Skip to main content
Acta Crystallographica Section E: Crystallographic Communications logoLink to Acta Crystallographica Section E: Crystallographic Communications
. 2015 May 20;71(Pt 6):654–659. doi: 10.1107/S2056989015008476

Crystal structures of four indole derivatives as possible cannabinoid allosteric antagonists

Jamie R Kerr a, Laurent Trembleau a,*, John M D Storey a, James L Wardell a,b, William T A Harrison a,*
PMCID: PMC4459378  PMID: 26090143

The crystal structures of four indole derivatives with various substituents at the 2-, 3- and 5-positions of the ring system are described. The dominant inter­molecular inter­action in each case is an N—H⋯O hydrogen bond, which generates either chains or inversion dimers. Weak C—H⋯O, C—H⋯π and π–π inter­actions occur in these structures but there is no consistent pattern amongst them. Two of these compounds act as modest enhancers of CB1 cannabanoid signalling and two are inactive.

Keywords: crystal structure, indole, cannabin­oid allosteric antagonist, N—H⋯O hydrogen bond

Abstract

The crystal structures of four indole derivatives with various substituents at the 2-, 3- and 5-positions of the ring system are described, namely, ethyl 3-(5-chloro-2-phenyl-1H-indol-3-yl)-3-phenyl­propano­ate, C25H22ClNO2, (I), 2-bromo-3-(2-nitro-1-phenyl­eth­yl)-1H-indole, C16H13BrN2O2, (II), 5-meth­oxy-3-(2-nitro-1-phenyl­eth­yl)-2-phenyl-1H-indole, C23H20N2O3, (III), and 5-chloro-3-(2-nitro-1-phenyl­eth­yl)-2-phenyl-1H-indole, C22H17ClN2O2, (IV). The dominant inter­molecular inter­action in each case is an N—H⋯O hydrogen bond, which generates either chains or inversion dimers. Weak C—H⋯O, C—H⋯π and π–π inter­actions occur in these structures but there is no consistent pattern amongst them. Two of these compounds act as modest enhancers of CB1 cannabanoid signalling and two are inactive.

Chemical context  

The indole ring system is an important element of many natural and synthetic mol­ecules with important biological activities (Biswal et al., 2012; Kaushik et al., 2013; Sharma et al., 2010). As part of our ongoing studies in this area, a group of indole derivatives with different substituents at the 2, 3 and 5-positions of the ring system were synthesised and tested as possible cannabinoid allosteric antagonists (Kerr, 2013). These compounds are analogues of 3-(2-nitro-1-phenyl­eth­yl)-2-phenyl-1H-indole (known as F087; see scheme), a positive allosteric modulator of CB1 (Adam et al., 2007).graphic file with name e-71-00654-scheme1.jpg

We now report the crystal structures of four of the compounds from that study, viz. ethyl 3-(5-chloro-2-phenyl-1H-indol-3-yl)-3-phenyl­propano­ate, (I), 2-bromo-3-(2-nitro-1-phenyl­eth­yl)-1H-indole, (II), 5-meth­oxy-3-(2-nitro-1-phenyl­eth­yl)-2-phenyl-1H-indole, (III), and 5-chloro-3-(2-nitro-1-phenyl­eth­yl)-2-phenyl-1H-indole, (IV). Compounds (III) and (IV) were found to act as moderate enhancers of CB1 signalling at 1 µM concentration (Kerr, 2013) but compounds (I) and (II) were inactive.

Structural commentary  

Each compound crystallizes in a centrosymmetric space group [Pbcn for (I), P21/c for (II) and P Inline graphic for (III) and (IV)] with one mol­ecule in the asymmetric unit: in each structure, the stereogenic carbon atom (C9) was assigned an arbitrary R configuration. All the bond lengths and angles in these compounds lie within their expected ranges and full details are available in the CIF.

