Skip to main content
Acta Crystallographica Section E: Crystallographic Communications logoLink to Acta Crystallographica Section E: Crystallographic Communications
. 2015 May 20;71(Pt 6):644–646. doi: 10.1107/S2056989015009196

Crystal structure of trans-di­chlorido­(4-nitro­aniline-κN 1)(piperidine-κN)platinum(II)

Chi Nguyen Thi Thanh a, Truong Hoang Van a, Thong Pham Van a, Ngan Nguyen Bich a, Luc Van Meervelt b,*
PMCID: PMC4459372  PMID: 26090140

The packing of the title compound features N—H⋯Cl hydrogen bonds and π–π stacking inter­actions, which form one-dimensional chains of mol­ecules parallel to [001] further linked via N—H⋯O inter­actions.

Keywords: crystal structure, trans-platinum(II) complexes, hydrogen bonding

Abstract

In the title complex, [PtCl2(C5H11N)(C6H6N2O2)], the PtII metal atom displays a slightly distorted trans-PtN2Cl2 square-planar coordination geometry. The dihedral angle between the mean plane of the benzene and piperidine rings is 89.03 (3)°. In the crystal structure, inversion dimers are formed via N—H⋯Cl hydrogen-bond inter­actions, resulting in chains parallel to the [001] direction. The benzene rings within the chains show π–π stacking inter­actions [centroid-to-centroid distances of 3.801 (3) Å] and neighbouring chains inter­act via N—H⋯O hydrogen bonds.

Chemical context  

The title compound is one of many complexes which have been synthesized for the purpose of potential medical applications (Klein & Hambley, 2009; Wilson & Lippard, 2014; Peng et al., 2014). It is notable that according to the procedure used for the synthesis of complexes of the type cis-[PtCl2(piperidine)(another amine)] (piperidine hereafter denoted Pip) (Dinh & Da, 2003; Nguyen Thi Thanh et al., 2014), the reaction between K[PtCl3(Pip)] and p-nitro­aniline under appropriate conditions gave no cis complex, as expected, but instead gave the trans-[PtCl2(p-nitro­aniline)(Pip)] derivative, (I).graphic file with name e-71-00644-scheme1.jpg

To explain this we suppose that p-nitro­aniline first coordinates with PtII via the N atom of the amino group to form cis-[PtCl2(p-nitro­aniline)(Pip)] based on the trans effect. Then, in the reaction solution, the cis complex converts into the trans complex and the thermodynamics of this conversion are currently under investigation by us.

The anti­cancer activity of the title compound was tested according to the method described by Skehan et al. (1990) against four human cancer cell lines (HepG2, RD, MCF7 and Fl). The IC50 values calculated based on OD values taken on an Elisa instrument at 515–540 nm are >10, 4.86, >10 and 8.25 µg ml−1, respectively.

Structural commentary  

The mol­ecular structure of the title compound is illustrated in Fig. 1 and surprisingly shows a trans arrangement of the two Cl atoms [Cl8—Pt1—Cl9 = 177.84 (4)°]. The piperidine ring adopts the usual chair conformation, with the N2—Pt1 bond in the equatorial position. The piperidine ring is oriented nearly perpendicular to the coordination plane of the PtII atom, thereby reducing the van der Waals repulsion; the dihedral angle between the least-squares mean planes through the piperdine ring and the four atoms coordinated to the Pt atom is 89.6 (2)°. One short intra­molecular contact is observed, i.e. H7B⋯Cl8 = 2.83 Å. The mean planes through the piperidine ring and the benzene ring make a dihedral angle of 89.0 (3)°. The dihedral angle between the mean planes of the nitro substituent and the benzene ring is 16.6 (3)°.

Figure 1.

Figure 1

The mol­ecular structure of the title compound, with displacement ellipsoids drawn at the 50% probability level.

Supra­molecular features  

In the crystal, inversion dimers are formed via N—H⋯Cl inter­actions between the aniline N atom and both Cl atoms, resulting in chains of mol­ecules along the [001] direction (Fig. 2 and Table 1). Within these chains, π–π inter­actions occur between the aromatic rings [CgCg iv = 3.801 (3) Å; Cg is the centroid of the C11–C16 ring; symmetry code: (iv) −x, y, −z + Inline graphic; Fig. 2]. Neighbouring chains are linked via N—H⋯O hydrogen bonds between the piperidine N atom and a nitro O atom (Fig. 2 and Table 1).

