Skip to main content
Acta Crystallographica Section E: Crystallographic Communications logoLink to Acta Crystallographica Section E: Crystallographic Communications
. 2015 May 28;71(Pt 6):702–705. doi: 10.1107/S2056989015009639

Crystal structure of aqua­[(E)-N′-(5-bromo-2-oxido­benzyl­idene-κO)benzohydrazidato-κ2 O,N′]dioxidomolybdenum(VI) di­methyl­formamide monosolvate

Radhika Sudheer a, M Sithambaresan b,*, N R Sajitha a, E Manoj c, M R Prathapachandra Kurup a
PMCID: PMC4459377  PMID: 26090155

The title compound, [MoO2(C14H9N2O2Br)H2O]·C3H7NO, has a three-dimensional supra­molecular arrangement via a number of inter­molecular C—H⋯O, O—H⋯N and O—H⋯O hydrogen bonds, as well as C—H⋯π and π–π inter­actions.

Keywords: crystal structure, aroyl hydrazone, supra­molecular, hydrogen bonding, molybdenum complex

Abstract

The title compound, [Mo(C14H9BrN2O2)O2(H2O)]·C3H7NO, has a distorted octa­hedral geometry around the Mo atom, with the two terminal oxide groups lying cis to each other. The two aromatic rings present in the mol­ecule are almost coplanar, forming a dihedral angle of 1.4 (2)°. The five-membered ring involving the metal atom is puckered, with an amplitude Q = 0.358 (2) Å and ϕ = 204.1 (6)°. In the crystal, pairs of inversion-related mol­ecules are linked by O—H⋯N hydrogen bonds. An O—H⋯O hydrogen bond connects the water ligand to the di­methyl­formamide solvent mol­ecule. The crystal packing also features π–π [centroid–centroid distance of 3.688 (2) Å] and C—H⋯O inter­actions.

Chemical context  

Aroylhydrazones are unique organic compounds characterized by the azomethine group in their mol­ecules (Sheeja et al., 2010). They exhibit a wide range of applications in the field of biology, optics, catalysis and analytical chemistry. Their broad spectrum of biological activities include anti­microbial (Sreeja et al., 2004), anti­fungal (Nfor et al., 2013), anti­viral and anti­neoplastic (Nair et al., 2014) activities. Biocidal studies reveal that hydrazones can be used as fungicides (Rai, 2006). Hydrazones are also used as DNA photocleaving agents (Pal et al., 2014) and even as a reversible photochromic system (Li et al., 2014). Hydrazone-based mol­ecular switches, metallo­assemblies and sensors have also been developed (Su & Aprahamian, 2014).graphic file with name e-71-00702-scheme1.jpg

Molybdenum is an important trace metal capable of forming various complexes with versatile organic ligands. Its flexibility in possessing a large number of stable and accessible oxidation states leads to applications in industrial and bio­logical reactions. Molybdenum complexes play a major role in catalytic activity (Maurya et al., 2014). They are employed as catalysts in olefin epoxidation (Lei & Chelamalla, 2013), reduction of di­nitro­gen to ammonia (Sengupta et al., 2015) and oxidation of secondary alcohols (Maurya et al., 2015). The biological relevance of molybdenum complexes include their application in modelling active sites of molybdoenzymes (Pramanik et al., 2004) and also their anti­bacterial (Pasayat et al., 2012), cytotoxic and anti­proliferative activities (Pasayat et al., 2014).

Structural commentary  

The title complex [Mo(C14H9BrN2O2)O2(H2O)]·C3H7NO crystallizes in the monoclinic space group P21/n. The complex adopts a distorted octa­hedral geometry around the Mo atom (Fig. 1) in which the aroylhydrazone coordinates to the metal in a tridentate manner. One di­methyl­formamide solvent mol­ecule is present without any coordination to the metal centre. Two oxygen atoms and one nitro­gen atom of the aroylhydrazone and one of the terminal oxido atoms occupy equatorial positions in the complex. The axial positions are occupied by the other terminal oxygen and the oxygen atom of the water mol­ecule. The two terminal oxido groups are cis to each other. The C8—O2 bond length [1.314 (3) Å] is close to the reported C—O single bond length (1.318 Å; Gupta et al., 2007). The Mo1—O4 and Mo1—O3 bonds of 1.693 (3) and 1.702 (2) Å, respectively, are very close to the reported Mo=O double bond [1.697 (1) Å], indicating that the complex has two Mo=O double bonds (Ebrahimipour et al., 2015).