The mol­ecular structure of (I) is illustrated in Fig. 1. The deviations of atoms Cl1, C9 and C20 from the mean plane (r.m.s. deviation = 0.033 Å) of the indole ring system are 0.0293 (17), −0.156 (2) and −0.008 (2) Å, respectively. The larger deviation for C9 may arise from the steric crowding around it. The dihedral angle between the indole ring system and the C20-phenyl ring is 54.07 (4)° and the C7—C8—C20—C21 torsion angle is 53.7 (3)°. This twisting facilitates the formation of an intra­molecular C—H⋯O inter­action (Table 1), which generates an S(9) ring. Atom H9 is close to eclipsed with C8 (C8—C7—C9—H9 = 2°) and the C14 phenyl ring and the C10-bonded ester groups project to opposite sides of the indole ring, as qu­anti­fied by the C8—C7—C9—C14 and C8—C7—C9—C10 torsion angles of 119.22 (17) and −115.32 (18)°, respectively. Looking down the C9—C7 bond with C8 facing upwards, the C14-phenyl group lies to the left of the indole ring system and the ester group to the right. With respect to the C9—C10 bond, atoms C11 and C14 have an anti disposition [C14—C9—C10—C11 = 175.39 (13)°]. The C11—O1—C12—C13 torsion angle is −81.27 (19)° and the dihedral angle between the indole ring system and the C14 phenyl ring is 86.55 (4)°.

Figure 1.

Figure 1

The mol­ecular structure of (I), showing 50% displacement ellipsoids. The double-dashed line indicates a weak C—H⋯O hydrogen bond.

Table 1. Hydrogen-bond geometry (Å, °) for (I) .

Cg2 and Cg4 are the centroids of the C1–C6 and C20–C25 rings, respectively.

D—H⋯A D—H H⋯A DA D—H⋯A
C21—H21⋯O2 0.93 2.34 3.258 (2) 169
N1—H1⋯O2i 0.91 (2) 1.95 (2) 2.8310 (18) 163.0 (18)
C10—H10ACg4ii 0.97 2.93 3.8022 (18) 150
C12—H12ACg2iii 0.97 2.97 3.702 (2) 133
C16—H16⋯Cg4iv 0.93 2.78 3.643 (2) 154
C19—H19⋯Cg2i 0.93 2.96 3.7860 (18) 149

Symmetry codes: (i) Inline graphic; (ii) Inline graphic; (iii) Inline graphic; (iv) Inline graphic.

The mol­ecular structure of (II) is shown in Fig. 2. Atoms Br1 and C9 deviate from the mean plane of the indole ring system (r.m.s. deviation = 0.011 Å) by 0.073 (3) and 0.134 (4) Å, respectively. Again, the larger deviation of C9 can be ascribed to steric crowding. The substituents bonded to the 3-position of the ring in (II) are characterized by the C8—C7—C9—H9 torsion angle of −15° and the corresponding C8—C7—C9—C11 and C8—C7—C9—C10 angles of 101.0 (3)° and −134.3 (3)°, respectively. These indicate that the substituents attached to C9 are twisted by about 18° compared to the equivalent groups in (I), although the phenyl ring and nitro group still project in roughly opposite senses with respect to the indole ring. The N2—C10—C9—C11 torsion angle of −174.4 (3)° indicates that the nitro group and phenyl ring lie in an anti orientation about the C10—C9 bond. The dihedral angle between the indole ring system and the phenyl ring is 81.69 (7)°.

Figure 2.

Figure 2

The mol­ecular structure of (II), showing 50% displacement ellipsoids.

Fig. 3 shows the mol­ecular structure of (III). The r.m.s. deviation for the atoms making up the indole ring system is 0.013Å, and O3, C9 and C17 deviate from the mean plane by 0.0273 (12), −0.1302 (14), and 0.148 (1)Å, respectively. The dihedral angle between the indole ring plane and the C17-ring is 53.76 (3). This is similar to the equivalent value for (I), but the twist is in the opposite sense, as indicated by the C7—C8—C17—C22 torsion angle of −52.40 (15)°: in this case no intra­molecular C—H⋯O bond is present. The dihedral angle between the indole ring and the C11 ring is 67.12 (3)°. The C8—C7—C9—H9, C8—C7—C9—C11 and C8—C7—C9—C10 torsion angles are −17, 102.46 (11) and −133.20 (10)°, respectively, which are almost identical to the corresponding values for (II). These indicate that the C9—H9 bond is twisted away from the indole plane to the same side of the mol­ecule as the nitro group: looking down the C9—C7 bond, C9—H9 is rotated in a clockwise sense with respect to the ring. The disposition of N2 and C11 about the C10—C9 bond is anti [torsion angle = −171.63 (8)°]. The methyl C atom of the meth­oxy group deviates from the indole plane by −0.1302 (14) Å, i.e. slightly towards the side of the mol­ecule occupied by the C11 phenyl ring.

