) 0.3058 (3) 0.4510 (2) 0.0920 (9)
H21A 0.4697 0.2173 0.4077 0.138*
H21B 0.4048 0.3074 0.5338 0.138*
H21C 0.5379 0.3609 0.4579 0.138*
N1 −0.06074 (15) 0.46851 (14) 0.18600 (14) 0.0455 (4)
O1 0.47275 (15) 0.30893 (14) 0.21352 (13) 0.0592 (4)
O2 0.31503 (18) 0.35417 (16) 0.38084 (13) 0.0709 (4)
S1 0.37215 (5) 0.60605 (5) 0.15186 (5) 0.05272 (17)

(II) Methyl 1-methyl-3-(o-tolyl)-1,2,3,3a,4,9b-hexahydrothiochromeno[4,3-b]pyrrole-3a-carboxylate . Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
C1 0.0429 (9) 0.0469 (9) 0.0392 (9) 0.0106 (7) −0.0039 (7) 0.0146 (7)
C2 0.0667 (12) 0.0659 (12) 0.0451 (10) 0.0183 (10) 0.0044 (9) 0.0155 (9)
C3 0.1017 (18) 0.0676 (14) 0.0490 (12) 0.0260 (13) −0.0033 (12) −0.0027 (11)
C4 0.112 (2) 0.0520 (12) 0.0602 (14) 0.0051 (13) −0.0200 (13) 0.0042 (10)
C5 0.0735 (13) 0.0514 (11) 0.0618 (12) −0.0055 (10) −0.0200 (10) 0.0202 (10)
C6 0.0452 (9) 0.0454 (9) 0.0445 (9) 0.0049 (7) −0.0109 (7) 0.0158 (7)
C7 0.0355 (8) 0.0514 (10) 0.0436 (9) 0.0035 (7) 0.0040 (7) 0.0118 (7)
C8 0.0316 (8) 0.0413 (8) 0.0440 (9) 0.0044 (6) −0.0002 (6) 0.0113 (7)
C9 0.0332 (8) 0.0478 (9) 0.0423 (9) 0.0069 (7) 0.0036 (6) 0.0187 (7)
C10 0.0335 (9) 0.0740 (13) 0.0857 (15) 0.0107 (9) 0.0090 (9) 0.0290 (11)
C11 0.0379 (10) 0.0607 (12) 0.0978 (16) 0.0003 (9) −0.0111 (10) 0.0075 (11)
C12 0.0390 (9) 0.0453 (9) 0.0590 (11) −0.0005 (7) −0.0042 (8) 0.0148 (8)
C15 0.0458 (9) 0.0391 (9) 0.0579 (11) −0.0027 (7) −0.0109 (8) 0.0109 (8)
C16 0.0859 (15) 0.0476 (11) 0.0579 (12) 0.0018 (10) −0.0216 (11) 0.0093 (9)
C17 0.114 (2) 0.0635 (14) 0.0567 (13) −0.0073 (13) −0.0173 (13) 0.0061 (11)
C18 0.0939 (18) 0.0674 (14) 0.0630 (14) −0.0041 (12) −0.0038 (12) −0.0067 (11)
C19 0.0627 (13) 0.0398 (10) 0.0896 (16) 0.0022 (9) −0.0081 (11) 0.0011 (10)
C20 0.0483 (10) 0.0390 (9) 0.0684 (12) −0.0046 (7) −0.0104 (8) 0.0138 (8)
C21 0.0836 (16) 0.0532 (12) 0.0876 (16) 0.0003 (11) −0.0119 (12) 0.0305 (11)
C13 0.0373 (9) 0.0401 (9) 0.0509 (10) 0.0046 (7) −0.0028 (7) 0.0100 (7)
C14 0.0858 (17) 0.131 (2) 0.0647 (14) 0.0513 (16) −0.0112 (12) 0.0354 (15)
N1 0.0286 (7) 0.0527 (8) 0.0573 (9) 0.0047 (6) −0.0002 (6) 0.0176 (7)
O1 0.0374 (7) 0.0683 (9) 0.0731 (9) 0.0151 (6) 0.0019 (6) 0.0197 (7)
O2 0.0618 (9) 0.1045 (12) 0.0516 (8) 0.0386 (8) 0.0005 (6) 0.0289 (8)
S1 0.0402 (3) 0.0558 (3) 0.0645 (3) −0.00397 (19) 0.0072 (2) 0.0190 (2)

