Skip to main content
Acta Crystallographica Section E: Crystallographic Communications logoLink to Acta Crystallographica Section E: Crystallographic Communications
. 2015 May 23;71(Pt 6):660–662. doi: 10.1107/S2056989015008099

Crystal structure of 1-[(6-chloro­pyridin-3-yl)sulfon­yl]-1,2,3,4-tetra­hydro­quinoline

S Jeyaseelan a,*, H R Rajegowda b, R Britto Dominic Rayan c, P Raghavendra Kumar b, B S Palakshamurthy d
PMCID: PMC4459366  PMID: 26090144

In the crystal structure of 1-[(6-chloro­pyridin-3-yl)sulfon­yl]-1,2,3,4-tetra­hydro­quinoline, the tetra­hydro­pyridine ring of the quinoline system adopts a half-chair conformation and the bond-angle sum at the N atom is 350.0°.

Keywords: crystal structure; 1,2,3,4-tetra­hydro­quinoline; C—H⋯O inter­actions; pharmaco­logical activity

Abstract

The tetra­hydro­pyridine ring of the quinoline system in the title compound, C14H13ClN2O2S, adopts a half-chair conformation with the bond-angle sum at the N atom being 350.0°. The dihedral angle between the least-squares planes of the two aromatic rings is 50.13 (11)°. In the crystal, inversion dimers linked by pairs of C—H⋯O hydrogen bonds generate R 2 2(10) loops. Additional inter­molecular C—H⋯O hydrogen bonds generate C(7) chains along [100].

Chemical context  

1,2,3,4-Tetra­hydro­quinoline derivatives play a vital role in developing pharmacological agents and they have been considered as potential drugs (White et al., 1994; Kokwaro & Taylor, 1990; Omura & Nakagawa, 1981) and also antagonists for N-methyl-d-aspartate (NMDA) receptors at the glycine recognition site (Cai et al., 1996).graphic file with name e-71-00660-scheme1.jpg

Recently, we have synthesized a series of 1,2,3,4-tetra­hydro­quinoline derivatives and a few mol­ecules in fact exhibit pharmacological activity (unpublished results). In a contin­uation of our work on the derivatives of 1,2,3,4-tetra­hydro­quinolines (Jeyaseelan et al., 2014, 2015a ,b ), we report herein the synthesis and crystal structure of 1-[(6-chloro­pyridin-3-yl)sulfon­yl]-1,2,3,4-tetra­hydro­quinoline, (I).

Structural commentary  

The mol­ecular structure of compound (I) is shown in Fig. 1. The dihedral angle between the planes of the aromatic rings is 50.13 (11)°. In comparison, the dihedral angle in the 1-tosyl-1,2,3,4-tetra­hydro­quinoline, (II), is 47.74 (9)° (Jeyaseelan et al., 2014), and in 1-benzyl­sulfonyl-1,2,3,4-tetra­hydro­quinoline, (III), it is 74.15 (10)° (Jeyaseelan et al., 2015b ). In the structures of compounds (II), (III) and 1-methane­sulfonyl-1,2,3,4-tetra­hydro­quinoline, (IV) (Jeyaseelan et al., 2015a ), the tetra­hydro­pyridine (C1/C6–C9/N1) ring is in a half-chair conformation, with the methyl­ene C9 atom as the flap. However, the bond-angle sums at the N atom in (I), (II), (III) and (IV) differ somehow, with values of 350.0, 350.2, 354.61 and 347.9°, respectively.

Figure 1.

Figure 1

The mol­ecular structure of the title compound, showing displacement ellipsoids drawn at the 50% probability level.

Supra­molecular features  

In the crystal, inversion dimers linked by pairs of C11—H11⋯O2 hydrogen bonds generate Inline graphic(10) loops. In addition, mol­ecules are linked by C7—H7A⋯O1 hydrogen bonds, generating C(7) chains along [100], as shown in Fig. 2. Numerical values of these inter­actions are compiled in Table 1.