Figure 3.

Figure 3

The mol­ecular structure of (III), showing 50% displacement ellipsoids.

A view of the mol­ecular structure of (IV) can be seen in Fig. 4. The indole ring system has an r.m.s. deviation of 0.008 Å for its nine non-hydrogen atoms and Cl1, C9 and C17 deviate from the mean plane by 0.009 (1), 0.093 (1) and −0.044 (1)Å. Thus, the displacement of C9 is slightly smaller than in the other three structures presented here. In terms of the orientation of the substituents at the 3-position of the indole ring, the C8—C7—C9—H9, C8—C7—C9—C11 and C8—C7—C9—C10 torsion angles are −17, 102.42 (14) and −133.94 (12)°, respectively, which are very similar to the equivalent data for (II) and (III), again indicating that C9—H9 is twisted towards the nitro group. The N2—C10—C9—C11 torsion angle of 179.61 (9)° shows that the anti orientation of N2 and C11 exactly mirrors that of the equivalent atoms in (II) and (III).

Figure 4.

Figure 4

The mol­ecular structure of (IV), showing 50% displacement ellipsoids.

All-in-all, the conformations of (II), (III) and (IV) are very similar, especially in terms of the orientations of the substit­uents attached to C9 with respect to the indole ring. (I) differs slightly in that C9—H9 lies almost in the indole ring plane rather than being twisted away from it, which possibly correlates with the intra­molecular C—H⋯O inter­action noted above. Of course, in every case, crystal symmetry generates an equal number of mol­ecules of the opposite chirality (i.e., S configuration of C9), with an anti­clockwise twist of C9—H9 with respect to the indole ring system.

Supra­molecular features  

As might be expected, the dominant supra­molecular motif in all these compounds involve N—H⋯O hydrogen bonds, although the resulting topologies [chains for (I) and (II) and dimers for (III) and (IV)] are different. Various weak inter­actions also occur, as described below and listed in Tables 1–4 , respectively.

Table 2. Hydrogen-bond geometry (Å, °) for (II) .

Cg2 and Cg4 are the centroids of the C1–C6 ring.

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1⋯O1i 0.80 (4) 2.32 (4) 3.087 (3) 161 (4)
C12—H12⋯Cg2ii 0.95 2.75 3.500 (3) 136

Symmetry codes: (i) Inline graphic; (ii) Inline graphic.

Table 3. Hydrogen-bond geometry (Å, °) for (III) .

Cg2 and Cg4 are the centroids of the C1–C6 and C17–C22 rings, respectively.

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1⋯O1i 0.867 (14) 2.470 (14) 3.1872 (13) 140.5 (12)
C10—H10A⋯O3ii 0.99 2.56 2.9934 (14) 107
C14—H14⋯O3iii 0.95 2.51 3.4546 (14) 173
C18—H18⋯O1i 0.95 2.59 3.2877 (14) 131
C21—H21⋯Cg2iv 0.95 2.83 3.5297 (13) 131
C23—H23CCg4v 0.98 2.76 3.5781 (13) 141

Symmetry codes: (i) Inline graphic; (ii) Inline graphic; (iii) Inline graphic; (iv) Inline graphic; (v) Inline graphic.

Table 4. Hydrogen-bond geometry (Å, °) for (IV) .

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1⋯O2i 0.814 (16) 2.517 (16) 3.0806 (15) 127.4 (14)
C14—H14⋯O1ii 0.95 2.60 3.1827 (17) 120

Symmetry codes: (i) Inline graphic; (ii) Inline graphic.

In (I), the N1—H1⋯O2i [(i) = Inline graphic − x, y − Inline graphic, z] bond links the mol­ecules into [100] chains with a C(8) chain motif (Fig. 5); adjacent mol­ecules are related by b-glide symmetry. A PLATON (Spek, 2009) analysis of the packing in (I) indicated the presence of no fewer than four C—H⋯π inter­actions, although the C10, C16 and C19 bonds must be very weak based on the long H⋯π separation. Together, these links lead to a three-dimensional network in the crystal. There are no aromatic π–π stacking inter­actions in (I), as the shortest ring centroid–centroid separation is greater than 4.6 Å.