(II) Methyl 1-methyl-3-(o-tolyl)-1,2,3,3a,4,9b-hexahydrothiochromeno[4,3-b]pyrrole-3a-carboxylate . Geometric parameters (Å, º)

C1—C6 1.389 (3) C11—C12 1.540 (2)
C1—C2 1.394 (2) C11—H11A 0.9700
C1—C9 1.506 (2) C11—H11B 0.9700
C2—C3 1.377 (3) C12—C15 1.505 (3)
C2—H2 0.9300 C12—H12 0.9800
C3—C4 1.372 (4) C15—C16 1.391 (3)
C3—H3 0.9300 C15—C20 1.402 (2)
C4—C5 1.364 (3) C16—C17 1.380 (3)
C4—H4 0.9300 C16—H14 0.9300
C5—C6 1.401 (3) C17—C18 1.362 (4)
C5—H5 0.9300 C17—H15 0.9300
C6—S1 1.7495 (18) C18—C19 1.362 (3)
C7—C8 1.522 (2) C18—H16 0.9300
C7—S1 1.7967 (17) C19—C20 1.397 (3)
C7—H7A 0.9700 C19—H17 0.9300
C7—H7B 0.9700 C20—C21 1.483 (3)
C8—C13 1.516 (2) C21—H19A 0.9600
C8—C9 1.531 (2) C21—H19B 0.9600
C8—C12 1.573 (2) C21—H19C 0.9600
C9—N1 1.470 (2) C13—O1 1.192 (2)
C9—H9 0.9800 C13—O2 1.327 (2)
C10—N1 1.450 (2) C14—O2 1.453 (2)
C10—H10A 0.9600 C14—H21A 0.9600
C10—H10B 0.9600 C14—H21B 0.9600
C10—H10C 0.9600 C14—H21C 0.9600
C11—N1 1.458 (2)
C6—C1—C2 117.86 (17) C12—C11—H11B 110.3
C6—C1—C9 123.26 (15) H11A—C11—H11B 108.6
C2—C1—C9 118.87 (16) C15—C12—C11 117.07 (16)
C3—C2—C1 122.0 (2) C15—C12—C8 116.40 (14)
C3—C2—H2 119.0 C11—C12—C8 102.78 (13)
C1—C2—H2 119.0 C15—C12—H12 106.6
C4—C3—C2 119.3 (2) C11—C12—H12 106.6
C4—C3—H3 120.3 C8—C12—H12 106.6
C2—C3—H3 120.3 C16—C15—C20 118.02 (18)
C5—C4—C3 120.2 (2) C16—C15—C12 121.01 (16)
C5—C4—H4 119.9 C20—C15—C12 120.96 (17)
C3—C4—H4 119.9 C17—C16—C15 122.0 (2)
C4—C5—C6 120.9 (2) C17—C16—H14 119.0
C4—C5—H5 119.5 C15—C16—H14 119.0
C6—C5—H5 119.5 C18—C17—C16 119.5 (2)
C1—C6—C5 119.60 (18) C18—C17—H15 120.2
C1—C6—S1 124.27 (13) C16—C17—H15 120.2
C5—C6—S1 116.06 (15) C19—C18—C17 119.9 (2)
C8—C7—S1 113.57 (12) C19—C18—H16 120.1
C8—C7—H7A 108.9 C17—C18—H16 120.1
S1—C7—H7A 108.9 C18—C19—C20 122.1 (2)
C8—C7—H7B 108.9 C18—C19—H17 119.0
S1—C7—H7B 108.9 C20—C19—H17 119.0
H7A—C7—H7B 107.7 C19—C20—C15 118.43 (19)
C13—C8—C7 109.75 (13) C19—C20—C21 118.35 (18)
C13—C8—C9 115.80 (13) C15—C20—C21 123.19 (19)
C7—C8—C9 110.26 (13) C20—C21—H19A 109.5
C13—C8—C12 109.12 (13) C20—C21—H19B 109.5
C7—C8—C12 111.39 (14) H19A—C21—H19B 109.5
C9—C8—C12 100.21 (12) C20—C21—H19C 109.5
N1—C9—C1 113.43 (13) H19A—C21—H19C 109.5
N1—C9—C8 101.16 (13) H19B—C21—H19C 109.5