Figure 1.

Figure 1

The title compound drawn with 50% probability displacement ellipsoids for the non-H atoms.

The ligand adopts Z configurations with respect to the C7—N1 and C8—N2 bonds in the complex, which is clear from C1—C6—C7—N1 and N1—N2—C8—O2 torsion angles [9.8 (5) and −1.4 (4)°, respectively]. This configuration is similar to that of the metal-free ligand (Liu et al., 2006). The C1–C6 and C9–C14 rings make a dihedral angle of 1.4 (2)° with each other. Ring puckering analysis and least-squares plane calculations show that the Mo1/O1/C1/C6/C7/N1 ring is puckered with puckering amplitude Q = 0.358 (2)Å and ϕ = 204.1 (6)°.

Supra­molecular features  

The supra­molecular arrangement of the complex is driven by various types of classical and non-classical hydrogen-bonding inter­actions, in which O4, O5 and N2 act as acceptor atoms (Fig. 2, Table 1). There are classical O—H⋯N and O—H⋯O hydrogen-bonding inter­actions with DA distances 2.891 (4) and 2.701 (4) Å respectively, and a non-classical C—H⋯O inter­action with a DA distance of 3.421 (5) Å. These inter­actions connect pairs of mol­ecules along with the solvent di­methyl­formamide. The complex mol­ecule is stacked along the b axis through two different types of O—H⋯π inter­action (Fig. 3), with H–centroid distances 2.67 (4) and 2.94 (5) Å and a π–π inter­action between rings C1–C6 and C9–C14(2 − x, −y, −z) with a centroid-centroid distance of 3.688 (2) Å (Fig. 3). A view of the crystal packing along the a axis is given in Fig. 4.

Figure 2.

Figure 2

Hydrogen-bonding inter­actions in the title compound.

Table 1. Hydrogen-bond geometry (, ).

DHA DH HA D A DHA
C7H7O5i 0.93 2.51 3.421(5) 168
C17H17O4ii 0.93 2.63 3.404(5) 141
O6H6AN2iii 0.86(1) 2.04(1) 2.891(3) 173(3)
O6H6BO5iv 0.86(1) 1.85(1) 2.701(4) 171(4)

Symmetry codes: (i) Inline graphic; (ii) Inline graphic; (iii) Inline graphic; (iv) Inline graphic.

Figure 3.

Figure 3

O—H⋯π and π–π inter­actions present in the mol­ecule. Atom O6 is the water O atom.

Figure 4.

Figure 4

Packing of the mol­ecules, viewed along the a axis.

Synthesis and crystallization  

The benzoyl hydrazone was synthesized by a reported procedure (Liu et al., 2006). A methano­lic solution of benzhydrazide (0.0680 g, 0.5 mmol) was refluxed with a methano­lic solution of 5-bromo­salicyl­aldehyde (0.1005 g, 0.5 mmol) continuously for 3 h. The reaction mixture was kept aside for slow evaporation at room temperature. After 2–3 days, a pale-yellow compound formed, and was washed with methanol and dried under vacuum.

The complex was synthesized by refluxing a methano­lic solution of benzoyl hydrazone (0.1595 g, 0.5 mmol) and MoCl5 (0.1362 g, 0.5 mmol) for 3 h. The brown precipitate obtained was filtered, washed with methanol, dried and recrystallized from di­methyl­formamide (yield, 0.1688g, 63%). FT–IR (KBr, cm−1) νmax: 3400, 3194, 1657, 1546, 1345, 937, 810.

