Skip to main content
Acta Crystallographica Section E: Crystallographic Communications logoLink to Acta Crystallographica Section E: Crystallographic Communications
. 2015 May 23;71(Pt 6):o419–o420. doi: 10.1107/S2056989015009378

Crystal structure of 2,2-dimethyl-N-(5-methyl­pyridin-2-yl)propanamide

Gamal A El-Hiti a,*, Keith Smith b, Amany S Hegazy b, Saud A Alanazi a, Benson M Kariuki b,*
PMCID: PMC4459364  PMID: 26090202

Abstract

There are two mol­ecules in the asymmetric unit of the title compound, C11H16N2O. The pyridine rings and amide groups overlap almost perfectly (r.m.s. overlay fit = 0.053 Å), but the tertiary butyl groups have different orientations: in one mol­ecule, one of the methyl C atoms is syn to the amide O atom [O—C—C—C = −0.8 (3)°] and in the other the equivalent torsion angle is 31.0 (2)°. In the crystal, the two independent mol­ecules are linked by a pair of N—H⋯N hydrogen bonds in the form of an R 2 2(8) loop to form a dimer. A C—H⋯O inter­action connects the dimers into [100] chains.

Keywords: crystal structure, propanamide, hydrogen bonding

Related literature  

For the synthesis and spectroscopic data, see: Turner (1983). For related compounds, see: El-Hiti et al. (2015a ,b ); de Candia et al. (2013); Smith et al. (2013, 2012); Abdel-Megeed et al. (2012); Joule & Mills (2000). For the crystal structures of related compounds, see: El-Hiti et al. (2014); Seidler et al. (2011); Koch et al. (2008).graphic file with name e-71-0o419-scheme1.jpg

Experimental  

Crystal data  

  • C11H16N2O

  • M r = 192.26

  • Monoclinic, Inline graphic

  • a = 11.1969 (2) Å

  • b = 8.6439 (2) Å

  • c = 23.8844 (5) Å

  • β = 94.549 (2)°

  • V = 2304.37 (8) Å3

  • Z = 8

  • Cu Kα radiation

  • μ = 0.57 mm−1

  • T = 296 K

  • 0.47 × 0.33 × 0.11 mm

Data collection  

  • Agilent SuperNova (Dual, Cu at zero, Atlas) diffractometer

  • Absorption correction: gaussian (CrysAlis PRO; Agilent, 2014) T min = 0.925, T max = 0.975

  • 8391 measured reflections

  • 4503 independent reflections

  • 3684 reflections with I > 2σ(I)

  • R int = 0.021

Refinement  

  • R[F 2 > 2σ(F 2)] = 0.047

  • wR(F 2) = 0.148

  • S = 1.04

  • 4503 reflections

  • 262 parameters

  • H-atom parameters constrained

  • Δρmax = 0.27 e Å−3

  • Δρmin = −0.21 e Å−3

Data collection: CrysAlis PRO (Agilent, 2014); cell refinement: CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SHELXS2013 (Sheldrick, 2015); program(s) used to refine structure: SHELXL2013 (Sheldrick, 2015); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012); software used to prepare material for publication: WinGX (Farrugia, 2012).

Supplementary Material

Crystal structure: contains datablock(s) I, New_Global_Publ_Block. DOI: 10.1107/S2056989015009378/hb7430sup1.cif

e-71-0o419-sup1.cif (312.9KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S2056989015009378/hb7430Isup2.hkl

e-71-0o419-Isup2.hkl (358.7KB, hkl)

Supporting information file. DOI: 10.1107/S2056989015009378/hb7430Isup3.cml

11 16 2 . DOI: 10.1107/S2056989015009378/hb7430fig1.tif

The asymmetric unit of C11H16N2O with 50% probability displacement ellipsoids for nonhydrogen atoms.

. DOI: 10.1107/S2056989015009378/hb7430fig2.tif

The asymmetric unit showing N—H⋯N inter­actions as dotted lines.

CCDC reference: 1401551

Additional supporting information: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (, ).