Figure 2.

Figure 2

Partial packing diagram of the title compound, showing a chain of mol­ecules formed parallel to the [001] direction via N—H⋯Cl inter­actions (green dotted lines) and π–π inter­actions (grey dotted line). Neighbouring chains inter­act via N—H⋯O hydrogen bonds (red dotted line).

Table 1. Hydrogen-bond geometry (, ).

DHA DH HA D A DHA
N2H2O18i 0.93 2.27 3.182(6) 165
N10H10ACl8ii 0.92 2.32 3.198(4) 158
N10H10BCl9iii 0.92 2.37 3.255(4) 161

Symmetry codes: (i) Inline graphic; (ii) Inline graphic; (iii) Inline graphic.

Database survey  

A search of the Cambridge Structural Database (Version 5.36; last update February 2015; Groom & Allen, 2014) for Pt complexes with Pt coordinated to exactly two Cl atoms and two N atoms gave 713 hits. The majority of these Pt complexes display a cis coordination of the Cl atoms (474 structures), with the remaining 239 structures showing a trans coordination. There is no difference in the Pt—Cl distances between both configurations. The average Pt—Cl distances are 2.300 (15) and 2.299 (12) Å for the cis and trans arrangements, respectively, and correspond to the observed distances of 2.3039 (11) and 2.2917 (12) Å for Pt1—Cl8 and Pt1—Cl9, respectively.

Synthesis and crystallization  

The starting complex K[PtCl3(piperidine)] (0.425 g, 1 mmol), prepared according to the synthetic procedure of Da et al. (2001) with slight modifications, was dissolved in water (10 ml) and filtered to afford a clear solution. To this solution, p-nitro­aniline (1 mmol) in ethanol (10 ml) was added gradually while stirring at 413–318 K. After 1 h, a brown powder appeared and the reaction mixture was then stirred further for 24 h until all the precipitate was completely dissolved. The solvent was removed in vacuo to give a brown–yellow product. The product was washed consecutively with a 0.1 M HCl solution (2 × 2 ml), warm water (2 × 2 ml) and diethyl ether (2 × 2 ml). The yield was 80%. Single crystals suitable for X-ray determination were obtained by slow evaporation within 12 h from an acetone solution at room temperature. IR (KBr, cm−1): 3199, 3113 (νNH); 3070, 2927, 2862 (νCH); 1596, 1525, 1479 (νC=C arom); 1342, 1325 (νNO); 1H NMR (CDCl3, 500 MHz): δ 8.21 (2H, d, 3 J = 9.0 Hz, Ar-H), 7.47 (2H, d, 3 J = 9.0 Hz, Ar-H), 5.49 (2H, br, O2NC6H4NH2), 3.66 (1H, br, C5H10NH), 3.26 (2Hα e, d, 2 J ae = 13.0 Hz, C5 H10NH), 2.99 (2Hα a, q, 2 J ae, 3 J aa, 3 J aa(NH) = 13.0 Hz, C5 H10NH), 1.69–1.43 (4Hβ, 2Hγ, ov, C5 H10NH). 13C{1H} NMR (125 MHz, CDCl3): δ 149.6, 125.1, 124.2 (O2NC6H4NH2), 54.0, 27.2, 24.3 (C5H10NH).

Refinement  

Crystal data, data collection and structure refinement details are summarized in Table 2. All H atoms were placed at idealized positions and refined in riding mode, with U iso(H) values assigned as 1.2U eq of the parent atoms, with C—H distances of 0.95 (aromatic) and 0.99 Å (methyl­ene), and N—H distances of 0.93 (NH) and 0.92 Å (NH2).

Table 2. Experimental details.