Refinement  

Crystal data, data collection and structure refinement details are summarized in Table 2. All C-bound H atoms were placed in calculated positions, guided by difference Fourier maps, with C—H bond lengths of 0.93–0.96 Å and with U iso(H) = 1.2U eq(carrier) or 1.5U eq(methyl C). The O—H distances were restrained with 1,2 and 1,3 distance restraints of 0.86 (1) and 1.36 (2) Å. Reflections (0 0 2), (1 0 1) and (Inline graphic 0 1), which were obscured by the beam stop, were omitted.

Table 2. Experimental details.

Crystal data
Chemical formula [Mo(C14H9BrN2O2)O2(H2O)]C3H7NO
M r 536.19
Crystal system, space group Monoclinic, P21/n
Temperature (K) 296
a, b, c () 10.8581(8), 7.1145(5), 25.998(2)
() 93.900(3)
V (3) 2003.7(3)
Z 4
Radiation type Mo K
(mm1) 2.69
Crystal size (mm) 0.40 0.15 0.10
 
Data collection
Diffractometer Bruker APEXII CCD
Absorption correction Multi-scan (SADABS; Bruker, 2004)
T min, T max 0.355, 0.447
No. of measured, independent and observed [I > 2(I)] reflections 14880, 4957, 3710
R int 0.027
(sin /)max (1) 0.667
 
Refinement
R[F 2 > 2(F 2)], wR(F 2), S 0.043, 0.096, 1.08
No. of reflections 4957
No. of parameters 264
No. of restraints 3
H-atom treatment H atoms treated by a mixture of independent and constrained refinement
max, min (e 3) 1.31, 0.89

Computer programs: APEX2, SAINT and XPREP (Bruker, 2004), SHELXS2014 and SHELXL97 (Sheldrick, 2008), SHELXL2014 (Sheldrick, 2015), ORTEP-3 (Burnett Johnson, 1996), DIAMOND (Brandenburg, 2010) and publCIF (Westrip, 2010).

Supplementary Material

Crystal structure: contains datablock(s) I. DOI: 10.1107/S2056989015009639/pk2550sup1.cif

e-71-00702-sup1.cif (468.6KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S2056989015009639/pk2550Isup2.hkl

e-71-00702-Isup2.hkl (394.6KB, hkl)

CCDC reference: 1401828

Additional supporting information: crystallographic information; 3D view; checkCIF report

Acknowledgments

NRS thanks the Council of Scientific and Industrial Research (India) for a Junior Research Fellowship. MRPK is grateful to UGC, New Delhi, India, for a UGC–BSR one-time grant to Faculty. EM thanks UGC for the financial assistance in the form of a minor research project. We thank the Sophisticated Analytical Instruments Facility, Cochin University of Science and Technology, Kochi-22, India, for the diffraction measurements.

supplementary crystallographic information

Crystal data

[Mo(C14H9BrN2O2)O2(H2O)]·C3H7NO F(000) = 1064
Mr = 536.19 Dx = 1.777 Mg m3
Monoclinic, P21/n Mo Kα radiation, λ = 0.71073 Å
a = 10.8581 (8) Å Cell parameters from 5189 reflections
b = 7.1145 (5) Å θ = 2.9–28.1°
c = 25.998 (2) Å µ = 2.69 mm1
β = 93.900 (3)° T = 296 K
V = 2003.7 (3) Å3 Needle, yellow
Z = 4 0.40 × 0.15 × 0.10 mm

Data collection

Bruker APEXII CCD diffractometer 3710 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tube Rint = 0.027
ω and φ scan θmax = 28.3°, θmin = 2.9°
Absorption correction: multi-scan (SADABS; Bruker, 2004) h = −14→14
Tmin = 0.355, Tmax = 0.447 k = −8→9
14880 measured reflections l = −34→31
4957 independent reflections