DHA DH HA D A DHA
N2H2AN3 0.86 2.31 3.1192(16) 156
N4H4AN1 0.86 2.25 3.0837(16) 163
C4H4O2i 0.93 2.43 3.3262(19) 160

Symmetry code: (i) Inline graphic.

Acknowledgments

The authors extend their appreciation to the Cornea Research Chair, Department of Optometry, College of Applied Medical Sciences, King Saud University, for funding this research.

supplementary crystallographic information

S1. Introduction

Substituted pyridines are important compounds (Joule & Mills, 2000) and show a range of biological activities (de Candia et al., 2013; Abdel-Megeed et al., 2012). The pyridine ring system has been modified using various efficient and simple procedures that include the use of lithium reagents as inter­mediates (El-Hiti et al., 2015; Smith et al., 2013, Smith et al., 2012; Turner, 1983). The X-ray crystal structures of related compounds have been reported (El-Hiti et al., 2015; El-Hiti et al., 2014; Seidler et al., 2011; Koch et al., 2008).

S2. Experimental

S2.1. Synthesis and crystallization

2,2-Di­methyl-N-(5-methyl­pyridin-2-yl)propanamide was obtained in 83% yield from reaction of 2-amino-5-methyl­pyridine with tri­methyl­acetyl chloride in the presence of tri­ethyl­amine in di­chloro­methane at 0 °C for 15 minutes and then at room temperature for 2 h (Turner, 1983). The crude product was purified by column chromatography (silica gel; di­chloro­methane) followed by crystallization from hexane to give colourless crystals of the title compound. The NMR spectral data and elemental analyses for the title compound were identical with those previously reported (Turner, 1983).

S2.2. Refinement

H atoms were positioned geometrically and refined using a riding model with Uiso(H) constrained to be 1.2 times Ueq for the atom it is bonded to except for methyl groups where it was 1.5 times with free rotation about the C—C bond.

S3. Results and discussion

The asymmetric unit (Figure 1) consists of two independent molecules of C11H16N2O. The amide group and pyridine ring within the molecule are not co-planar as indicated by the torsion angles [N1—C1—N2—C7 = 142.20 (14), N3—C12—N4—C18 = 148.58 (15)]. The two independent molecules are linked by a pair of N—H···N hydrogen bonds (Table 1, Figure 2) to form an R22(8) ring.

Figures

Fig. 1.

Fig. 1.

The asymmetric unit of C11H16N2O with 50% probability displacement ellipsoids for nonhydrogen atoms.

Fig. 2.

Fig. 2.

The asymmetric unit showing N—H···N interactions as dotted lines.

Crystal data

C11H16N2O F(000) = 832
Mr = 192.26 Dx = 1.108 Mg m3
Monoclinic, P21/n Cu Kα radiation, λ = 1.54184 Å
a = 11.1969 (2) Å Cell parameters from 3890 reflections
b = 8.6439 (2) Å θ = 3.9–73.6°
c = 23.8844 (5) Å µ = 0.57 mm1
β = 94.549 (2)° T = 296 K
V = 2304.37 (8) Å3 Plate, colourless
Z = 8 0.47 × 0.33 × 0.11 mm

Data collection

Agilent SuperNova (Dual, Cu at zero, Atlas) diffractometer 4503 independent reflections
Radiation source: sealed X-ray tube, SuperNova (Cu) X-ray Source 3684 reflections with I > 2σ(I)
Mirror monochromator Rint = 0.021
ω scans θmax = 74.0°, θmin = 3.7°
Absorption correction: gaussian (CrysAlis PRO; Agilent, 2014) h = −13→13
Tmin = 0.925, Tmax = 0.975 k = −9→10
8391 measured reflections l = −29→24

Refinement

Refinement on F2 Hydrogen site location: inferred from neighbouring sites
Least-squares matrix: full H-atom parameters constrained
R[F2 > 2σ(F2)] = 0.047 w = 1/[σ2(Fo2) + (0.081P)2 + 0.208P] where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.148 (Δ/σ)max < 0.001
S = 1.04 Δρmax = 0.27 e Å3
4503 reflections Δρmin = −0.21 e Å3
262 parameters Extinction correction: SHELXL2013 (Sheldrick, 2015), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
0 restraints Extinction coefficient: 0.0075 (6)