Crystal data
Chemical formula [PtCl2(C5H11N)(C6H6N2O2)]
M r 489.27
Crystal system, space group Monoclinic, C2/c
Temperature (K) 100
a, b, c () 15.8763(11), 18.5394(11), 10.8707(6)
() 103.119(7)
V (3) 3116.1(3)
Z 8
Radiation type Mo K
(mm1) 9.35
Crystal size (mm) 0.35 0.15 0.1
 
Data collection
Diffractometer Agilent SuperNova (single source at offset, Eos detector)
Absorption correction Multi-scan (CrysAlis PRO; Agilent, 2012)
T min, T max 0.538, 1.000
No. of measured, independent and observed [I > 2(I)] reflections 8156, 3109, 2713
R int 0.044
(sin /)max (1) 0.625
 
Refinement
R[F 2 > 2(F 2)], wR(F 2), S 0.032, 0.072, 1.10
No. of reflections 3109
No. of parameters 172
H-atom treatment H-atom parameters constrained
max, min (e 3) 2.75, 1.82

Computer programs: CrysAlis PRO (Agilent, 2012), SHELXS97 and SHELXL97 (Sheldrick, 2008) and OLEX2 (Dolomanov et al., 2009).

Supplementary Material

Crystal structure: contains datablock(s) I. DOI: 10.1107/S2056989015009196/rz5159sup1.cif

e-71-00644-sup1.cif (195.3KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S2056989015009196/rz5159Isup2.hkl

e-71-00644-Isup2.hkl (152.7KB, hkl)

CCDC reference: 1400786

Additional supporting information: crystallographic information; 3D view; checkCIF report

Acknowledgments

The authors thank the Vietnamese Ministry of Education (project B2013-17-39) and VLIR–UOS (project ZEIN­2014Z182) for financial support and the Hercules Foundation for supporting the purchase of the diffractometer through project AKUL/09/0035.

supplementary crystallographic information

Crystal data

[PtCl2(C5H11N)(C6H6N2O2)] F(000) = 1856
Mr = 489.27 Dx = 2.086 Mg m3
Monoclinic, C2/c Mo Kα radiation, λ = 0.71073 Å
a = 15.8763 (11) Å Cell parameters from 3549 reflections
b = 18.5394 (11) Å θ = 3.4–28.8°
c = 10.8707 (6) Å µ = 9.35 mm1
β = 103.119 (7)° T = 100 K
V = 3116.1 (3) Å3 , brown
Z = 8 0.35 × 0.15 × 0.1 mm

Data collection

Agilent SuperNova (single source at offset, Eos detector) diffractometer 3109 independent reflections
Radiation source: SuperNova (Mo) X-ray Source 2713 reflections with I > 2σ(I)
Mirror monochromator Rint = 0.044
Detector resolution: 15.9631 pixels mm-1 θmax = 26.4°, θmin = 2.8°
ω scans h = −19→15
Absorption correction: multi-scan (CrysAlis PRO; Agilent, 2012) k = −17→23
Tmin = 0.538, Tmax = 1.000 l = −13→13
8156 measured reflections