Refinement

Refinement on F2 Hydrogen site location: mixed
Least-squares matrix: full H atoms treated by a mixture of independent and constrained refinement
R[F2 > 2σ(F2)] = 0.043 w = 1/[σ2(Fo2) + (0.0418P)2 + 1.3003P] where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.096 (Δ/σ)max = 0.001
S = 1.08 Δρmax = 1.31 e Å3
4957 reflections Δρmin = −0.88 e Å3
264 parameters Extinction correction: SHELXL2014 (Sheldrick, 2015), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
3 restraints Extinction coefficient: 0.0007 (2)

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
C1 0.6397 (3) 0.2038 (4) 0.03480 (13) 0.0315 (7)
C2 0.5256 (3) 0.2057 (5) 0.05560 (14) 0.0399 (8)
H2 0.4549 0.1793 0.0346 0.048*
C3 0.5153 (3) 0.2461 (5) 0.10676 (14) 0.0453 (9)
H3 0.4382 0.2497 0.1203 0.054*
C4 0.6213 (3) 0.2812 (5) 0.13790 (14) 0.0433 (8)
C5 0.7351 (3) 0.2765 (5) 0.11877 (13) 0.0402 (8)
H5 0.8051 0.2982 0.1406 0.048*
C6 0.7471 (3) 0.2391 (4) 0.06655 (12) 0.0312 (6)
C7 0.8694 (3) 0.2411 (4) 0.04814 (12) 0.0317 (6)
H7 0.9367 0.2462 0.0722 0.038*
C8 1.0185 (3) 0.2494 (4) −0.06177 (12) 0.0299 (6)
C9 1.1389 (3) 0.2485 (4) −0.08474 (12) 0.0315 (6)
C10 1.2469 (3) 0.2848 (5) −0.05437 (13) 0.0354 (7)
H10 1.2436 0.3138 −0.0196 0.042*
C11 1.3591 (3) 0.2772 (5) −0.07643 (15) 0.0443 (9)
H11 1.4315 0.3026 −0.0564 0.053*
C12 1.3649 (3) 0.2328 (6) −0.12723 (16) 0.0524 (10)
H12 1.4410 0.2266 −0.1415 0.063*
C13 1.2584 (4) 0.1972 (7) −0.15748 (16) 0.0620 (12)
H13 1.2624 0.1666 −0.1921 0.074*
C14 1.1456 (3) 0.2070 (6) −0.13613 (14) 0.0498 (10)
H14 1.0735 0.1853 −0.1567 0.060*
C15 0.3158 (5) 1.0771 (9) 0.2643 (2) 0.105 (2)
H15A 0.2832 1.0438 0.2303 0.158*
H15B 0.3700 1.1831 0.2624 0.158*
H15C 0.2491 1.1090 0.2852 0.158*
C16 0.4848 (5) 0.8476 (8) 0.2605 (2) 0.0858 (16)
H16A 0.5059 0.7242 0.2732 0.129*
H16B 0.5547 0.9293 0.2661 0.129*
H16C 0.4614 0.8408 0.2243 0.129*
C17 0.3545 (4) 0.8450 (7) 0.33094 (16) 0.0553 (10)
H17 0.2877 0.8967 0.3465 0.066*
N1 0.8897 (2) 0.2360 (3) 0.00006 (10) 0.0284 (5)
N2 1.0134 (2) 0.2354 (4) −0.01231 (10) 0.0308 (6)
N3 0.3835 (3) 0.9198 (5) 0.28720 (12) 0.0550 (8)
O1 0.64511 (18) 0.1587 (4) −0.01536 (9) 0.0394 (5)
O2 0.92037 (18) 0.2583 (3) −0.09418 (9) 0.0367 (5)
O3 0.6772 (2) 0.1701 (4) −0.12470 (9) 0.0512 (7)
O4 0.7253 (2) 0.4738 (4) −0.06416 (11) 0.0539 (7)
O5 0.4074 (3) 0.7140 (5) 0.35275 (12) 0.0743 (9)