Figure 2.

Figure 2

The mol­ecular packing of the title compound. Dashed lines indicate the pairs of C—H⋯O hydrogen bonds which link the mol­ecules into inversion dimers with Inline graphic(10) ring motifs and forming C(7) chains along [100].

Table 1. Hydrogen-bond geometry (, ).

DHA DH HA D A DHA
C11H11O2i 0.93 2.60 3.309(3) 134
C7H7AO1ii 0.97 2.66 3.586(5) 160

Symmetry codes: (i) Inline graphic; (ii) Inline graphic.

Synthesis and crystallization  

To an ice-cold solution of 1,2,3,4-tetra­hydro­quinoline (1.332 g, 10 mmol) and tri­ethyl­amine (1.518 g, 15 mmol) in di­chloro­methane (50 ml), a solution of 6-chloro­pyridine-3-sulfonyl chloride (2.332 g, 11 mmol) in di­chloro­methane (20 ml) was added dropwise and stirred for 30 min. The reaction mixture was diluted with di­chloro­methane (150 ml), the organic layer washed with aqueous 5% NaHCO3 solution and brine, and dried over anhydrous Na2SO4. The solvent was evaporated under reduced pressure to give 1-[(6-chloro­pyridin-3-yl)sulfon­yl]-1,2,3,4-tetra­hydro­quinoline, (I). The product was recrystallized from a mixture of di­chloro­methane and n-hexane (1:1 v/v) to obtain crystals suitable for X-ray diffraction studies.

Refinement details  

Crystal data, data collection and structure refinement details are summarized in Table 2. H atoms were positioned with idealized geometry using a riding-model approximation, with C—H = 0.93 Å and U iso(H) = 1.2U eq(C) for aromatic H atoms and with C—H = 0.97 Å and U iso(H) = 1.2U eq(C) for methyl­ene H atoms.

Table 2. Experimental details.

Crystal data
Chemical formula C14H13ClN2O2S
M r 308.77
Crystal system, space group Triclinic, P Inline graphic
Temperature (K) 296
a, b, c () 6.5661(10), 10.2595(18), 11.3490(19)
, , () 69.101(7), 88.219(7), 77.238(7)
V (3) 695.6(2)
Z 2
Radiation type Mo K
(mm1) 0.43
Crystal size (mm) 0.23 0.18 0.16
 
Data collection
Diffractometer Bruker APEXII CCD
Absorption correction Multi-scan (SADABS; Bruker, 2013)
T min, T max 0.912, 0.934
No. of measured, independent and observed [I > 2(I)] reflections 9865, 2454, 1980
R int 0.053
(sin /)max (1) 0.595
 
Refinement
R[F 2 > 2(F 2)], wR(F 2), S 0.050, 0.146, 1.09
No. of reflections 2454
No. of parameters 181
H-atom treatment H-atom parameters constrained
max, min (e 3) 0.59, 0.43

Computer programs: APEX2 and SAINT (Bruker, 2013), SHELXS97 (Sheldrick, 2008), SHELXL2014 (Sheldrick, 2015), ORTEP-3 for Windows (Farrugia, 2012) and Mercury (Macrae et al., 2008).

Supplementary Material

Crystal structure: contains datablock(s) I, New_Global_Publ_Block. DOI: 10.1107/S2056989015008099/wm5147sup1.cif

e-71-00660-sup1.cif (336.1KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S2056989015008099/wm5147Isup2.hkl

e-71-00660-Isup2.hkl (134.9KB, hkl)

Supporting information file. DOI: 10.1107/S2056989015008099/wm5147Isup3.cml

CCDC reference: 1061311

Additional supporting information: crystallographic information; 3D view; checkCIF report

Acknowledgments

SJ thanks the Vision Group on Science and Technology, Government of Karnataka, for the award of a major project under the CISE scheme (reference No. VGST/CISE/GRD-192/2013–14), and the Indian Institute of Science, Bangalore, for extending the XRD facility.