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.032 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.072 H-atom parameters constrained
S = 1.10 w = 1/[σ2(Fo2) + (0.0296P)2 + 0.5839P] where P = (Fo2 + 2Fc2)/3
3109 reflections (Δ/σ)max = 0.003
172 parameters Δρmax = 2.75 e Å3
0 restraints Δρmin = −1.82 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
C3 0.2646 (4) 0.9772 (3) 0.4633 (5) 0.0233 (13)
H3A 0.2439 1.0130 0.5173 0.028*
H3B 0.2335 0.9859 0.3748 0.028*
C4 0.3620 (4) 0.9877 (3) 0.4750 (5) 0.0243 (13)
H4A 0.3815 0.9562 0.4132 0.029*
H4B 0.3734 1.0383 0.4551 0.029*
C5 0.4128 (4) 0.9694 (3) 0.6083 (5) 0.0267 (13)
H5A 0.4755 0.9727 0.6122 0.032*
H5B 0.3985 1.0045 0.6691 0.032*
C6 0.3905 (4) 0.8933 (3) 0.6443 (6) 0.0255 (14)
H6A 0.4109 0.8580 0.5892 0.031*
H6B 0.4210 0.8833 0.7326 0.031*
C7 0.2938 (4) 0.8839 (3) 0.6313 (5) 0.0220 (13)
H7A 0.2816 0.8332 0.6501 0.026*
H7B 0.2746 0.9151 0.6937 0.026*
C11 −0.0526 (3) 0.8256 (3) 0.5180 (4) 0.0175 (11)
C12 −0.0838 (4) 0.8538 (3) 0.6181 (5) 0.0193 (11)
H12 −0.0832 0.9044 0.6328 0.023*
C13 −0.1159 (3) 0.8069 (3) 0.6957 (5) 0.0205 (12)
H13 −0.1370 0.8248 0.7649 0.025*
C14 −0.1167 (4) 0.7338 (3) 0.6710 (5) 0.0225 (12)
C15 −0.0857 (4) 0.7057 (3) 0.5722 (5) 0.0266 (14)
H15 −0.0870 0.6552 0.5571 0.032*
C16 −0.0528 (4) 0.7522 (3) 0.4957 (5) 0.0218 (12)
H16 −0.0303 0.7339 0.4280 0.026*
Cl8 0.10439 (9) 0.97037 (6) 0.62798 (11) 0.0190 (3)
Cl9 0.12310 (9) 0.80109 (7) 0.32660 (11) 0.0212 (3)
N2 0.2441 (3) 0.9028 (2) 0.5016 (4) 0.0160 (9)
H2 0.2629 0.8713 0.4469 0.019*
N10 −0.0192 (3) 0.8739 (2) 0.4368 (4) 0.0157 (9)
H10A −0.0439 0.9185 0.4409 0.019*
H10B −0.0373 0.8576 0.3552 0.019*
N17 −0.1522 (3) 0.6855 (3) 0.7523 (4) 0.0294 (12)
O18 −0.1616 (3) 0.7083 (2) 0.8546 (3) 0.0316 (10)
O19 −0.1721 (4) 0.6237 (2) 0.7150 (4) 0.0464 (14)
Pt1 0.113556 (13) 0.887195 (10) 0.474086 (16) 0.01473 (9)

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
C3 0.021 (3) 0.032 (3) 0.019 (3) −0.008 (2) 0.007 (2) 0.001 (2)
C4 0.024 (4) 0.030 (3) 0.022 (3) −0.003 (2) 0.010 (2) 0.000 (2)
C5 0.021 (3) 0.031 (3) 0.029 (3) −0.001 (3) 0.007 (3) −0.003 (3)
C6 0.022 (4) 0.026 (3) 0.028 (3) 0.000 (2) 0.005 (3) 0.000 (2)
C7 0.018 (3) 0.026 (3) 0.022 (3) −0.001 (2) 0.003 (2) 0.003 (2)
C11 0.013 (3) 0.022 (3) 0.016 (2) −0.002 (2) 0.000 (2) 0.000 (2)
C12 0.019 (3) 0.019 (3) 0.020 (3) −0.001 (2) 0.006 (2) −0.004 (2)
C13 0.013 (3) 0.034 (3) 0.014 (2) −0.003 (2) 0.004 (2) −0.002 (2)
C14 0.025 (3) 0.024 (3) 0.021 (3) −0.004 (2) 0.010 (2) 0.005 (2)
C15 0.040 (4) 0.017 (3) 0.021 (3) −0.001 (3) 0.004 (3) −0.002 (2)
C16 0.025 (3) 0.021 (3) 0.020 (3) −0.001 (2) 0.008 (2) 0.001 (2)
Cl8 0.0217 (8) 0.0195 (6) 0.0164 (6) 0.0017 (5) 0.0054 (5) −0.0009 (5)
Cl9 0.0220 (8) 0.0239 (6) 0.0174 (6) 0.0023 (6) 0.0039 (5) −0.0042 (5)
N2 0.012 (3) 0.020 (2) 0.016 (2) −0.0003 (18) 0.0033 (18) −0.0026 (18)
N10 0.013 (3) 0.019 (2) 0.015 (2) 0.0011 (18) 0.0022 (19) −0.0009 (18)
N17 0.031 (3) 0.030 (3) 0.028 (3) −0.003 (2) 0.009 (2) 0.006 (2)
O18 0.035 (3) 0.044 (2) 0.021 (2) −0.007 (2) 0.0163 (18) 0.0022 (19)
O19 0.077 (4) 0.026 (2) 0.046 (3) −0.006 (2) 0.034 (3) 0.003 (2)
Pt1 0.01469 (15) 0.01670 (13) 0.01350 (12) 0.00081 (7) 0.00464 (9) 0.00004 (7)