O6 0.8105 (2) −0.0693 (3) −0.06282 (10) 0.0384 (5)
Br1 0.60802 (5) 0.33679 (9) 0.20859 (2) 0.07719 (18)
Mo1 0.75010 (2) 0.23944 (4) −0.06785 (2) 0.03247 (10)
H6A 0.858 (3) −0.117 (5) −0.0387 (9) 0.046 (11)*
H6B 0.834 (4) −0.118 (6) −0.0907 (8) 0.092 (18)*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
C1 0.0296 (14) 0.0328 (18) 0.0324 (16) 0.0022 (12) 0.0037 (12) 0.0019 (13)
C2 0.0290 (15) 0.047 (2) 0.044 (2) −0.0013 (13) 0.0035 (14) 0.0032 (16)
C3 0.0371 (16) 0.057 (2) 0.043 (2) 0.0015 (17) 0.0154 (15) 0.0038 (18)
C4 0.052 (2) 0.047 (2) 0.0325 (18) −0.0001 (16) 0.0122 (15) 0.0028 (16)
C5 0.0396 (17) 0.048 (2) 0.0326 (17) 0.0010 (15) 0.0016 (13) 0.0010 (16)
C6 0.0303 (14) 0.0311 (16) 0.0322 (16) 0.0032 (13) 0.0022 (11) 0.0040 (14)
C7 0.0280 (13) 0.0354 (17) 0.0309 (16) 0.0003 (13) −0.0030 (11) −0.0033 (15)
C8 0.0270 (13) 0.0281 (16) 0.0346 (16) −0.0016 (13) 0.0017 (11) 0.0037 (14)
C9 0.0262 (13) 0.0333 (17) 0.0352 (17) 0.0019 (13) 0.0033 (12) 0.0053 (15)
C10 0.0318 (15) 0.038 (2) 0.0363 (18) −0.0015 (13) 0.0013 (13) 0.0070 (14)
C11 0.0276 (14) 0.056 (2) 0.049 (2) −0.0003 (15) 0.0004 (14) 0.0156 (18)
C12 0.0327 (16) 0.074 (3) 0.052 (2) 0.0104 (18) 0.0146 (16) 0.014 (2)
C13 0.047 (2) 0.101 (4) 0.039 (2) 0.009 (2) 0.0117 (17) 0.000 (2)
C14 0.0346 (17) 0.077 (3) 0.038 (2) −0.0012 (17) 0.0021 (15) −0.0014 (19)
C15 0.102 (4) 0.099 (5) 0.116 (5) 0.026 (4) 0.017 (4) 0.044 (4)
C16 0.083 (4) 0.103 (4) 0.075 (4) 0.012 (3) 0.035 (3) 0.021 (3)
C17 0.056 (2) 0.069 (3) 0.042 (2) −0.008 (2) 0.0081 (18) −0.005 (2)
N1 0.0229 (11) 0.0293 (14) 0.0326 (14) 0.0023 (10) 0.0002 (9) −0.0006 (12)
N2 0.0217 (11) 0.0353 (15) 0.0352 (14) 0.0005 (10) 0.0007 (10) −0.0010 (12)
N3 0.060 (2) 0.062 (2) 0.0432 (19) 0.0035 (16) 0.0052 (15) 0.0134 (16)
O1 0.0249 (10) 0.0582 (15) 0.0347 (13) −0.0035 (10) 0.0002 (9) −0.0062 (12)
O2 0.0259 (9) 0.0533 (15) 0.0307 (11) 0.0017 (10) −0.0001 (8) 0.0064 (11)
O3 0.0334 (12) 0.086 (2) 0.0321 (13) 0.0029 (12) −0.0099 (10) −0.0021 (13)
O4 0.0500 (15) 0.0474 (16) 0.0641 (18) 0.0155 (12) 0.0026 (13) 0.0089 (13)
O5 0.087 (2) 0.088 (3) 0.0481 (18) −0.0023 (18) 0.0050 (16) 0.0220 (17)
O6 0.0417 (13) 0.0406 (14) 0.0323 (13) 0.0056 (10) −0.0025 (10) −0.0038 (12)
Br1 0.0820 (3) 0.1149 (5) 0.0373 (2) −0.0145 (3) 0.0234 (2) −0.0067 (3)
Mo1 0.02312 (13) 0.04399 (19) 0.02970 (15) 0.00441 (12) −0.00257 (9) 0.00338 (13)