C1—C9—C8 116.72 (13) O1—C13—O2 122.96 (16)
N1—C9—H9 108.4 O1—C13—C8 124.25 (16)
C1—C9—H9 108.4 O2—C13—C8 112.71 (14)
C8—C9—H9 108.4 O2—C14—H21A 109.5
N1—C10—H10A 109.5 O2—C14—H21B 109.5
N1—C10—H10B 109.5 H21A—C14—H21B 109.5
H10A—C10—H10B 109.5 O2—C14—H21C 109.5
N1—C10—H10C 109.5 H21A—C14—H21C 109.5
H10A—C10—H10C 109.5 H21B—C14—H21C 109.5
H10B—C10—H10C 109.5 C10—N1—C11 110.79 (15)
N1—C11—C12 106.89 (14) C10—N1—C9 114.21 (15)
N1—C11—H11A 110.3 C11—N1—C9 105.48 (13)
C12—C11—H11A 110.3 C13—O2—C14 115.82 (16)
N1—C11—H11B 110.3 C6—S1—C7 102.79 (8)
C6—C1—C2—C3 1.6 (3) C11—C12—C15—C16 41.8 (3)
C9—C1—C2—C3 −179.75 (17) C8—C12—C15—C16 −80.2 (2)
C1—C2—C3—C4 −1.4 (3) C11—C12—C15—C20 −139.27 (18)
C2—C3—C4—C5 −0.1 (3) C8—C12—C15—C20 98.65 (19)
C3—C4—C5—C6 1.3 (3) C20—C15—C16—C17 −1.4 (3)
C2—C1—C6—C5 −0.4 (2) C12—C15—C16—C17 177.5 (2)
C9—C1—C6—C5 −178.98 (15) C15—C16—C17—C18 −0.9 (4)
C2—C1—C6—S1 176.50 (12) C16—C17—C18—C19 2.1 (4)
C9—C1—C6—S1 −2.1 (2) C17—C18—C19—C20 −1.0 (4)
C4—C5—C6—C1 −1.0 (3) C18—C19—C20—C15 −1.3 (3)
C4—C5—C6—S1 −178.16 (16) C18—C19—C20—C21 176.6 (2)
S1—C7—C8—C13 −66.15 (15) C16—C15—C20—C19 2.5 (3)
S1—C7—C8—C9 62.56 (15) C12—C15—C20—C19 −176.46 (17)
S1—C7—C8—C12 172.89 (10) C16—C15—C20—C21 −175.41 (19)
C6—C1—C9—N1 −94.84 (18) C12—C15—C20—C21 5.7 (3)
C2—C1—C9—N1 86.56 (18) C7—C8—C13—O1 −34.2 (2)
C6—C1—C9—C8 22.2 (2) C9—C8—C13—O1 −159.81 (16)
C2—C1—C9—C8 −156.42 (15) C12—C8—C13—O1 88.1 (2)
C13—C8—C9—N1 −163.87 (13) C7—C8—C13—O2 149.08 (15)
C7—C8—C9—N1 70.79 (15) C9—C8—C13—O2 23.5 (2)
C12—C8—C9—N1 −46.69 (14) C12—C8—C13—O2 −88.61 (17)
C13—C8—C9—C1 72.56 (18) C12—C11—N1—C10 −149.04 (17)
C7—C8—C9—C1 −52.78 (18) C12—C11—N1—C9 −25.0 (2)
C12—C8—C9—C1 −170.27 (13) C1—C9—N1—C10 −66.85 (19)
N1—C11—C12—C15 −133.89 (17) C8—C9—N1—C10 167.34 (14)
N1—C11—C12—C8 −5.0 (2) C1—C9—N1—C11 171.26 (15)
C13—C8—C12—C15 −77.38 (18) C8—C9—N1—C11 45.45 (17)
C7—C8—C12—C15 43.94 (19) O1—C13—O2—C14 −1.3 (3)
C9—C8—C12—C15 160.58 (14) C8—C13—O2—C14 175.43 (19)
C13—C8—C12—C11 153.30 (16) C1—C6—S1—C7 10.31 (16)
C7—C8—C12—C11 −85.38 (18) C5—C6—S1—C7 −172.73 (13)
C9—C8—C12—C11 31.27 (17) C8—C7—S1—C6 −40.14 (13)

(III) Methyl 1-methyl-3-(o-tolyl)-3,3a,4,9b-tetrahydro-1H-thiochromeno[4,3-c]isoxazole-3a-carboxylate . Crystal data