supplementary crystallographic information

Crystal data

C14H13ClN2O2S F(000) = 320
Mr = 308.77 prism
Triclinic, P1 Dx = 1.474 Mg m3
Hall symbol: -P 1 Melting point: 413 K
a = 6.5661 (10) Å Mo Kα radiation, λ = 0.71073 Å
b = 10.2595 (18) Å Cell parameters from 1980 reflections
c = 11.3490 (19) Å θ = 1.9–25.0°
α = 69.101 (7)° µ = 0.43 mm1
β = 88.219 (7)° T = 296 K
γ = 77.238 (7)° Prism, colourless
V = 695.6 (2) Å3 0.23 × 0.18 × 0.16 mm
Z = 2

Data collection

Bruker APEXII CCD diffractometer 2454 independent reflections
Radiation source: fine-focus sealed tube 1980 reflections with I > 2σ(I)
Graphite monochromator Rint = 0.053
Detector resolution: 2.01 pixels mm-1 θmax = 25.0°, θmin = 1.9°
phi and ω scans h = −7→7
Absorption correction: multi-scan (SADABS; Bruker, 2013) k = −12→12
Tmin = 0.912, Tmax = 0.934 l = −13→13
9865 measured reflections

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.050 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.146 H-atom parameters constrained
S = 1.09 w = 1/[σ2(Fo2) + (0.0677P)2 + 0.3614P] where P = (Fo2 + 2Fc2)/3
2454 reflections (Δ/σ)max < 0.001
181 parameters Δρmax = 0.59 e Å3
0 restraints Δρmin = −0.43 e Å3
0 constraints