Figure 5.

Figure 5

Partial packing diagram for (I), showing the formation of [100] chains linked by N—H⋯O hydrogen bonds (double-dashed lines). Symmetry code as in Table 1.

The mol­ecules of (II) are linked by N1—H1—O2i [(i) = x, Inline graphic − y, z − Inline graphic] hydrogen bonds into [001] chains (Fig. 6) characterized by a C(8) motif: adjacent mol­ecules are related by c-glide symmetry. Just one C—H⋯π inter­action occurs in the crystal of (II) but a π–π stacking inter­action involving inversion-related pairs of C1–C6 benzene rings is also observed: the centroid–centroid separation is 3.7122 (16) Å and the slippage is 1.69 Å. The weak links connect the chains into a three-dimensional network.

Figure 6.

Figure 6

Partial packing diagram for (II), showing the formation of [001] chains linked by N—H⋯O hydrogen bonds (double-dashed lines). Symmetry code as in Table 2.

In (III), inversion dimers linked by N1—H1⋯O1i and N1i—H1i⋯O1 [(i) = −x, 1 − y, 1 − z] hydrogen bonds occur, which generate Inline graphic(16) loops. The dimer linkage is reinforced by a pair of C12—H12⋯O1 inter­actions (Fig. 7). The dimers are linked by several C—H⋯O and C—H⋯π inter­actions, generating a three-dimensional network. The shortest ring centroid–centroid separation is over 4.7 Å.

Figure 7.

Figure 7

An inversion dimer in the crystal of (III) linked by pairs of N—H⋯O and C—H⋯O hydrogen bonds (double-dashed lines). Symmetry code as in Table 3.

In the crystal of (IV), the mol­ecules associate into inversion dimers linked by N1—H1⋯O2i and N1i—H1i⋯O2 [(i) = 1 − x, 1 − y, 1 − z] hydrogen bonds (Fig. 8). Just one weak C—H⋯O hydrogen bond connects the dimers into [010] chains. The shortest ring centroid–centroid separation is over 4.5 Å.

Figure 8.

Figure 8

Fragment of an [010] chain in the crystal of (IV) linked by N—H⋯O and C—H⋯O hydrogen bonds (double-dashed lines). Symmetry codes as in Table 4.

Database survey  

There are over 4000 indole derivatives with different substituents (including H) at the 2, 3 and 5 positions of the ring system reported in the Cambridge Structural Database (CSD; Groom & Allen, 2014). Narrowing the survey to indole deriv­atives with a C atom bonded to the 2-position of the ring and an sp 3-hybridized C atom with two further C atoms and one H atom bonded to it at the 3-position (as per C9 in the present structures) yielded 72 hits. An analysis of the dihedral angle in these structures corresponding to C8—C7—C9—H9 in the present structures showed a wide spread of values with no obvious overall pattern.

Synthesis and crystallization  

A mixture of sodium chloride (219 mg, 3.75 mmol) and diethyl 2-([5-chloro-2-phenyl-1H-indol-3-yl]{phen­yl}meth­yl)malonate (847 mg, 1.78 mmol), [prepared from diethyl benzyl­idene­malonate and 5-chloro-2-phenyl­indole in the presence of Cu(OTf)2] in DMSO (10.8 ml) and water (150 ml) was stirred at 443K for 16 h. After cooling to room temperature, water was added until a precipitate formed (25 ml). The mixture was extracted into DCM (3 × 25 ml), washed with saturated NaCl(aq) (15 ml), dried over sodium sulfate, filtered and evaporated to leave a red oil. Flash chromatography (1:1 DCM, hexa­nes) afforded (I) as a colourless solid (638 mg, 89%), m.p. 464K. Colourless blocks were recrystallized from methanol solution at room temperature. IR (Nujol, cm−1) 3391, 2911, 1738, 1629, 1581, 1556, 1445, 1399, 1283, 1271, 1215, 1208, 1145, 1113, 1077, 874, 852,761. HRMS (ESI) for C25H23 35ClNO2 [M + H]+ calculated 404.1418, found 404.1416.

