Skip to main content
Acta Crystallographica Section E: Crystallographic Communications logoLink to Acta Crystallographica Section E: Crystallographic Communications
. 2015 May 30;71(Pt 6):o435. doi: 10.1107/S2056989015009846

Crystal structure of bis­(prop-2-yn-1-yl) 5-nitro­isophthalate

K S Ezhilarasi a, Sivasamy Selvarani b, Perumal Rajakumar b, B K Revathi a, G Usha a,*
PMCID: PMC4459362  PMID: 26090213

Abstract

The whole mol­ecule of the title compound, C14H9NO6, is generated by twofold rotation symmetry; the twofold axis bis­ects the nitro group and the benzene ring. The nitro group is inclined to the benzene ring by 14.42 (9)°. The prop-2-yn-1-yl groups are inclined to the benzene ring by 13 (2)° and to each other by 24 (3)°; one directed above the plane of the benzene ring and the other below. In the crystal, mol­ecules are linked via pairs of C—H⋯O hydrogen bonds, forming inversion dimers with an R 2 2(18) ring motif. The dimers are linked by further C—H⋯O hydrogen bonds, forming sheets lying parallel to (100).

Keywords: crystal structure, 5-nitro­isophthalate, prop-2-yn-1-yl, twofold rotation symmetry, C—H⋯O hydrogen bonding

Related literature  

For the biological activities of carboxyl­ates, see: Choudhary et al. (2002). For the uses and properties of nitro­aromatics, see: Lee et al. (2013); Somerville et al. (1995).graphic file with name e-71-0o435-scheme1.jpg

Experimental  

Crystal data  

  • C14H9NO6

  • M r = 287.22

  • Orthorhombic, Inline graphic

  • a = 6.679 (5) Å

  • b = 11.679 (5) Å

  • c = 16.503 (5) Å

  • V = 1287.3 (12) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.12 mm−1

  • T = 293 K

  • 0.30 × 0.25 × 0.20 mm

Data collection  

  • Bruker Kappa APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2008) T min = 0.965, T max = 0.977

  • 6369 measured reflections

  • 1613 independent reflections

  • 1316 reflections with I > 2σ(I)

  • R int = 0.021

Refinement  

  • R[F 2 > 2σ(F 2)] = 0.038

  • wR(F 2) = 0.136

  • S = 0.73

  • 1523 reflections

  • 98 parameters

  • H-atom parameters constrained

  • Δρmax = 0.26 e Å−3

  • Δρmin = −0.21 e Å−3

Data collection: APEX2 (Bruker, 2008); cell refinement: SAINT (Bruker, 2008); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012); software used to prepare material for publication: SHELXL97 and PLATON (Spek, 2009).

Supplementary Material

Crystal structure: contains datablock(s) I, Global. DOI: 10.1107/S2056989015009846/su5137sup1.cif

e-71-0o435-sup1.cif (18.6KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S2056989015009846/su5137Isup2.hkl

e-71-0o435-Isup2.hkl (73.7KB, hkl)

Supporting information file. DOI: 10.1107/S2056989015009846/su5137Isup3.cml

x y z . DOI: 10.1107/S2056989015009846/su5137fig1.tif

The mol­ecular structure of the title compound, with atom labelling. Displacement ellipsoids are drawn at the 30% probability level. The unlabelled atoms are related to the labelled atoms by twofold rotation symmetry [symmetry code: (i) −x + Inline graphic, −y + Inline graphic, z].

a . DOI: 10.1107/S2056989015009846/su5137fig2.tif

A view along the a axis of the crystal packing of the title compound. The dashed lines indicate hydrogen bonds (see Table 1 for details).

CCDC reference: 1402145

Additional supporting information: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (, ).

DHA DH HA D A DHA
C6H6AO1i 0.97 2.46 3.334(2) 150
C6H6BO1ii 0.97 2.57 3.313(2) 134
C8H8O3ii 0.93 2.50 3.251(2) 138

Symmetry codes: (i) Inline graphic; (ii) Inline graphic.