Geometric parameters (Å, º)

C3—H3A 0.9900 C12—H12 0.9500
C3—H3B 0.9900 C12—C13 1.387 (7)
C3—C4 1.535 (8) C13—H13 0.9500
C3—N2 1.497 (6) C13—C14 1.381 (7)
C4—H4A 0.9900 C14—C15 1.382 (7)
C4—H4B 0.9900 C14—N17 1.458 (7)
C4—C5 1.528 (8) C15—H15 0.9500
C5—H5A 0.9900 C15—C16 1.380 (7)
C5—H5B 0.9900 C16—H16 0.9500
C5—C6 1.526 (7) Cl8—Pt1 2.3039 (11)
C6—H6A 0.9900 Cl9—Pt1 2.2917 (12)
C6—H6B 0.9900 N2—H2 0.9300
C6—C7 1.520 (8) N2—Pt1 2.046 (4)
C7—H7A 0.9900 N10—H10A 0.9200
C7—H7B 0.9900 N10—H10B 0.9200
C7—N2 1.492 (7) N10—Pt1 2.068 (4)
C11—C12 1.396 (7) N17—O18 1.231 (5)
C11—C16 1.382 (7) N17—O19 1.232 (6)
C11—N10 1.440 (6)
H3A—C3—H3B 107.9 C13—C12—H12 120.5
C4—C3—H3A 109.3 C12—C13—H13 120.5
C4—C3—H3B 109.3 C14—C13—C12 119.0 (5)
N2—C3—H3A 109.3 C14—C13—H13 120.5
N2—C3—H3B 109.3 C13—C14—C15 122.2 (5)
N2—C3—C4 111.8 (4) C13—C14—N17 118.2 (5)
C3—C4—H4A 109.5 C15—C14—N17 119.6 (5)
C3—C4—H4B 109.5 C14—C15—H15 120.6
H4A—C4—H4B 108.1 C16—C15—C14 118.9 (5)
C5—C4—C3 110.8 (4) C16—C15—H15 120.6
C5—C4—H4A 109.5 C11—C16—H16 120.1
C5—C4—H4B 109.5 C15—C16—C11 119.7 (5)
C4—C5—H5A 109.6 C15—C16—H16 120.1
C4—C5—H5B 109.6 C3—N2—H2 106.2
H5A—C5—H5B 108.1 C3—N2—Pt1 111.5 (3)
C6—C5—C4 110.2 (5) C7—N2—C3 112.2 (4)
C6—C5—H5A 109.6 C7—N2—H2 106.2
C6—C5—H5B 109.6 C7—N2—Pt1 113.9 (3)
C5—C6—H6A 109.3 Pt1—N2—H2 106.2
C5—C6—H6B 109.3 C11—N10—H10A 108.0
H6A—C6—H6B 107.9 C11—N10—H10B 108.0
C7—C6—C5 111.7 (5) C11—N10—Pt1 117.0 (3)
C7—C6—H6A 109.3 H10A—N10—H10B 107.3
C7—C6—H6B 109.3 Pt1—N10—H10A 108.0
C6—C7—H7A 109.3 Pt1—N10—H10B 108.0
C6—C7—H7B 109.3 O18—N17—C14 118.7 (4)
H7A—C7—H7B 108.0 O18—N17—O19 122.8 (5)
N2—C7—C6 111.5 (4) O19—N17—C14 118.5 (5)
N2—C7—H7A 109.3 Cl9—Pt1—Cl8 177.84 (4)
N2—C7—H7B 109.3 N2—Pt1—Cl8 91.59 (12)
C12—C11—N10 119.4 (4) N2—Pt1—Cl9 88.59 (12)
C16—C11—C12 121.2 (5) N2—Pt1—N10 176.94 (15)
C16—C11—N10 119.4 (4) N10—Pt1—Cl8 89.56 (12)
C11—C12—H12 120.5 N10—Pt1—Cl9 90.37 (12)
C13—C12—C11 119.0 (5)
C3—C4—C5—C6 54.8 (6) C12—C11—N10—Pt1 97.9 (5)
C3—N2—Pt1—Cl8 −66.5 (3) C12—C13—C14—C15 0.7 (9)
C3—N2—Pt1—Cl9 115.7 (3) C12—C13—C14—N17 −178.9 (5)
C4—C3—N2—C7 54.8 (6) C13—C14—C15—C16 0.0 (9)
C4—C3—N2—Pt1 −176.0 (3) C13—C14—N17—O18 −16.4 (8)
C4—C5—C6—C7 −55.5 (6) C13—C14—N17—O19 163.1 (6)
C5—C6—C7—N2 55.4 (6) C14—C15—C16—C11 −0.9 (8)
C6—C7—N2—C3 −54.8 (6) C15—C14—N17—O18 164.0 (5)
C6—C7—N2—Pt1 177.4 (3) C15—C14—N17—O19 −16.5 (8)
C7—N2—Pt1—Cl8 61.7 (3) C16—C11—C12—C13 −0.3 (8)
C7—N2—Pt1—Cl9 −116.1 (3) C16—C11—N10—Pt1 −81.8 (5)
C11—C12—C13—C14 −0.6 (8) N2—C3—C4—C5 −54.9 (6)
C11—N10—Pt1—Cl8 −82.4 (3) N10—C11—C12—C13 180.0 (5)
C11—N10—Pt1—Cl9 95.5 (3) N10—C11—C16—C15 −179.2 (5)
C12—C11—C16—C15 1.1 (8) N17—C14—C15—C16 179.6 (5)