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
O1 0.3014 (3) 0.1696 (3) 0.3092 (2) 0.0753 (7)
S 0.40371 (11) 0.28345 (8) 0.24768 (6) 0.0562 (3)
Cl1 1.24374 (14) 0.01308 (10) 0.08760 (9) 0.0853 (3)
C10 0.6392 (4) 0.2111 (3) 0.1933 (2) 0.0479 (6)
N1 0.4673 (3) 0.3394 (2) 0.35739 (19) 0.0532 (6)
O2 0.3005 (3) 0.4047 (2) 0.14401 (19) 0.0712 (6)
C11 0.7513 (4) 0.2997 (3) 0.1091 (2) 0.0504 (6)
H11 0.6991 0.3983 0.0764 0.060*
N2 0.9018 (4) 0.0058 (3) 0.2047 (2) 0.0657 (7)
C1 0.5901 (4) 0.4468 (3) 0.3217 (2) 0.0479 (6)
C13 1.0055 (4) 0.0935 (3) 0.1264 (2) 0.0545 (7)
C6 0.7874 (4) 0.4136 (3) 0.3794 (3) 0.0542 (7)
C12 0.9387 (4) 0.2403 (3) 0.0750 (3) 0.0545 (7)
H12 1.0188 0.2965 0.0190 0.065*
C14 0.7193 (5) 0.0656 (3) 0.2371 (3) 0.0615 (8)
H14 0.6417 0.0064 0.2921 0.074*
C2 0.5110 (5) 0.5812 (3) 0.2320 (3) 0.0678 (8)
H2 0.3760 0.6042 0.1966 0.081*
C5 0.9038 (5) 0.5175 (4) 0.3419 (3) 0.0690 (8)
H5 1.0362 0.4975 0.3798 0.083*
C9 0.5138 (5) 0.2322 (4) 0.4875 (3) 0.0733 (10)
H9A 0.4544 0.2766 0.5470 0.088*
H9B 0.4466 0.1542 0.4963 0.088*
C3 0.6339 (7) 0.6804 (3) 0.1957 (3) 0.0812 (10)
H3 0.5830 0.7694 0.1335 0.097*
C4 0.8292 (6) 0.6494 (4) 0.2502 (3) 0.0766 (10)
H4 0.9112 0.7169 0.2255 0.092*
C7 0.8693 (6) 0.2732 (4) 0.4825 (4) 0.0796 (10)
H7A 0.9980 0.2263 0.4563 0.096*
H7B 0.9042 0.2917 0.5566 0.096*
C8 0.7326 (7) 0.1753 (5) 0.5187 (4) 0.124 (2)
H8A 0.7792 0.1037 0.4804 0.149*
H8B 0.7507 0.1261 0.6095 0.149*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
O1 0.0680 (14) 0.0963 (16) 0.0687 (13) −0.0494 (13) 0.0085 (11) −0.0202 (12)
S 0.0469 (4) 0.0698 (5) 0.0465 (4) −0.0217 (3) −0.0027 (3) −0.0090 (3)
Cl1 0.0736 (6) 0.0948 (7) 0.0859 (6) 0.0056 (5) −0.0027 (5) −0.0446 (5)
C10 0.0520 (15) 0.0511 (15) 0.0373 (12) −0.0186 (12) −0.0063 (11) −0.0069 (11)
N1 0.0489 (12) 0.0633 (14) 0.0406 (11) −0.0183 (11) 0.0032 (9) −0.0072 (10)
O2 0.0547 (12) 0.0850 (15) 0.0553 (11) −0.0067 (11) −0.0148 (9) −0.0068 (11)
C11 0.0571 (16) 0.0441 (14) 0.0429 (13) −0.0133 (12) −0.0019 (12) −0.0056 (11)
N2 0.0813 (19) 0.0509 (14) 0.0591 (15) −0.0116 (13) −0.0060 (13) −0.0140 (12)
C1 0.0511 (15) 0.0463 (14) 0.0435 (13) −0.0087 (12) 0.0095 (11) −0.0146 (11)
C13 0.0566 (16) 0.0595 (17) 0.0472 (14) −0.0088 (13) −0.0096 (12) −0.0203 (13)
C6 0.0566 (16) 0.0517 (16) 0.0551 (15) −0.0155 (13) 0.0029 (13) −0.0184 (13)
C12 0.0561 (16) 0.0596 (17) 0.0482 (14) −0.0218 (14) 0.0053 (12) −0.0149 (13)
C14 0.078 (2) 0.0509 (17) 0.0508 (15) −0.0255 (16) 0.0011 (14) −0.0056 (13)
C2 0.0673 (19) 0.0558 (18) 0.0628 (18) −0.0001 (15) 0.0048 (15) −0.0088 (14)
C5 0.070 (2) 0.070 (2) 0.077 (2) −0.0312 (17) 0.0105 (16) −0.0290 (17)
C9 0.079 (2) 0.093 (2) 0.0399 (15) −0.0443 (19) 0.0005 (14) −0.0004 (15)
C3 0.105 (3) 0.0411 (16) 0.081 (2) −0.0057 (18) 0.025 (2) −0.0101 (15)
C4 0.098 (3) 0.060 (2) 0.084 (2) −0.0356 (19) 0.033 (2) −0.0315 (18)
C7 0.066 (2) 0.068 (2) 0.086 (2) −0.0170 (17) −0.0195 (17) −0.0029 (17)
C8 0.110 (3) 0.118 (3) 0.089 (3) −0.050 (3) −0.042 (3) 0.047 (3)

Geometric parameters (Å, º)