Acknowledgments

The authors thank the SAIF, IIT Madras, for providing the X-ray data-collection facility.

supplementary crystallographic information

S1. Comments

Carboxyl­ates have promising activity against various anti­tumor cells (Choudharyl et al., 2002). Nitro­aromatic compounds are used in the production of dyes, plastics, high explosives, pharmaceuticals, and pesticides (Somerville et al., 1995). Nitro­benzene is mostly used in the synthesis of aniline and in the production of benzidine, quinolone and azo­benzene (Lee et al., 2013).

In the title compound, Fig. 1, the two-fold rotation bis­ects the benzene ring and the nitro group; atoms C1, C4, H4 and N1 lie on the two-fold rotation axis. The nitro group is inclined to the benzene ring by 14.42 (9) °. The prop-2-yn-1-yl groups are inclined to the benzene ring by 13 (2) ° and to each other by 24 (3) °; one directed above the plane of the benzene ring and the other below.

In the crystal, molecules are linked via pairs of C—H···O hydrogen bonds forming inversion dimers with an R22(18) ring motif (Table 1). The dimers are linked by further C—H···O hydrogen bonds forming sheets lying parallel to (100); see Table 1 and Fig. 2.

S2. Synthesis and crystallization

The title compound was synthesized by Steglich esterification of 5-nitro isophthalic acid (1 equiv) which together with propargyl alcohol (2.2 equiv) was added at 273 K to DMAP (2.5 equiv) and DCC (2.2 equiv) in di­chloro­methane (100 ml). The mixture was stirred under nitro­gen at room temperature for 24 h. The white precipitate that formed was filtered off and washed with DCM (150 ml) and brine (150 ml), then dried over Na2SO4, filtered and evaporated to afforded the title compound. It was purified by column chromatography using CHCl3:hexane (9:1) as a eluent. Crystals were obtained by slow evaporation of the solvent.

S3. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2. H atoms were positioned geometrically and treated as riding atoms: C—H = 0.93-0.97 Å with Uiso(H) = 1.5Ueq(C) for methyl H atoms and 1.2Ueq(C) for other H atoms.

Figures

Fig. 1.

Fig. 1.

The molecular structure of the title compound, with atom labelling. Displacement ellipsoids are drawn at the 30% probability level. The unlabelled atoms are related to the labelled atoms by twofold rotation symmetry [symmetry code: (i) -x + 3/2, -y + 1/2, z].

Fig. 2.

Fig. 2.

A view along the a axis of the crystal packing of the title compound. The dashed lines indicate hydrogen bonds (see Table 1 for details).

Crystal data

C14H9NO6 F(000) = 592
Mr = 287.22 Dx = 1.482 Mg m3
Orthorhombic, Pccn Mo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ab 2ac θ = 2.5–28.4°
a = 6.679 (5) Å µ = 0.12 mm1
b = 11.679 (5) Å T = 293 K
c = 16.503 (5) Å Block, colourless
V = 1287.3 (12) Å3 0.30 × 0.25 × 0.20 mm
Z = 4

Data collection

Bruker Kappa APEXII CCD diffractometer 1613 independent reflections
Radiation source: fine-focus sealed tube 1316 reflections with I > 2σ(I)
Graphite monochromator Rint = 0.021
ω and φ scan θmax = 28.4°, θmin = 2.5°
Absorption correction: multi-scan (SADABS; Bruker, 2008) h = −8→8
Tmin = 0.965, Tmax = 0.977 k = −15→7
6369 measured reflections l = −12→22

Refinement

Refinement on F2 Secondary atom site location: difference Fourier map
Least-squares matrix: full Hydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.038 H-atom parameters constrained
wR(F2) = 0.136 w = 1/[σ2(Fo2) + (0.1246P)2 + 0.5331P] where P = (Fo2 + 2Fc2)/3
S = 0.73 (Δ/σ)max < 0.001
1523 reflections Δρmax = 0.26 e Å3
98 parameters Δρmin = −0.21 e Å3
0 restraints Extinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methods Extinction coefficient: 0.030 (5)