C20H21NO3S F(000) = 1504
Mr = 355.44 Dx = 1.320 Mg m3
Orthorhombic, Pbca Mo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ac 2ab Cell parameters from 2536 reflections
a = 11.2629 (11) Å θ = 1.7–25.0°
b = 13.2117 (11) Å µ = 0.20 mm1
c = 24.041 (3) Å T = 293 K
V = 3577.3 (6) Å3 Block, colourless
Z = 8 0.35 × 0.30 × 0.25 mm

(III) Methyl 1-methyl-3-(o-tolyl)-3,3a,4,9b-tetrahydro-1H-thiochromeno[4,3-c]isoxazole-3a-carboxylate . Data collection

Bruker SMART APEXII CCD diffractometer 3151 independent reflections
Radiation source: fine-focus sealed tube 2536 reflections with I > 2σ(I)
Graphite monochromator Rint = 0.033
ω and φ scans θmax = 25.0°, θmin = 1.7°
Absorption correction: multi-scan (SADABS; Bruker, 2008) h = −13→13
Tmin = 0.932, Tmax = 0.951 k = −15→15
37913 measured reflections l = −25→28

(III) Methyl 1-methyl-3-(o-tolyl)-3,3a,4,9b-tetrahydro-1H-thiochromeno[4,3-c]isoxazole-3a-carboxylate . Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.046 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.111 H-atom parameters constrained
S = 1.12 w = 1/[σ2(Fo2) + (0.0267P)2 + 3.6376P] where P = (Fo2 + 2Fc2)/3
3151 reflections (Δ/σ)max < 0.001
229 parameters Δρmax = 0.22 e Å3
0 restraints Δρmin = −0.22 e Å3

(III) Methyl 1-methyl-3-(o-tolyl)-3,3a,4,9b-tetrahydro-1H-thiochromeno[4,3-c]isoxazole-3a-carboxylate . Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

(III) Methyl 1-methyl-3-(o-tolyl)-3,3a,4,9b-tetrahydro-1H-thiochromeno[4,3-c]isoxazole-3a-carboxylate . Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
C6 0.1021 (2) 0.96898 (18) 0.15232 (10) 0.0414 (6)
C5 0.1663 (3) 1.0558 (2) 0.16587 (11) 0.0554 (8)
H2 0.2488 1.0549 0.1644 0.067*
C4 0.1082 (4) 1.1428 (2) 0.18133 (13) 0.0682 (9)
H3 0.1516 1.2001 0.1908 0.082*
C3 −0.0133 (4) 1.1458 (2) 0.18285 (13) 0.0661 (9)
H4 −0.0524 1.2051 0.1928 0.079*
C2 −0.0774 (3) 1.0602 (2) 0.16959 (11) 0.0532 (7)
H5 −0.1599 1.0627 0.1704 0.064*
C1 −0.0216 (2) 0.96998 (17) 0.15496 (9) 0.0387 (6)
C9 −0.0973 (2) 0.87834 (17) 0.14347 (9) 0.0349 (5)
H7 −0.1701 0.8994 0.1244 0.042*
C8 −0.0406 (2) 0.79039 (17) 0.11168 (9) 0.0339 (5)
C7 0.0803 (2) 0.76400 (18) 0.13613 (10) 0.0396 (6)
H9A 0.1108 0.7038 0.1179 0.048*
H9B 0.0713 0.7489 0.1754 0.048*
C12 −0.0283 (2) 0.80429 (18) 0.04923 (10) 0.0402 (6)
C13 −0.1085 (4) 0.8784 (3) −0.03165 (13) 0.1103 (17)
H11A −0.0351 0.9079 −0.0439 0.165*
H11B −0.1734 0.9211 −0.0425 0.165*
H11C −0.1179 0.8128 −0.0483 0.165*
C11 −0.1353 (2) 0.70812 (18) 0.12471 (10) 0.0405 (6)
H12 −0.2058 0.7209 0.1019 0.049*
C15 −0.0373 (2) 0.5505 (2) 0.15990 (12) 0.0485 (7)
H13 −0.0221 0.5846 0.1930 0.058*
C16 0.0011 (3) 0.4518 (2) 0.15331 (15) 0.0626 (9)
H14 0.0427 0.4197 0.1817 0.075*
C17 −0.0226 (3) 0.4015 (2) 0.10480 (16) 0.0698 (10)
H15 0.0041 0.3355 0.1000 0.084*
C18 −0.0850 (3) 0.4478 (2) 0.06366 (14) 0.0638 (8)
H16 −0.1015 0.4122 0.0312 0.077*
C19 −0.1248 (2) 0.5466 (2) 0.06874 (12) 0.0483 (7)
C20 −0.1961 (3) 0.5916 (3) 0.02205 (13) 0.0751 (10)
H18A −0.1985 0.5450 −0.0086 0.113*
H18B −0.1600 0.6538 0.0102 0.113*
H18C −0.2755 0.6048 0.0347 0.113*
C14 −0.0983 (2) 0.59892 (18) 0.11741 (10) 0.0382 (6)
C10 −0.2337 (3) 0.8711 (2) 0.22232 (12) 0.0608 (8)
H20A −0.2966 0.8737 0.1954 0.091*
H20B −0.2167 0.9382 0.2353 0.091*
H20C −0.2576 0.8295 0.2531 0.091*
N1 −0.12874 (18) 0.82867 (15) 0.19689 (8) 0.0399 (5)
O3 −0.1645 (2) 0.72567 (14) 0.18158 (8) 0.0649 (6)
O1 0.04071 (18) 0.75906 (16) 0.02133 (8) 0.0600 (5)
O2 −0.1069 (2) 0.86808 (17) 0.02891 (7) 0.0757 (7)
S1 0.18494 (6) 0.86516 (5) 0.12793 (3) 0.04623 (19)