Geometric parameters (Å, º)

C1—O1 1.348 (4) C12—H12 0.9300
C1—C2 1.386 (4) C13—C14 1.380 (5)
C1—C6 1.405 (4) C13—H13 0.9300
C2—C3 1.373 (5) C14—H14 0.9300
C2—H2 0.9300 C15—N3 1.445 (6)
C3—C4 1.384 (5) C15—H15A 0.9600
C3—H3 0.9300 C15—H15B 0.9600
C4—C5 1.364 (5) C15—H15C 0.9600
C4—Br1 1.895 (4) C16—N3 1.435 (5)
C5—C6 1.398 (4) C16—H16A 0.9600
C5—H5 0.9300 C16—H16B 0.9600
C6—C7 1.441 (4) C16—H16C 0.9600
C7—N1 1.284 (4) C17—O5 1.215 (5)
C7—H7 0.9300 C17—N3 1.313 (5)
C8—N2 1.295 (4) C17—H17 0.9300
C8—O2 1.314 (3) N1—N2 1.403 (3)
C8—C9 1.474 (4) N1—Mo1 2.247 (2)
C9—C14 1.375 (5) O1—Mo1 1.924 (2)
C9—C10 1.393 (4) O2—Mo1 2.019 (2)
C10—C11 1.382 (4) O3—Mo1 1.702 (2)
C10—H10 0.9300 O4—Mo1 1.693 (3)
C11—C12 1.363 (5) O6—Mo1 2.293 (2)
C11—H11 0.9300 O6—H6A 0.857 (10)
C12—C13 1.377 (6) O6—H6B 0.856 (10)
O1—C1—C2 118.6 (3) N3—C15—H15A 109.5
O1—C1—C6 121.4 (3) N3—C15—H15B 109.5
C2—C1—C6 119.9 (3) H15A—C15—H15B 109.5
C3—C2—C1 120.9 (3) N3—C15—H15C 109.5
C3—C2—H2 119.5 H15A—C15—H15C 109.5
C1—C2—H2 119.5 H15B—C15—H15C 109.5
C2—C3—C4 119.0 (3) N3—C16—H16A 109.5
C2—C3—H3 120.5 N3—C16—H16B 109.5
C4—C3—H3 120.5 H16A—C16—H16B 109.5
C5—C4—C3 121.4 (3) N3—C16—H16C 109.5
C5—C4—Br1 119.3 (3) H16A—C16—H16C 109.5
C3—C4—Br1 119.3 (3) H16B—C16—H16C 109.5
C4—C5—C6 120.4 (3) O5—C17—N3 125.6 (4)
C4—C5—H5 119.8 O5—C17—H17 117.2
C6—C5—H5 119.8 N3—C17—H17 117.2
C5—C6—C1 118.4 (3) C7—N1—N2 117.0 (2)
C5—C6—C7 118.0 (3) C7—N1—Mo1 127.82 (19)
C1—C6—C7 123.6 (3) N2—N1—Mo1 115.16 (18)
N1—C7—C6 123.1 (3) C8—N2—N1 109.5 (2)
N1—C7—H7 118.5 C17—N3—C16 120.7 (4)
C6—C7—H7 118.5 C17—N3—C15 121.7 (4)
N2—C8—O2 123.6 (3) C16—N3—C15 117.6 (4)
N2—C8—C9 120.0 (3) C1—O1—Mo1 132.99 (19)