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
C1 0.7500 0.2500 0.05352 (9) 0.0336 (4)
C2 0.90289 (17) 0.30592 (10) 0.01386 (7) 0.0351 (3)
H2 1.0033 0.3433 0.0426 0.042*
C3 0.90264 (16) 0.30486 (10) −0.07063 (7) 0.0329 (3)
C4 0.7500 0.2500 −0.11315 (9) 0.0328 (4)
H4 0.7500 0.2500 −0.1695 0.039*
C5 1.07371 (18) 0.36348 (11) −0.11169 (7) 0.0377 (3)
C6 1.2259 (2) 0.41344 (12) −0.23491 (7) 0.0431 (3)
H6A 1.2527 0.4888 −0.2127 0.052*
H6B 1.3450 0.3669 −0.2284 0.052*
C7 1.17465 (19) 0.42270 (11) −0.32014 (8) 0.0412 (3)
C8 1.1422 (2) 0.43439 (16) −0.38961 (9) 0.0565 (4)
H8 1.1166 0.4436 −0.4446 0.068*
N1 0.7500 0.2500 0.14284 (8) 0.0377 (4)
O1 0.86053 (16) 0.31731 (9) 0.17767 (6) 0.0525 (3)
O3 1.21118 (18) 0.40639 (12) −0.07644 (6) 0.0700 (4)
O2 1.05835 (13) 0.36103 (8) −0.19240 (5) 0.0404 (3)

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
C1 0.0357 (8) 0.0445 (8) 0.0205 (8) 0.0030 (6) 0.000 0.000
C2 0.0344 (6) 0.0445 (6) 0.0263 (6) −0.0024 (4) −0.0023 (4) −0.0013 (4)
C3 0.0328 (6) 0.0407 (6) 0.0254 (6) −0.0011 (4) 0.0013 (4) 0.0007 (4)
C4 0.0355 (8) 0.0411 (8) 0.0218 (7) −0.0010 (6) 0.000 0.000
C5 0.0378 (6) 0.0483 (7) 0.0270 (6) −0.0062 (5) 0.0000 (5) 0.0015 (5)
C6 0.0392 (7) 0.0559 (7) 0.0342 (7) −0.0110 (5) 0.0065 (5) 0.0047 (5)
C7 0.0401 (6) 0.0463 (6) 0.0370 (7) −0.0021 (5) 0.0090 (5) 0.0045 (5)
C8 0.0549 (8) 0.0771 (10) 0.0376 (7) −0.0064 (7) 0.0045 (6) 0.0094 (7)
N1 0.0369 (7) 0.0529 (8) 0.0234 (7) 0.0042 (6) 0.000 0.000
O1 0.0568 (6) 0.0728 (7) 0.0278 (5) −0.0089 (5) −0.0065 (4) −0.0078 (4)
O3 0.0606 (7) 0.1147 (11) 0.0345 (5) −0.0461 (7) −0.0069 (5) 0.0068 (6)
O2 0.0393 (5) 0.0563 (6) 0.0256 (5) −0.0124 (4) 0.0048 (3) −0.0012 (3)

Geometric parameters (Å, º)