Special details

Experimental. Absorption correction: CrysAlisPro, Agilent Technologies, Version 1.171.37.33 (release 27-03-2014 CrysAlis171 .NET) (compiled Mar 27 2014,17:12:48) Numerical absorption correction based on gaussian integration over a multifaceted crystal model Empirical absorption correction using spherical harmonics, implemented in SCALE3 ABSPACK scaling algorithm.
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
C1 0.20122 (11) 0.54209 (16) 0.13526 (5) 0.0525 (3)
C2 0.19343 (14) 0.77138 (18) 0.08875 (7) 0.0650 (4)
H2 0.1480 0.8535 0.0736 0.097*
C3 0.31560 (14) 0.77581 (19) 0.08401 (7) 0.0670 (4)
C4 0.38057 (13) 0.6528 (2) 0.10739 (7) 0.0701 (4)
H4 0.4632 0.6499 0.1055 0.105*
C5 0.32450 (12) 0.5351 (2) 0.13327 (7) 0.0654 (4)
H5 0.3681 0.4524 0.1492 0.098*
C6 0.3730 (2) 0.9087 (3) 0.05543 (12) 0.1036 (7)
H6A 0.4566 0.9132 0.0677 0.155*
H6B 0.3349 1.0037 0.0649 0.155*
H6C 0.3639 0.8939 0.0155 0.155*
C7 0.15945 (14) 0.27433 (18) 0.16115 (6) 0.0618 (4)
C8 0.07563 (15) 0.16852 (19) 0.19135 (7) 0.0689 (4)
C9 0.1450 (2) 0.0226 (2) 0.21008 (9) 0.0942 (6)
H9A 0.1777 −0.0243 0.1782 0.141*
H9B 0.0920 −0.0490 0.2263 0.141*
H9C 0.2090 0.0496 0.2375 0.141*
C10 0.0273 (2) 0.2443 (2) 0.24272 (9) 0.0918 (6)
H10A −0.0163 0.1692 0.2626 0.138*
H10B −0.0250 0.3280 0.2309 0.138*
H10C 0.0929 0.2832 0.2670 0.138*
C11 −0.0263 (2) 0.1254 (3) 0.14762 (12) 0.1106 (8)
H11A 0.0066 0.0838 0.1149 0.166*
H11B −0.0726 0.2160 0.1374 0.166*
H11C −0.0768 0.0494 0.1631 0.166*
C12 −0.12246 (11) 0.71207 (16) 0.19991 (6) 0.0520 (3)
C13 −0.02137 (14) 0.65237 (19) 0.28397 (6) 0.0650 (4)
H13 0.0409 0.5995 0.3037 0.098*
C14 −0.09434 (14) 0.74294 (19) 0.31429 (6) 0.0634 (4)
C15 −0.18413 (15) 0.8222 (2) 0.28376 (7) 0.0710 (4)
H15 −0.2350 0.8861 0.3023 0.106*
C16 −0.19970 (14) 0.8082 (2) 0.22610 (7) 0.0660 (4)
H16 −0.2603 0.8618 0.2054 0.099*
C17 −0.0774 (2) 0.7526 (3) 0.37741 (7) 0.0909 (6)
H17A −0.0997 0.8538 0.3894 0.136*
H17B 0.0051 0.7335 0.3895 0.136*
H17C −0.1268 0.6765 0.3936 0.136*
C18 −0.22818 (13) 0.6925 (2) 0.10586 (6) 0.0671 (4)
C19 −0.21118 (14) 0.6626 (2) 0.04398 (6) 0.0714 (4)
C20 −0.1518 (2) 0.5048 (3) 0.03776 (9) 0.1036 (7)
H20A −0.0736 0.5054 0.0575 0.155*
H20B −0.1445 0.4838 −0.0013 0.155*
H20C −0.1999 0.4260 0.0532 0.155*
C21 −0.1325 (2) 0.7892 (3) 0.02172 (9) 0.1074 (8)
H21A −0.1659 0.8887 0.0293 0.161*
H21B −0.1291 0.7767 −0.0181 0.161*
H21C −0.0532 0.7819 0.0400 0.161*
C22 −0.33408 (17) 0.6641 (3) 0.01113 (8) 0.0955 (7)
H22A −0.3810 0.5790 0.0230 0.143*
H22B −0.3242 0.6546 −0.0283 0.143*
H22C −0.3742 0.7596 0.0180 0.143*
N1 0.13561 (10) 0.65829 (14) 0.11338 (5) 0.0578 (3)
N2 0.13689 (10) 0.42840 (14) 0.16285 (5) 0.0577 (3)
H2A 0.0795 0.4589 0.1821 0.086*
N3 −0.03374 (10) 0.63507 (14) 0.22795 (5) 0.0589 (3)
N4 −0.12739 (10) 0.69100 (15) 0.14133 (5) 0.0585 (3)
H4A −0.0606 0.6758 0.1267 0.088*
O1 0.23876 (14) 0.22212 (15) 0.13479 (7) 0.0942 (4)
O2 −0.32545 (10) 0.7145 (3) 0.12290 (6) 0.1234 (7)