(III) Methyl 1-methyl-3-(o-tolyl)-3,3a,4,9b-tetrahydro-1H-thiochromeno[4,3-c]isoxazole-3a-carboxylate . Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
C6 0.0534 (15) 0.0403 (14) 0.0303 (13) −0.0046 (12) −0.0061 (11) 0.0067 (11)
C5 0.0688 (19) 0.0493 (17) 0.0482 (16) −0.0181 (15) −0.0132 (14) 0.0071 (13)
C4 0.105 (3) 0.0420 (18) 0.0574 (19) −0.0220 (18) −0.0143 (19) −0.0011 (14)
C3 0.105 (3) 0.0359 (16) 0.0576 (19) 0.0024 (17) −0.0008 (18) −0.0053 (14)
C2 0.0725 (19) 0.0397 (15) 0.0472 (16) 0.0070 (14) −0.0027 (14) 0.0022 (12)
C1 0.0539 (15) 0.0339 (13) 0.0282 (12) 0.0021 (11) −0.0056 (11) 0.0023 (10)
C9 0.0377 (12) 0.0378 (13) 0.0293 (12) 0.0064 (10) −0.0032 (10) 0.0017 (10)
C8 0.0361 (12) 0.0333 (12) 0.0325 (12) 0.0029 (10) 0.0010 (10) −0.0002 (10)
C7 0.0386 (13) 0.0366 (13) 0.0436 (14) 0.0013 (11) −0.0005 (11) 0.0016 (11)
C12 0.0456 (14) 0.0384 (14) 0.0364 (13) −0.0014 (12) 0.0023 (12) −0.0044 (11)
C13 0.171 (4) 0.129 (3) 0.0311 (17) 0.072 (3) 0.005 (2) 0.0142 (19)
C11 0.0380 (13) 0.0393 (13) 0.0441 (14) 0.0005 (11) 0.0040 (11) −0.0018 (11)
C15 0.0466 (15) 0.0459 (16) 0.0531 (17) −0.0084 (13) −0.0029 (13) 0.0046 (13)
C16 0.0490 (16) 0.0498 (18) 0.089 (2) 0.0048 (14) 0.0027 (16) 0.0217 (17)
C17 0.067 (2) 0.0392 (16) 0.103 (3) 0.0065 (15) 0.025 (2) −0.0020 (18)
C18 0.072 (2) 0.0492 (17) 0.070 (2) −0.0109 (16) 0.0155 (17) −0.0181 (16)
C19 0.0443 (15) 0.0470 (15) 0.0536 (17) −0.0096 (12) 0.0025 (13) −0.0044 (13)
C20 0.087 (2) 0.074 (2) 0.064 (2) −0.0162 (19) −0.0271 (19) −0.0084 (17)
C14 0.0329 (12) 0.0365 (13) 0.0451 (14) −0.0043 (10) 0.0030 (11) −0.0009 (11)
C10 0.0687 (19) 0.0627 (19) 0.0510 (16) 0.0175 (16) 0.0203 (15) 0.0000 (14)
N1 0.0433 (11) 0.0410 (12) 0.0355 (11) 0.0055 (9) 0.0023 (9) 0.0018 (9)
O3 0.0916 (16) 0.0424 (11) 0.0607 (13) −0.0102 (10) 0.0396 (12) −0.0064 (9)
O1 0.0646 (12) 0.0726 (13) 0.0428 (11) 0.0123 (11) 0.0081 (10) −0.0140 (10)
O2 0.1102 (18) 0.0868 (16) 0.0301 (10) 0.0516 (14) 0.0040 (11) 0.0056 (10)
S1 0.0383 (3) 0.0485 (4) 0.0519 (4) −0.0047 (3) −0.0019 (3) 0.0028 (3)