O1—S 1.428 (2) C6—C5 1.385 (4)
S—O2 1.423 (2) C6—C7 1.492 (4)
S—O1 1.428 (2) C12—H12 0.9300
S—N1 1.644 (2) C14—H14 0.9300
S—C10 1.756 (3) C2—C3 1.378 (5)
Cl1—C13 1.723 (3) C2—H2 0.9300
C10—C14 1.376 (4) C5—C4 1.374 (5)
C10—C11 1.383 (3) C5—H5 0.9300
N1—C1 1.443 (3) C9—C8 1.430 (5)
N1—C9 1.484 (3) C9—H9A 0.9700
C11—C12 1.358 (4) C9—H9B 0.9700
C11—H11 0.9300 C3—C4 1.362 (5)
N2—C13 1.314 (4) C3—H3 0.9300
N2—C14 1.325 (4) C4—H4 0.9300
C1—C2 1.386 (4) C7—C8 1.437 (5)
C1—C6 1.387 (4) C7—H7A 0.9700
C13—C12 1.378 (4) C8—H8A 0.9700
O2—S—O1 120.12 (13) C3—C2—C1 119.5 (3)
O2—S—N1 108.30 (13) C3—C2—H2 120.2
O1—S—N1 106.51 (12) C1—C2—H2 120.2
O2—S—C10 106.62 (12) C4—C5—C6 121.9 (3)
O1—S—C10 107.97 (14) C4—C5—H5 119.1
N1—S—C10 106.63 (12) C6—C5—H5 119.1
C14—C10—C11 118.8 (3) C8—C9—N1 113.3 (3)
C14—C10—S 120.6 (2) C8—C9—H9A 108.9
C11—C10—S 120.6 (2) N1—C9—H9A 108.9
C1—N1—C9 115.2 (2) C8—C9—H9B 108.9
C1—N1—S 117.64 (16) N1—C9—H9B 108.9
C9—N1—S 117.2 (2) H9A—C9—H9B 107.7
C12—C11—C10 118.9 (3) C4—C3—C2 120.7 (3)
C12—C11—H11 120.6 C4—C3—H3 119.6
C10—C11—H11 120.6 C2—C3—H3 119.6
C13—N2—C14 116.3 (2) C3—C4—C5 119.4 (3)
C2—C1—C6 120.7 (3) C3—C4—H4 120.3
C2—C1—N1 120.4 (3) C5—C4—H4 120.3
C6—C1—N1 118.8 (2) C8—C7—C6 116.5 (3)
N2—C13—C12 125.4 (3) C8—C7—H7A 108.2
N2—C13—Cl1 115.3 (2) C6—C7—H7A 108.2
C12—C13—Cl1 119.2 (2) C8—C7—H7B 108.2
C5—C6—C1 117.8 (3) C6—C7—H7B 108.2
C5—C6—C7 120.7 (3) H7A—C7—H7B 107.3
C1—C6—C7 121.5 (2) C9—C8—C7 118.0 (4)
C11—C12—C13 117.4 (3) C9—C8—H8A 107.8
C11—C12—H12 121.3 C7—C8—H8A 107.8
C13—C12—H12 121.3 C9—C8—H8B 107.8
N2—C14—C10 123.1 (3) C7—C8—H8B 107.8
N2—C14—H14 118.4 H8A—C8—H8B 107.1
C10—C14—H14 118.4
O2—S—C10—C14 −145.4 (2) C9—N1—C1—C6 27.0 (4)
O2—S—C10—C14 −145.4 (2) S—N1—C1—C6 −117.9 (2)
O1—S—C10—C14 −15.0 (3) C14—N2—C13—C12 −1.0 (4)
O1—S—C10—C14 −15.0 (3) C14—N2—C13—Cl1 179.2 (2)
O1—S—C10—C14 −15.0 (3) C2—C1—C6—C5 −1.8 (4)
N1—S—C10—C14 99.1 (2) N1—C1—C6—C5 178.8 (2)
O2—S—C10—C11 37.0 (2) C2—C1—C6—C7 175.7 (3)
O2—S—C10—C11 37.0 (2) N1—C1—C6—C7 −3.7 (4)
O1—S—C10—C11 167.3 (2) C10—C11—C12—C13 0.4 (4)
O1—S—C10—C11 167.3 (2) N2—C13—C12—C11 0.9 (4)
O1—S—C10—C11 167.3 (2) Cl1—C13—C12—C11 −179.2 (2)
N1—S—C10—C11 −78.6 (2) C13—N2—C14—C10 −0.3 (4)
O2—S—N1—C1 −54.9 (2) C11—C10—C14—N2 1.5 (4)
O2—S—N1—C1 −54.9 (2) S—C10—C14—N2 −176.1 (2)
O1—S—N1—C1 174.7 (2) C6—C1—C2—C3 3.1 (4)
O1—S—N1—C1 174.7 (2) N1—C1—C2—C3 −177.6 (3)
O1—S—N1—C1 174.7 (2) C1—C6—C5—C4 −0.3 (5)
C10—S—N1—C1 59.5 (2) C7—C6—C5—C4 −177.8 (3)
O2—S—N1—C9 161.0 (2) C1—N1—C9—C8 −46.6 (5)
O2—S—N1—C9 161.0 (2) S—N1—C9—C8 98.4 (4)
O1—S—N1—C9 30.5 (2) C1—C2—C3—C4 −2.3 (5)
O1—S—N1—C9 30.5 (2) C2—C3—C4—C5 0.2 (5)
O1—S—N1—C9 30.5 (2) C6—C5—C4—C3 1.1 (5)
C10—S—N1—C9 −84.6 (2) C5—C6—C7—C8 177.1 (4)
C14—C10—C11—C12 −1.6 (4) C1—C6—C7—C8 −0.3 (6)
S—C10—C11—C12 176.12 (19) N1—C9—C8—C7 43.5 (6)
C9—N1—C1—C2 −152.4 (3) C6—C7—C8—C9 −20.5 (7)
S—N1—C1—C2 62.8 (3)