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
C1 0.0471 (6) 0.0604 (7) 0.0506 (6) −0.0005 (5) 0.0069 (5) −0.0061 (5)
C2 0.0609 (8) 0.0606 (8) 0.0750 (9) 0.0020 (6) 0.0152 (7) 0.0019 (7)
C3 0.0619 (8) 0.0670 (9) 0.0739 (9) −0.0103 (7) 0.0180 (7) −0.0082 (7)
C4 0.0458 (7) 0.0872 (11) 0.0783 (10) −0.0058 (7) 0.0111 (6) −0.0054 (8)
C5 0.0476 (7) 0.0792 (10) 0.0695 (9) 0.0046 (7) 0.0061 (6) 0.0024 (7)
C6 0.0929 (14) 0.0845 (13) 0.139 (2) −0.0182 (11) 0.0419 (13) 0.0105 (12)
C7 0.0633 (8) 0.0634 (8) 0.0595 (8) 0.0033 (7) 0.0093 (6) −0.0058 (6)
C8 0.0743 (10) 0.0600 (8) 0.0730 (9) −0.0017 (7) 0.0096 (8) 0.0039 (7)
C9 0.1260 (17) 0.0716 (11) 0.0864 (12) 0.0159 (11) 0.0172 (12) 0.0096 (9)
C10 0.1089 (15) 0.0753 (11) 0.0977 (13) 0.0020 (10) 0.0486 (12) 0.0135 (10)
C11 0.0982 (15) 0.1086 (17) 0.1210 (18) −0.0325 (13) −0.0168 (14) 0.0207 (14)
C12 0.0441 (6) 0.0584 (7) 0.0541 (7) −0.0037 (5) 0.0082 (5) −0.0028 (5)
C13 0.0649 (8) 0.0748 (9) 0.0553 (8) 0.0084 (7) 0.0041 (6) 0.0003 (7)
C14 0.0628 (8) 0.0718 (9) 0.0566 (8) −0.0045 (7) 0.0101 (6) −0.0074 (6)
C15 0.0643 (9) 0.0830 (10) 0.0672 (9) 0.0103 (8) 0.0145 (7) −0.0160 (8)
C16 0.0574 (8) 0.0769 (9) 0.0643 (8) 0.0125 (7) 0.0078 (6) −0.0056 (7)
C17 0.0947 (13) 0.1195 (16) 0.0590 (9) 0.0039 (12) 0.0092 (9) −0.0124 (10)
C18 0.0479 (7) 0.0957 (11) 0.0581 (8) −0.0060 (7) 0.0062 (6) −0.0059 (7)
C19 0.0574 (8) 0.1030 (12) 0.0540 (8) −0.0056 (8) 0.0058 (6) −0.0037 (8)
C20 0.1021 (15) 0.1323 (18) 0.0765 (12) 0.0172 (14) 0.0078 (10) −0.0312 (12)
C21 0.0894 (13) 0.161 (2) 0.0718 (11) −0.0318 (14) 0.0046 (10) 0.0262 (13)
C22 0.0681 (10) 0.153 (2) 0.0636 (10) −0.0080 (12) −0.0058 (8) −0.0082 (11)
N1 0.0483 (6) 0.0612 (6) 0.0649 (7) 0.0024 (5) 0.0111 (5) −0.0014 (5)
N2 0.0517 (6) 0.0616 (7) 0.0612 (6) 0.0020 (5) 0.0141 (5) 0.0003 (5)
N3 0.0564 (6) 0.0654 (7) 0.0555 (6) 0.0082 (5) 0.0078 (5) −0.0030 (5)
N4 0.0464 (6) 0.0772 (8) 0.0526 (6) 0.0019 (5) 0.0081 (5) −0.0045 (5)
O1 0.1027 (10) 0.0738 (8) 0.1127 (10) 0.0100 (7) 0.0496 (8) −0.0114 (7)
O2 0.0451 (6) 0.250 (2) 0.0754 (8) −0.0005 (9) 0.0067 (5) −0.0370 (11)