(III) Methyl 1-methyl-3-(o-tolyl)-3,3a,4,9b-tetrahydro-1H-thiochromeno[4,3-c]isoxazole-3a-carboxylate . Geometric parameters (Å, º)

C6—C5 1.395 (4) C13—H11B 0.9600
C6—C1 1.395 (4) C13—H11C 0.9600
C6—S1 1.759 (3) C11—O3 1.425 (3)
C5—C4 1.374 (4) C11—C14 1.512 (3)
C5—H2 0.9300 C11—H12 0.9800
C4—C3 1.369 (5) C15—C16 1.383 (4)
C4—H3 0.9300 C15—C14 1.387 (4)
C3—C2 1.379 (4) C15—H13 0.9300
C3—H4 0.9300 C16—C17 1.368 (5)
C2—C1 1.392 (4) C16—H14 0.9300
C2—H5 0.9300 C17—C18 1.359 (5)
C1—C9 1.506 (3) C17—H15 0.9300
C9—N1 1.485 (3) C18—C19 1.385 (4)
C9—C8 1.531 (3) C18—H16 0.9300
C9—H7 0.9800 C19—C14 1.392 (4)
C8—C12 1.519 (3) C19—C20 1.503 (4)
C8—C7 1.523 (3) C20—H18A 0.9600
C8—C11 1.555 (3) C20—H18B 0.9600
C7—S1 1.793 (2) C20—H18C 0.9600
C7—H9A 0.9700 C10—N1 1.444 (3)
C7—H9B 0.9700 C10—H20A 0.9600
C12—O1 1.188 (3) C10—H20B 0.9600
C12—O2 1.317 (3) C10—H20C 0.9600
C13—O2 1.462 (3) N1—O3 1.466 (3)
C13—H11A 0.9600
C5—C6—C1 119.9 (3) H11B—C13—H11C 109.5
C5—C6—S1 116.4 (2) O3—C11—C14 109.3 (2)
C1—C6—S1 123.51 (19) O3—C11—C8 103.74 (19)
C4—C5—C6 120.3 (3) C14—C11—C8 117.02 (19)
C4—C5—H2 119.9 O3—C11—H12 108.8
C6—C5—H2 119.9 C14—C11—H12 108.8
C3—C4—C5 120.5 (3) C8—C11—H12 108.8
C3—C4—H3 119.8 C16—C15—C14 120.4 (3)
C5—C4—H3 119.8 C16—C15—H13 119.8
C4—C3—C2 119.5 (3) C14—C15—H13 119.8
C4—C3—H4 120.2 C17—C16—C15 119.6 (3)
C2—C3—H4 120.2 C17—C16—H14 120.2
C3—C2—C1 121.6 (3) C15—C16—H14 120.2
C3—C2—H5 119.2 C18—C17—C16 120.2 (3)
C1—C2—H5 119.2 C18—C17—H15 119.9
C2—C1—C6 118.1 (2) C16—C17—H15 119.9
C2—C1—C9 118.6 (2) C17—C18—C19 121.8 (3)
C6—C1—C9 123.3 (2) C17—C18—H16 119.1
N1—C9—C1 109.36 (18) C19—C18—H16 119.1
N1—C9—C8 101.30 (18) C18—C19—C14 118.2 (3)
C1—C9—C8 117.7 (2) C18—C19—C20 118.7 (3)
N1—C9—H7 109.3 C14—C19—C20 123.1 (3)
C1—C9—H7 109.3 C19—C20—H18A 109.5
C8—C9—H7 109.3 C19—C20—H18B 109.5
C12—C8—C7 109.1 (2) H18A—C20—H18B 109.5
C12—C8—C9 116.09 (19) C19—C20—H18C 109.5
C7—C8—C9 110.75 (19) H18A—C20—H18C 109.5
C12—C8—C11 110.23 (19) H18B—C20—H18C 109.5
C7—C8—C11 112.07 (19) C15—C14—C19 119.7 (2)