Hydrogen-bond geometry (Å, º)

D—H···A D—H H···A D···A D—H···A
N2—H2···O18i 0.93 2.27 3.182 (6) 165
N10—H10A···Cl8ii 0.92 2.32 3.198 (4) 158
N10—H10B···Cl9iii 0.92 2.37 3.255 (4) 161

Symmetry codes: (i) x+1/2, −y+3/2, z−1/2; (ii) −x, −y+2, −z+1; (iii) −x, y, −z+1/2.

References

  1. Agilent (2012). CrysAlis PRO. Agilent Technologies, Yarnton, Oxfordshire, England.
  2. Da, T. T., Vu, D. B. & Dinh, N. H. (2001). J. Pharm. Sci. (Vietnam), 6, 6–8.
  3. Dinh, N. H. & Da, T. T. (2003). J. Coord. Chem. 41, 683–689.
  4. Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.
  5. Groom, C. R. & Allen, F. H. (2014). Angew. Chem. Int. Ed. 53, 662–671. [DOI] [PubMed]
  6. Klein, A. V. & Hambley, T. W. (2009). Chem. Rev 109, 4911–4920. [DOI] [PubMed]
  7. Nguyen Thi Thanh, C., Nguyen Bich, N. & Van Meervelt, L. (2014). Acta Cryst. C70, 297–301. [DOI] [PubMed]
  8. Peng, Y., Zhong, H., Chen, Z.-F., Liu, Y.-C., Zhang, G.-H., Qin, Q.-P. & Liang, H. (2014). Chem. Pharm. Bull. 62, 221–228. [DOI] [PubMed]
  9. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  10. Skehan, P., Storeng, R., Scudiero, D., Monks, A., McMahon, J., Vistica, D., Warren, J. T., Bokesch, H., Kenney, S. & Boyd, M. R. (1990). J. Natl. Cancer Inst. 82, 1107–1112. [DOI] [PubMed]
  11. Wilson, J. J. & Lippard, S. J. (2014). Chem. Rev 114, 4470–4495. [DOI] [PMC free article] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) I. DOI: 10.1107/S2056989015009196/rz5159sup1.cif

e-71-00644-sup1.cif (195.3KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S2056989015009196/rz5159Isup2.hkl

e-71-00644-Isup2.hkl (152.7KB, hkl)

CCDC reference: 1400786

Additional supporting information: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Crystallographic Communications are provided here courtesy of International Union of Crystallography

RESOURCES