A mixture of indole (1.069 g, 9.13 mmol), trans-β-nitro­styrene (1.372 g, 9.20 mmol) and sulfamic acid (178 mg, 1.83 mmol) were refluxed in EtOH (45 ml) for 24 h. Removal of the solvent and flash chromatography (1:3 diethyl ether, hexa­nes) afforded 3-(2-nitro-1-phenyl­eth­yl)-1H-indole as a colourless solid (2.020 g, 83%). This was refluxed in ClCl4 (40 ml) with NBS (1.505 g, 8.46 mmol) for 96 h, filtered and the solvent evaporated under reduced pressure to leave a red oily residue. Flash chromatography of the residue (1:5 EtOAc, hexa­nes) gave (II) as a peach-coloured solid (1.386 g, 53%). Pale-brown plates were recrystallized from methanol solution at room temperature; m.p. 436K; IR (KBr, cm−1) 3353, 2987, 2923, 2856, 1548, 1452, 1337, 740 and 701; RMS (ESI) for C16H13 79BrN2O2Na [M + Na]+ calculated 367.0058, found 367.0049.

A mixture of trans-β-nitro­styrene (167 mg, 1.12 mmol), sulfamic acid (22 mg, 0.22 mmol) and 5-meth­oxy-2-phenyl-1H-indole (250 mg, 1.12 mmol), prepared from p-meth­oxy­phenyl­hydrazine hydro­chloride, aceto­phenone and PPA in EtOH (5 ml) was stirred at 323K for 40 h. The solvent was removed under reduced pressure and the residue was flash chromatographed (1:5 EtOAc, hexa­nes) to provide (III) as an orange solid (210 mg, 50%): Light-yellow blocks were recrystallized from methanol solution at room temperature; m.p. 434–436K; IR (KBr, cm−1) 3407, 1629, 1600, 1581, 1534, 1369, 1200 and 1141; HRMS (ESI) for C23H21N2O3 [M + H]+ calculated 373.1553, found 373.1544.

5-Chloro-2-phenyl-1H-indole (1.286 g, 5.65 mmol), trans-β-nitro­styrene (843 mg, 5.65 mmol) and sulfamic acid (110 mg, 1.13 mmol) were stirred in EtOH (80 ml) at reflux for 15 h. The solvent was removed under reduced pressure and the crude product was purified by flash chromatography (1:4 EtOAc, hexa­nes then 1:2 EtOAc, hexa­nes) to give the product as a yellow solid (1.105 g, 52%). Rf 0.23 (1:4 EtOAc, hexa­nes); m.p. 457–459K; IR (KBr, cm−1) 3396, 3034, 1740, 1598, 1510, 1318, 1055 and 839; HRMS (ESI) for C22H18N2O2Cl [M + H]+ calculated 377.1057, found 377.1054.

Refinement  

Crystal data, data collection and structure refinement details are summarized in Table 5. The N-bound H atoms were located in difference maps and their positions freely refined. The C-bound H atoms were geometrically placed (C—H = 0.93–0.98 Å) and refined as riding atoms. The constraint U iso(H) = 1.2U eq(carrier) or 1.5U eq(methyl carrier) was applied in all cases. The methyl H atoms (if any) were allowed to rotate, but not to tip, to best fit the electron density.

Table 5. Experimental details.

  (I) (II) (III) (IV)
Crystal data
Chemical formula C25H22ClNO2 C16H13BrN2O2 C23H20N2O3 C22H17ClN2O2
M r 403.89 345.19 372.41 376.83
Crystal system, space group Orthorhombic, P b c n Monoclinic, P21/c Triclinic, P Inline graphic Triclinic, P Inline graphic
Temperature (K) 100 100 100 100
a, b, c (Å) 10.1558 (7), 12.1446 (9), 33.605 (2) 9.7223 (7), 10.2804 (7), 13.9652 (10) 9.7561 (7), 10.0258 (7), 10.8942 (8) 9.5830 (7), 9.7555 (7), 10.2307 (7)
α, β, γ (°) 90, 90, 90 90, 91.238 (2), 90 116.415 (5), 91.843 (4), 97.963 (4) 79.546 (6), 77.966 (6), 87.455 (7)
V3) 4144.8 (5) 1395.48 (17) 939.84 (12) 919.87 (11)
Z 8 4 2 2
Radiation type Mo Kα Mo Kα Mo Kα Mo Kα
μ (mm−1) 0.21 2.95 0.09 0.23
Crystal size (mm) 0.22 × 0.19 × 0.07 0.22 × 0.19 × 0.05 0.24 × 0.21 × 0.03 0.48 × 0.36 × 0.16
 