C1—C2i 1.3775 (15) C5—O2 1.3363 (15)
C1—C2 1.3775 (15) C6—C7 1.4517 (18)
C1—N1 1.474 (2) C6—O2 1.4555 (15)
C2—C3 1.3944 (16) C6—H6A 0.9700
C2—H2 0.9300 C6—H6B 0.9700
C3—C4 1.3937 (15) C7—C8 1.175 (2)
C3—C5 1.4944 (17) C8—H8 0.9300
C4—C3i 1.3937 (15) N1—O1 1.2220 (12)
C4—H4 0.9300 N1—O1i 1.2220 (12)
C5—O3 1.1970 (17)
C2i—C1—C2 123.27 (14) O2—C5—C3 112.55 (10)
C2i—C1—N1 118.36 (7) C7—C6—O2 108.50 (11)
C2—C1—N1 118.36 (7) C7—C6—H6A 110.0
C1—C2—C3 118.03 (11) O2—C6—H6A 110.0
C1—C2—H2 121.0 C7—C6—H6B 110.0
C3—C2—H2 121.0 O2—C6—H6B 110.0
C4—C3—C2 120.56 (11) H6A—C6—H6B 108.4
C4—C3—C5 122.79 (11) C8—C7—C6 176.19 (14)
C2—C3—C5 116.64 (10) C7—C8—H8 180.0
C3—C4—C3i 119.53 (14) O1—N1—O1i 123.89 (15)
C3—C4—H4 120.2 O1—N1—C1 118.06 (7)
C3i—C4—H4 120.2 O1i—N1—C1 118.06 (7)
O3—C5—O2 123.52 (11) C5—O2—C6 114.36 (9)
O3—C5—C3 123.92 (12)
C2i—C1—C2—C3 −0.45 (8) C2—C3—C5—O2 −178.24 (10)
N1—C1—C2—C3 179.55 (8) O2—C6—C7—C8 166 (2)
C1—C2—C3—C4 0.91 (15) C2i—C1—N1—O1 −165.80 (8)
C1—C2—C3—C5 −178.32 (9) C2—C1—N1—O1 14.20 (8)
C2—C3—C4—C3i −0.46 (8) C2i—C1—N1—O1i 14.20 (8)
C5—C3—C4—C3i 178.71 (12) C2—C1—N1—O1i −165.80 (8)
C4—C3—C5—O3 −176.32 (13) O3—C5—O2—C6 1.09 (19)
C2—C3—C5—O3 2.9 (2) C3—C5—O2—C6 −177.80 (10)
C4—C3—C5—O2 2.56 (15) C7—C6—O2—C5 −170.29 (11)

Symmetry code: (i) −x+3/2, −y+1/2, z.

Hydrogen-bond geometry (Å, º)

D—H···A D—H H···A D···A D—H···A
C6—H6A···O1ii 0.97 2.46 3.334 (2) 150
C6—H6B···O1iii 0.97 2.57 3.313 (2) 134
C8—H8···O3iii 0.93 2.50 3.251 (2) 138

Symmetry codes: (ii) −x+2, −y+1, −z; (iii) −x+5/2, y, z−1/2.

Footnotes

Supporting information for this paper is available from the IUCr electronic archives (Reference: SU5137).

References

  1. Bruker (2008). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.
  2. Choudhary, M. A., Mazhar, M., Ali, S., Song, X. & Eng, G. (2002). Met.-Based Drugs, 8, 275–281. [DOI] [PMC free article] [PubMed]
  3. Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.
  4. Lee, C. H., Kim, S. H., Kwon, D. H., Jang, K. H., Chung, Y. H. & Moon, J. D. (2013). Ann. Occup. Environ. Med. 25, 31. [DOI] [PMC free article] [PubMed]
  5. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  6. Somerville, C. C., Nishino, F. S. & Spain, C. J. (1995). J. Bacteriol. 177, 3837–3842. [DOI] [PMC free article] [PubMed]
  7. Spek, A. L. (2009). Acta Cryst. D65, 148–155. [DOI] [PMC free article] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) I, Global. DOI: 10.1107/S2056989015009846/su5137sup1.cif

e-71-0o435-sup1.cif (18.6KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S2056989015009846/su5137Isup2.hkl

e-71-0o435-Isup2.hkl (73.7KB, hkl)

Supporting information file. DOI: 10.1107/S2056989015009846/su5137Isup3.cml

x y z . DOI: 10.1107/S2056989015009846/su5137fig1.tif

The mol­ecular structure of the title compound, with atom labelling. Displacement ellipsoids are drawn at the 30% probability level. The unlabelled atoms are related to the labelled atoms by twofold rotation symmetry [symmetry code: (i) −x + Inline graphic, −y + Inline graphic, z].

a . DOI: 10.1107/S2056989015009846/su5137fig2.tif

A view along the a axis of the crystal packing of the title compound. The dashed lines indicate hydrogen bonds (see Table 1 for details).

CCDC reference: 1402145

Additional supporting information: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Crystallographic Communications are provided here courtesy of International Union of Crystallography

RESOURCES