Geometric parameters (Å, º)

C1—N1 1.3269 (18) C12—C16 1.384 (2)
C1—C5 1.3862 (19) C12—N4 1.4077 (17)
C1—N2 1.4122 (17) C13—N3 1.3427 (19)
C2—N1 1.3346 (19) C13—C14 1.378 (2)
C2—C3 1.382 (2) C13—H13 0.9300
C2—H2 0.9300 C14—C15 1.377 (2)
C3—C4 1.381 (2) C14—C17 1.507 (2)
C3—C6 1.506 (2) C15—C16 1.380 (2)
C4—C5 1.368 (2) C15—H15 0.9300
C4—H4 0.9300 C16—H16 0.9300
C5—H5 0.9300 C17—H17A 0.9600
C6—H6A 0.9600 C17—H17B 0.9600
C6—H6B 0.9600 C17—H17C 0.9600
C6—H6C 0.9600 C18—O2 1.208 (2)
C7—O1 1.2155 (19) C18—N4 1.3565 (19)
C7—N2 1.3567 (19) C18—C19 1.527 (2)
C7—C8 1.531 (2) C19—C21 1.526 (3)
C8—C10 1.527 (3) C19—C22 1.529 (2)
C8—C9 1.529 (3) C19—C20 1.531 (3)
C8—C11 1.531 (3) C20—H20A 0.9600
C9—H9A 0.9600 C20—H20B 0.9600
C9—H9B 0.9600 C20—H20C 0.9600
C9—H9C 0.9600 C21—H21A 0.9600
C10—H10A 0.9600 C21—H21B 0.9600
C10—H10B 0.9600 C21—H21C 0.9600
C10—H10C 0.9600 C22—H22A 0.9600
C11—H11A 0.9600 C22—H22B 0.9600
C11—H11B 0.9600 C22—H22C 0.9600
C11—H11C 0.9600 N2—H2A 0.8600
C12—N3 1.3314 (18) N4—H4A 0.8600
N1—C1—C5 122.76 (13) N3—C13—H13 117.7
N1—C1—N2 115.06 (11) C14—C13—H13 117.7
C5—C1—N2 122.13 (13) C15—C14—C13 116.30 (14)
N1—C2—C3 125.05 (15) C15—C14—C17 122.08 (15)
N1—C2—H2 117.5 C13—C14—C17 121.62 (16)
C3—C2—H2 117.5 C14—C15—C16 120.94 (14)
C4—C3—C2 116.01 (14) C14—C15—H15 119.5
C4—C3—C6 122.73 (16) C16—C15—H15 119.5
C2—C3—C6 121.25 (17) C15—C16—C12 118.01 (14)
C5—C4—C3 120.60 (14) C15—C16—H16 121.0
C5—C4—H4 119.7 C12—C16—H16 121.0
C3—C4—H4 119.7 C14—C17—H17A 109.5
C4—C5—C1 118.49 (15) C14—C17—H17B 109.5
C4—C5—H5 120.8 H17A—C17—H17B 109.5
C1—C5—H5 120.8 C14—C17—H17C 109.5
C3—C6—H6A 109.5 H17A—C17—H17C 109.5
C3—C6—H6B 109.5 H17B—C17—H17C 109.5
H6A—C6—H6B 109.5 O2—C18—N4 121.25 (14)
C3—C6—H6C 109.5 O2—C18—C19 122.54 (14)
H6A—C6—H6C 109.5 N4—C18—C19 116.20 (13)
H6B—C6—H6C 109.5 C21—C19—C18 109.61 (16)
O1—C7—N2 121.70 (15) C21—C19—C22 109.63 (17)
O1—C7—C8 121.50 (15) C18—C19—C22 108.60 (14)
N2—C7—C8 116.72 (13) C21—C19—C20 109.78 (18)
C10—C8—C9 108.82 (16) C18—C19—C20 109.45 (16)