Data collection
Diffractometer Rigaku Mercury CCD Rigaku Mercury CCD Rigaku Mercury CCD Rigaku Mercury CCD
Absorption correction Multi-scan (SADABS; Sheldrick, 1996) Multi-scan (SADABS; Sheldrick, 1996)
T min, T max 0.563, 0.867 0.899, 0.965
No. of measured, independent and observed [I > 2σ(I)] reflections 27690, 4720, 3714 14919, 3213, 2911 12625, 4305, 3782 13253, 4138, 3363
R int 0.079 0.042 0.028 0.023
(sin θ/λ)max−1) 0.648 0.650 0.650 0.649
 
Refinement
R[F 2 > 2σ(F 2)], wR(F 2), S 0.053, 0.153, 1.05 0.040, 0.108, 1.07 0.035, 0.097, 1.06 0.031, 0.085, 1.06
No. of reflections 4720 3213 4305 4138
No. of parameters 266 193 257 247
H-atom treatment H atoms treated by a mixture of independent and constrained refinement H atoms treated by a mixture of independent and constrained refinement H atoms treated by a mixture of independent and constrained refinement H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 0.54, −0.25 1.26, −0.83 0.30, −0.22 0.27, −0.23

Computer programs: CrystalClear (Rigaku, 2012), SHELXS97 and SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 2012) and publCIF (Westrip, 2010).

Supplementary Material

Crystal structure: contains datablock(s) I, II, III, IV, global. DOI: 10.1107/S2056989015008476/lh5763sup1.cif

e-71-00654-sup1.cif (73.3KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S2056989015008476/lh5763Isup2.hkl

e-71-00654-Isup2.hkl (231.3KB, hkl)

Structure factors: contains datablock(s) II. DOI: 10.1107/S2056989015008476/lh5763IIsup3.hkl

e-71-00654-IIsup3.hkl (157.6KB, hkl)

Structure factors: contains datablock(s) III. DOI: 10.1107/S2056989015008476/lh5763IIIsup4.hkl

e-71-00654-IIIsup4.hkl (210.9KB, hkl)

Structure factors: contains datablock(s) IV. DOI: 10.1107/S2056989015008476/lh5763IVsup5.hkl

e-71-00654-IVsup5.hkl (202.8KB, hkl)

Supporting information file. DOI: 10.1107/S2056989015008476/lh5763Isup6.cml

Supporting information file. DOI: 10.1107/S2056989015008476/lh5763IIsup7.cml

Supporting information file. DOI: 10.1107/S2056989015008476/lh5763IIIsup8.cml

Supporting information file. DOI: 10.1107/S2056989015008476/lh5763IVsup9.cml

CCDC references: 1062393, 1062392, 1062391, 1062390

Additional supporting information: crystallographic information; 3D view; checkCIF report

Acknowledgments

We thank the EPSRC National Crystallography Service (University of Southampton) for the data collections and the EPSRC National Mass Spectrometry Service (University of Swansea) for the HRMS data. We thank John Low for carrying out the Cambridge Database survey.

supplementary crystallographic information

(I) Ethyl 3-(5-chloro-2-phenyl-1H-indol-3-yl)-3-phenylpropanoate . Crystal data

C25H22ClNO2 F(000) = 1696
Mr = 403.89 Dx = 1.294 Mg m3
Orthorhombic, Pbcn Mo Kα radiation, λ = 0.71075 Å
Hall symbol: -P 2n 2ab θ = 2.6–27.5°
a = 10.1558 (7) Å µ = 0.21 mm1
b = 12.1446 (9) Å T = 100 K
c = 33.605 (2) Å Block, colourless
V = 4144.8 (5) Å3 0.22 × 0.19 × 0.07 mm
Z = 8

(I) Ethyl 3-(5-chloro-2-phenyl-1H-indol-3-yl)-3-phenylpropanoate . Data collection