C9—C8—C11 98.24 (18) C15—C14—C11 119.4 (2)
C8—C7—S1 111.98 (16) C19—C14—C11 120.8 (2)
C8—C7—H9A 109.2 N1—C10—H20A 109.5
S1—C7—H9A 109.2 N1—C10—H20B 109.5
C8—C7—H9B 109.2 H20A—C10—H20B 109.5
S1—C7—H9B 109.2 N1—C10—H20C 109.5
H9A—C7—H9B 107.9 H20A—C10—H20C 109.5
O1—C12—O2 123.6 (2) H20B—C10—H20C 109.5
O1—C12—C8 123.8 (2) C10—N1—O3 104.0 (2)
O2—C12—C8 112.5 (2) C10—N1—C9 112.9 (2)
O2—C13—H11A 109.5 O3—N1—C9 104.98 (17)
O2—C13—H11B 109.5 C11—O3—N1 109.19 (17)
H11A—C13—H11B 109.5 C12—O2—C13 115.9 (2)
O2—C13—H11C 109.5 C6—S1—C7 101.32 (12)
H11A—C13—H11C 109.5
C1—C6—C5—C4 −0.6 (4) C9—C8—C11—O3 −40.3 (2)
S1—C6—C5—C4 175.2 (2) C12—C8—C11—C14 77.5 (3)
C6—C5—C4—C3 −0.9 (5) C7—C8—C11—C14 −44.3 (3)
C5—C4—C3—C2 1.0 (5) C9—C8—C11—C14 −160.7 (2)
C4—C3—C2—C1 0.5 (5) C14—C15—C16—C17 −0.7 (4)
C3—C2—C1—C6 −2.0 (4) C15—C16—C17—C18 −1.0 (5)
C3—C2—C1—C9 177.3 (2) C16—C17—C18—C19 1.1 (5)
C5—C6—C1—C2 2.0 (4) C17—C18—C19—C14 0.6 (4)
S1—C6—C1—C2 −173.48 (18) C17—C18—C19—C20 −178.4 (3)
C5—C6—C1—C9 −177.2 (2) C16—C15—C14—C19 2.3 (4)
S1—C6—C1—C9 7.3 (3) C16—C15—C14—C11 −177.7 (2)
C2—C1—C9—N1 −82.6 (3) C18—C19—C14—C15 −2.2 (4)
C6—C1—C9—N1 96.7 (3) C20—C19—C14—C15 176.6 (3)
C2—C1—C9—C8 162.6 (2) C18—C19—C14—C11 177.8 (2)
C6—C1—C9—C8 −18.1 (3) C20—C19—C14—C11 −3.3 (4)
N1—C9—C8—C12 163.35 (19) O3—C11—C14—C15 −34.3 (3)
C1—C9—C8—C12 −77.5 (3) C8—C11—C14—C15 83.1 (3)
N1—C9—C8—C7 −71.5 (2) O3—C11—C14—C19 145.6 (2)
C1—C9—C8—C7 47.7 (3) C8—C11—C14—C19 −96.9 (3)
N1—C9—C8—C11 46.0 (2) C1—C9—N1—C10 86.3 (3)
C1—C9—C8—C11 165.10 (19) C8—C9—N1—C10 −148.7 (2)
C12—C8—C7—S1 64.2 (2) C1—C9—N1—O3 −161.01 (19)
C9—C8—C7—S1 −64.8 (2) C8—C9—N1—O3 −36.0 (2)
C11—C8—C7—S1 −173.41 (16) C14—C11—O3—N1 145.05 (19)
C7—C8—C12—O1 32.1 (3) C8—C11—O3—N1 19.5 (2)
C9—C8—C12—O1 158.1 (2) C10—N1—O3—C11 129.1 (2)
C11—C8—C12—O1 −91.4 (3) C9—N1—O3—C11 10.3 (2)
C7—C8—C12—O2 −151.3 (2) O1—C12—O2—C13 2.2 (5)
C9—C8—C12—O2 −25.3 (3) C8—C12—O2—C13 −174.4 (3)
C11—C8—C12—O2 85.2 (3) C5—C6—S1—C7 163.25 (19)
C12—C8—C11—O3 −162.1 (2) C1—C6—S1—C7 −21.1 (2)
C7—C8—C11—O3 76.1 (2) C8—C7—S1—C6 48.96 (19)