C10—C8—C11 111.11 (19) C22—C19—C20 109.75 (18)
C9—C8—C11 109.45 (17) C19—C20—H20A 109.5
C10—C8—C7 113.06 (14) C19—C20—H20B 109.5
C9—C8—C7 108.31 (15) H20A—C20—H20B 109.5
C11—C8—C7 106.00 (15) C19—C20—H20C 109.5
C8—C9—H9A 109.5 H20A—C20—H20C 109.5
C8—C9—H9B 109.5 H20B—C20—H20C 109.5
H9A—C9—H9B 109.5 C19—C21—H21A 109.5
C8—C9—H9C 109.5 C19—C21—H21B 109.5
H9A—C9—H9C 109.5 H21A—C21—H21B 109.5
H9B—C9—H9C 109.5 C19—C21—H21C 109.5
C8—C10—H10A 109.5 H21A—C21—H21C 109.5
C8—C10—H10B 109.5 H21B—C21—H21C 109.5
H10A—C10—H10B 109.5 C19—C22—H22A 109.5
C8—C10—H10C 109.5 C19—C22—H22B 109.5
H10A—C10—H10C 109.5 H22A—C22—H22B 109.5
H10B—C10—H10C 109.5 C19—C22—H22C 109.5
C8—C11—H11A 109.5 H22A—C22—H22C 109.5
C8—C11—H11B 109.5 H22B—C22—H22C 109.5
H11A—C11—H11B 109.5 C1—N1—C2 117.08 (12)
C8—C11—H11C 109.5 C7—N2—C1 124.47 (12)
H11A—C11—H11C 109.5 C7—N2—H2A 117.8
H11B—C11—H11C 109.5 C1—N2—H2A 117.8
N3—C12—C16 122.75 (13) C12—N3—C13 117.35 (12)
N3—C12—N4 113.83 (11) C18—N4—C12 125.79 (12)
C16—C12—N4 123.38 (13) C18—N4—H4A 117.1
N3—C13—C14 124.64 (14) C12—N4—H4A 117.1
N1—C2—C3—C4 −0.6 (3) O2—C18—C19—C21 119.0 (2)
N1—C2—C3—C6 −179.97 (18) N4—C18—C19—C21 −61.9 (2)
C2—C3—C4—C5 0.2 (2) O2—C18—C19—C22 −0.8 (3)
C6—C3—C4—C5 179.56 (18) N4—C18—C19—C22 178.35 (18)
C3—C4—C5—C1 0.3 (2) O2—C18—C19—C20 −120.6 (2)
N1—C1—C5—C4 −0.3 (2) N4—C18—C19—C20 58.5 (2)
N2—C1—C5—C4 −177.72 (14) C5—C1—N1—C2 0.0 (2)
O1—C7—C8—C10 151.67 (19) N2—C1—N1—C2 177.54 (12)
N2—C7—C8—C10 −31.6 (2) C3—C2—N1—C1 0.5 (2)
O1—C7—C8—C9 31.0 (2) O1—C7—N2—C1 −0.2 (2)
N2—C7—C8—C9 −152.30 (15) C8—C7—N2—C1 −176.94 (13)
O1—C7—C8—C11 −86.4 (2) N1—C1—N2—C7 142.20 (14)
N2—C7—C8—C11 90.33 (19) C5—C1—N2—C7 −40.2 (2)
N3—C13—C14—C15 −1.3 (3) C16—C12—N3—C13 0.6 (2)
N3—C13—C14—C17 177.95 (17) N4—C12—N3—C13 178.41 (13)
C13—C14—C15—C16 0.9 (3) C14—C13—N3—C12 0.5 (2)
C17—C14—C15—C16 −178.27 (18) O2—C18—N4—C12 0.7 (3)
C14—C15—C16—C12 0.1 (3) C19—C18—N4—C12 −178.44 (15)
N3—C12—C16—C15 −0.9 (2) N3—C12—N4—C18 148.58 (15)
N4—C12—C16—C15 −178.46 (15) C16—C12—N4—C18 −33.7 (2)