O2—C8—C9 116.3 (3) C8—O2—Mo1 120.02 (19)
C14—C9—C10 119.5 (3) Mo1—O6—H6A 126 (2)
C14—C9—C8 120.1 (3) Mo1—O6—H6B 116 (3)
C10—C9—C8 120.4 (3) H6A—O6—H6B 105 (2)
C11—C10—C9 119.3 (3) O4—Mo1—O3 105.57 (13)
C11—C10—H10 120.3 O4—Mo1—O1 98.63 (11)
C9—C10—H10 120.3 O3—Mo1—O1 105.44 (11)
C12—C11—C10 120.7 (3) O4—Mo1—O2 96.11 (11)
C12—C11—H11 119.7 O3—Mo1—O2 96.16 (10)
C10—C11—H11 119.7 O1—Mo1—O2 149.37 (9)
C11—C12—C13 120.3 (3) O4—Mo1—N1 93.86 (11)
C11—C12—H12 119.9 O3—Mo1—N1 158.18 (11)
C13—C12—H12 119.9 O1—Mo1—N1 80.79 (9)
C12—C13—C14 119.6 (4) O2—Mo1—N1 71.52 (9)
C12—C13—H13 120.2 O4—Mo1—O6 170.43 (11)
C14—C13—H13 120.2 O3—Mo1—O6 83.47 (11)
C9—C14—C13 120.6 (3) O1—Mo1—O6 81.64 (10)
C9—C14—H14 119.7 O2—Mo1—O6 79.51 (9)
C13—C14—H14 119.7 N1—Mo1—O6 76.70 (9)
O1—C1—C2—C3 178.4 (3) C8—C9—C10—C11 177.9 (3)
C6—C1—C2—C3 1.5 (5) C9—C10—C11—C12 −0.7 (5)
C1—C2—C3—C4 −1.4 (5) C10—C11—C12—C13 0.8 (6)
C2—C3—C4—C5 0.0 (6) C11—C12—C13—C14 0.2 (7)
C2—C3—C4—Br1 −179.9 (3) C10—C9—C14—C13 1.3 (6)
C3—C4—C5—C6 1.2 (5) C8—C9—C14—C13 −177.0 (4)
Br1—C4—C5—C6 −178.8 (3) C12—C13—C14—C9 −1.2 (7)
C4—C5—C6—C1 −1.0 (5) C6—C7—N1—N2 −178.9 (3)
C4—C5—C6—C7 178.3 (3) C6—C7—N1—Mo1 3.7 (4)
O1—C1—C6—C5 −177.1 (3) O2—C8—N2—N1 −1.4 (4)
C2—C1—C6—C5 −0.3 (5) C9—C8—N2—N1 −178.9 (3)
O1—C1—C6—C7 3.6 (5) C7—N1—N2—C8 −173.6 (3)
C2—C1—C6—C7 −179.6 (3) Mo1—N1—N2—C8 4.1 (3)
C5—C6—C7—N1 −169.5 (3) O5—C17—N3—C16 0.4 (7)
C1—C6—C7—N1 9.8 (5) O5—C17—N3—C15 −179.4 (5)
N2—C8—C9—C14 160.5 (3) C2—C1—O1—Mo1 146.6 (3)
O2—C8—C9—C14 −17.2 (5) C6—C1—O1—Mo1 −36.6 (4)
N2—C8—C9—C10 −17.8 (5) N2—C8—O2—Mo1 −2.5 (4)
O2—C8—C9—C10 164.5 (3) C9—C8—O2—Mo1 175.1 (2)
C14—C9—C10—C11 −0.4 (5)