References

  1. Almerico, A. M., Diana, P., Barraja, P., Dattolo, G., Mingoia, F., Loi, A. G., Scintu, F., Milia, C., Puddu, I. & La Colla, P. (1998). Farmaco, 53, 33–40. [DOI] [PubMed]
  2. Bruker (2008). APEX2, SADABS and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.
  3. Caine, B. & Koob, G. F. (1993). Science, 260, 1814–1816. [DOI] [PubMed]
  4. Dannhardt, G., Kiefer, W., Krämer, G., Maehrlein, S., Nowe, U. & Fiebich, B. (2000). Eur. J. Med. Chem. 35, 499–510. [DOI] [PubMed]
  5. Evans, M. A., Smith, D. C., Holub, J. M., Argenti, A., Hoff, M., Dalglish, G. A., Wilson, D. L., Taylor, B. M., Berkowitz, J. D., Burnham, B. S., Krumpe, K., Gupton, J. T., Scarlett, T. C., Durham, R. W. Jr & Hall, I. H. (2003). Arch. Pharm. Pharm. Med. Chem. 336, 181–190. [DOI] [PubMed]
  6. Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.
  7. Gangadharan, R., SethuSankar, K., Murugan, G. & Bakthadoss, M. (2011). Acta Cryst. E67, o942. [DOI] [PMC free article] [PubMed]
  8. Groom, C. R. & Allen, F. H. (2014). Angew. Chem. Int. Ed. 53, 662–671. [DOI] [PubMed]
  9. Holub, J. M., O’Toole-Colin, K., Getzel, A., Argenti, A., Evans, M. A., Smith, D. C., Dalglish, G. A., Rifat, S., Wilson, D. L., Taylor, B. M., Miott, U., Glersaye, J., Suet Lam, K., McCranor, B. J., Berkowitz, J. D., Miller, R. B., Lukens, J. R., Krumpe, K., Gupton, J. T. & Burnham, B. S. (2004). Molecules, 9, 135–157. [DOI] [PMC free article] [PubMed]
  10. Howe, R. K. & Shelton, B. R. (1990). J. Org. Chem. 55, 4603–4607.
  11. Kozikowski, A. P. (1984). Acc. Chem. Res. 17, 410–416.
  12. Krowicki, K., Balzarini, J., De Clercq, E., Newman, R. A. & Lown, J. W. (1988). J. Med. Chem. 31, 341–345. [DOI] [PubMed]
  13. Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470.
  14. Muchowski, J. M., Unger, S. H., Ackrell, J., Cheung, P., Cook, J., Gallegra, P., Halpern, O., Koehler, R. & Kluge, A. F. (1985). J. Med. Chem. 28, 1037–1049. [DOI] [PubMed]
  15. Nardelli, M. (1983). Acta Cryst. C39, 1141–1142.
  16. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  17. Spek, A. L. (2009). Acta Cryst. D65, 148–155. [DOI] [PMC free article] [PubMed]
  18. Toja, E., Depaoli, A., Tuan, G. & Kettenring, J. (1987). Synthesis, pp. 272–274.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) global, I, II, III. DOI: 10.1107/S2056989015008063/su5106sup1.cif

e-71-00574-sup1.cif (61.1KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S2056989015008063/su5106Isup2.hkl

e-71-00574-Isup2.hkl (177.3KB, hkl)

Structure factors: contains datablock(s) II. DOI: 10.1107/S2056989015008063/su5106IIsup3.hkl

e-71-00574-IIsup3.hkl (157.5KB, hkl)

Structure factors: contains datablock(s) III. DOI: 10.1107/S2056989015008063/su5106IIIsup4.hkl

e-71-00574-IIIsup4.hkl (154.7KB, hkl)

Supporting information file. DOI: 10.1107/S2056989015008063/su5106Isup5.cml

Supporting information file. DOI: 10.1107/S2056989015008063/su5106IIsup6.cml

Supporting information file. DOI: 10.1107/S2056989015008063/su5106IIIsup7.cml

CCDC references: 1061279, 1061278, 1061277

Additional supporting information: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Crystallographic Communications are provided here courtesy of International Union of Crystallography

RESOURCES