Hydrogen-bond geometry (Å, º)

D—H···A D—H H···A D···A D—H···A
N2—H2A···N3 0.86 2.31 3.1192 (16) 156
N4—H4A···N1 0.86 2.25 3.0837 (16) 163
C4—H4···O2i 0.93 2.43 3.3262 (19) 160

Symmetry code: (i) x+1, y, z.

Footnotes

Supporting information for this paper is available from the IUCr electronic archives (Reference: HB7430).

References

  1. Abdel-Megeed, M. F., Badr, B. E., Azaam, M. M. & El-Hiti, G. A. (2012). Bioorg. Med. Chem. 20, 2252–2258. [DOI] [PubMed]
  2. Agilent (2014). CrysAlis PRO. Agilent Technologies, Yarnton, England.
  3. Candia, M. de, Fiorella, F., Lopopolo, G., Carotti, A., Romano, M. R., Lograno, M. D., Martel, S., Carrupt, P.-A., Belviso, B. D., Caliandro, R. & Altomare, C. (2013). J. Med. Chem. 56, 8696–8711. [DOI] [PubMed]
  4. El-Hiti, G. A., Smith, K., Balakit, A. A., Hegazy, A. S. & Kariuki, B. M. (2014). Acta Cryst. E70, o351–o352. [DOI] [PMC free article] [PubMed]
  5. El-Hiti, A., Smith, G. & Hegazy, K. (2015a). Heterocycles, 91, 479–504.
  6. El-Hiti, G. A., Smith, K., Hegazy, A. S., Alanazi, S. A. & Kariuki, B. M. (2015b). Acta Cryst. E71, o246–o247. [DOI] [PMC free article] [PubMed]
  7. Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.
  8. Joule, J. A. & Mills, K. (2000). Heterocyclic Chemistry, 4th ed. England: Blackwell Science Publishers.
  9. Koch, P., Schollmeyer, D. & Laufer, S. (2008). Acta Cryst. E64, o2216. [DOI] [PMC free article] [PubMed]
  10. Seidler, T., Gryl, M., Trzewik, B. & Stadnicka, K. (2011). Acta Cryst. E67, o1507. [DOI] [PMC free article] [PubMed]
  11. Sheldrick, G. M. (2015). Acta Cryst. C71, 3–8.
  12. Smith, K., El-Hiti, G. A., Alshammari, M. B. & Fekri, A. (2013). Synthesis, 45, 3426–3434.
  13. Smith, K. A., El-Hiti, G. A., Fekri, A. & Alshammari, B. (2012). Heterocycles, 86, 391–410.
  14. Turner, J. A. (1983). J. Org. Chem. 48, 3401–3408.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) I, New_Global_Publ_Block. DOI: 10.1107/S2056989015009378/hb7430sup1.cif

e-71-0o419-sup1.cif (312.9KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S2056989015009378/hb7430Isup2.hkl

e-71-0o419-Isup2.hkl (358.7KB, hkl)

Supporting information file. DOI: 10.1107/S2056989015009378/hb7430Isup3.cml

11 16 2 . DOI: 10.1107/S2056989015009378/hb7430fig1.tif

The asymmetric unit of C11H16N2O with 50% probability displacement ellipsoids for nonhydrogen atoms.

. DOI: 10.1107/S2056989015009378/hb7430fig2.tif

The asymmetric unit showing N—H⋯N inter­actions as dotted lines.

CCDC reference: 1401551

Additional supporting information: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Crystallographic Communications are provided here courtesy of International Union of Crystallography

RESOURCES