Hydrogen-bond geometry (Å, º)

D—H···A D—H H···A D···A D—H···A
C7—H7···O5i 0.93 2.51 3.421 (5) 168
C17—H17···O4ii 0.93 2.63 3.404 (5) 141
O6—H6A···N2iii 0.86 (1) 2.04 (1) 2.891 (3) 173 (3)
O6—H6B···O5iv 0.86 (1) 1.85 (1) 2.701 (4) 171 (4)

Symmetry codes: (i) −x+3/2, y−1/2, −z+1/2; (ii) x−1/2, −y+3/2, z+1/2; (iii) −x+2, −y, −z; (iv) x+1/2, −y+1/2, z−1/2.

References

  1. Brandenburg, K. (2010). DIAMOND. Crystal Impact GbR, Bonn, Germany.
  2. Bruker (2004). APEX2, SAINT, XPREP and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.
  3. Burnett, M. N. & Johnson, C. K. (1996). ORTEPIII. Report ORNL6895. Oak Ridge National Laboratory, Tennessee, USA.
  4. Ebrahimipour, S. Y., Khabazadeh, H., Castro, J., Sheikhshoaie, I., Crochet, A. & Fromm, K. M. (2015). Inorg. Chim. Acta, 427, 52–61.
  5. Gupta, S., Barik, A. K., Pal, S., Hazra, A., Roy, S., Butcher, R. J. & Kar, S. K. (2007). Polyhedron, 26, 133–141.
  6. Lei, X. & Chelamalla, N. (2013). Polyhedron, 49, 244–251.
  7. Li, K., Xiang, Y., Wang, X., Li, J., Hu, R., Tong, A. & Tang, B. Z. (2014). J. Am. Chem. Soc. 136, 1643–1649. [DOI] [PubMed]
  8. Liu, H.-Y., Wang, H.-Y., Gao, F., Lu, Z.-S. & Niu, D.-Z. (2006). Acta Cryst. E62, o4495–o4496.
  9. Maurya, M. R., Dhaka, S. & Avecilla, F. (2014). Polyhedron, 67, 145–159.
  10. Maurya, M. R., Dhaka, S. & Avecilla, F. (2015). New J. Chem. 39, 2130–2139.
  11. Nair, R. S., Kuriakose, M., Somasundaram, V., Shenoi, V., Kurup, M. R. P. & Srinivas, P. (2014). Life Sci. 116, 90–97. [DOI] [PubMed]
  12. Nfor, E. N., Husian, A., Majoumo-Mbe, F., Njah, I. N., Offiong, O. E. & Bourne, S. A. (2013). Polyhedron, 63, 207–213.
  13. Pal, R., Kumar, V., Gupta, A. K. & Beniwal, V. (2014). Med. Chem. Res. 23, 3327–3335.
  14. Pasayat, S., Dash, S. P., Majumder, S., Dinda, R., Sinn, E., Stoeckli-Evans, H., Mukhopadhyay, S., Bhutia, S. K. & Mitra, P. (2014). Polyhedron, 80, 198–205.
  15. Pasayat, S., Dash, S. P., Saswati, Majhi, P. K., Patil, Y. P., Nethaji, M., Dash, H. R., Das, S. & Dinda, R. (2012). Polyhedron, 38, 198–204.
  16. Pramanik, N. R., Ghosh, S., Raychaudhuri, T. K., Ray, S., Butcher, R. J. & Mandal, S. S. (2004). Polyhedron, 23, 1595–1603.
  17. Rai, B. K. (2006). J. Indian Council Chem. 23, 13–16.
  18. Sengupta, D., Gangopadhyay, S., Drew, M. G. B. & Gangopadhyay, P. K. (2015). Dalton Trans. 44, 1323–1331. [DOI] [PubMed]
  19. Sheeja, S. R., Mangalam, N. A., Prathapachandra Kurup, M. R., Sheena Mary, Y., Raju, K., Varghese, H. T. & Panicker, C. Y. (2010). J. Mol. Struct. 973, 36–46.
  20. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  21. Sheldrick, G. M. (2015). Acta Cryst. C71, 3–8.
  22. Sreeja, P. B., Prathapachandra Kurup, M. R., Kishore, A. & Jasmin, C. (2004). Polyhedron, 23, 575–581.
  23. Su, X. & Aprahamian, I. (2014). Chem. Soc. Rev. 43, 1963–1981. [DOI] [PubMed]
  24. Westrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) I. DOI: 10.1107/S2056989015009639/pk2550sup1.cif

e-71-00702-sup1.cif (468.6KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S2056989015009639/pk2550Isup2.hkl

e-71-00702-Isup2.hkl (394.6KB, hkl)

CCDC reference: 1401828

Additional supporting information: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Crystallographic Communications are provided here courtesy of International Union of Crystallography

RESOURCES