Hydrogen-bond geometry (Å, º)

D—H···A D—H H···A D···A D—H···A
C11—H11···O2i 0.93 2.60 3.309 (3) 134
C7—H7A···O1ii 0.97 2.66 3.586 (5) 160

Symmetry codes: (i) −x+1, −y+1, −z; (ii) x+1, y, z.

References

  1. Bruker (2013). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.
  2. Cai, S. X., Zhou, Z. L., Huang, J. C., Whittemore, E. R., Egbuwoku, Z. O., Lü, Y., Hawkinson, J. E., Woodward, R. M., Weber, E. & Keana, J. F. W. (1996). J. Med. Chem. 39, 3248–3255. [DOI] [PubMed]
  3. Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.
  4. Jeyaseelan, S., Asha, K. V., Venkateshappa, G., Raghavendrakumar, P. & Palakshamurthy, B. S. (2014). Acta Cryst. E70, o1176. [DOI] [PMC free article] [PubMed]
  5. Jeyaseelan, S., Nagendra Babu, S. L., Venkateshappa, G., Raghavendra Kumar, P. & Palakshamurthy, B. S. (2015a). Acta Cryst. E71, o20. [DOI] [PMC free article] [PubMed]
  6. Jeyaseelan, S., Sowmya, B. R., Venkateshappa, G., Raghavendra Kumar, P. & Palakshamurthy, B. S. (2015b). Acta Cryst. E71, o249–o250. [DOI] [PMC free article] [PubMed]
  7. Kokwaro, G. O. & Taylor, G. (1990). Drug Chem. Toxicol. 13, 347–354. [DOI] [PubMed]
  8. Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470.
  9. Ōmura, S. & Nakagawa, A. (1981). Tetrahedron Lett. 22, 2199–2202.
  10. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  11. Sheldrick, G. M. (2015). Acta Cryst. C71, 3–8.
  12. White, J. D., Yager, K. M. & Yakura, T. (1994). J. Am. Chem. Soc. 116, 1831–1838.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) I, New_Global_Publ_Block. DOI: 10.1107/S2056989015008099/wm5147sup1.cif

e-71-00660-sup1.cif (336.1KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S2056989015008099/wm5147Isup2.hkl

e-71-00660-Isup2.hkl (134.9KB, hkl)

Supporting information file. DOI: 10.1107/S2056989015008099/wm5147Isup3.cml

CCDC reference: 1061311

Additional supporting information: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Crystallographic Communications are provided here courtesy of International Union of Crystallography

RESOURCES