Rigaku Mercury CCD diffractometer 3714 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tube Rint = 0.079
Graphite monochromator θmax = 27.4°, θmin = 2.6°
ω scans h = −10→13
27690 measured reflections k = −15→15
4720 independent reflections l = −27→43

(I) Ethyl 3-(5-chloro-2-phenyl-1H-indol-3-yl)-3-phenylpropanoate . Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.053 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.153 H atoms treated by a mixture of independent and constrained refinement
S = 1.05 w = 1/[σ2(Fo2) + (0.0961P)2 + 0.2647P] where P = (Fo2 + 2Fc2)/3
4720 reflections (Δ/σ)max < 0.001
266 parameters Δρmax = 0.54 e Å3
0 restraints Δρmin = −0.24 e Å3

(I) Ethyl 3-(5-chloro-2-phenyl-1H-indol-3-yl)-3-phenylpropanoate . Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

(I) Ethyl 3-(5-chloro-2-phenyl-1H-indol-3-yl)-3-phenylpropanoate . Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
C1 0.54948 (15) 0.29890 (13) 0.09779 (5) 0.0311 (4)
C2 0.61955 (17) 0.22877 (13) 0.07259 (5) 0.0348 (4)
H2 0.5861 0.1603 0.0654 0.042*
C3 0.73983 (18) 0.26430 (14) 0.05867 (5) 0.0347 (4)
H3 0.7883 0.2201 0.0415 0.042*
C4 0.78952 (16) 0.36789 (14) 0.07051 (5) 0.0326 (4)
C5 0.72080 (16) 0.43914 (13) 0.09457 (5) 0.0302 (4)
H5 0.7557 0.5072 0.1016 0.036*
C6 0.59588 (16) 0.40567 (12) 0.10815 (5) 0.0290 (3)
C7 0.49436 (15) 0.45698 (12) 0.13159 (5) 0.0281 (3)
C8 0.39449 (16) 0.38103 (13) 0.13567 (5) 0.0297 (3)
C9 0.49669 (15) 0.57406 (12) 0.14740 (5) 0.0279 (3)
H9 0.4144 0.5860 0.1620 0.033*
C10 0.50018 (16) 0.65784 (13) 0.11262 (5) 0.0313 (4)
H10A 0.4879 0.7316 0.1231 0.038*
H10B 0.5857 0.6550 0.0998 0.038*
C11 0.39491 (17) 0.63402 (13) 0.08240 (5) 0.0318 (4)
C12 0.3469 (2) 0.55713 (18) 0.01910 (6) 0.0457 (5)
H12A 0.3883 0.5551 −0.0069 0.055*
H12B 0.2762 0.6108 0.0182 0.055*
C13 0.2900 (2) 0.44405 (18) 0.02866 (7) 0.0514 (5)
H13A 0.2238 0.4257 0.0094 0.077*
H13B 0.2515 0.4452 0.0547 0.077*
H13C 0.3590 0.3900 0.0278 0.077*
C14 0.61049 (16) 0.59166 (12) 0.17675 (5) 0.0293 (4)
C15 0.62031 (17) 0.52108 (14) 0.20950 (5) 0.0354 (4)
H15 0.5587 0.4651 0.2126 0.042*
C16 0.72023 (18) 0.53266 (16) 0.23754 (6) 0.0408 (4)
H16 0.7253 0.4848 0.2591 0.049*
C17 0.81262 (18) 0.61658 (16) 0.23304 (6) 0.0415 (4)
H17 0.8796 0.6250 0.2517 0.050*
C18 0.80455 (18) 0.68715 (15) 0.20092 (6) 0.0403 (4)
H18 0.8664 0.7430 0.1980 0.048*
C19 0.70415 (17) 0.67531 (14) 0.17278 (5) 0.0350 (4)
H19 0.6996 0.7234 0.1513 0.042*
C20 0.26765 (16) 0.38379 (13) 0.15729 (5) 0.0312 (4)
C21 0.17591 (17) 0.46826 (14) 0.15152 (5) 0.0355 (4)
H21 0.1954 0.5257 0.1342 0.043*
C22 0.05587 (17) 0.46706 (15) 0.17144 (6) 0.0386 (4)
H22 −0.0045 0.5234 0.1672 0.046*
C23 0.02557 (18) 0.38227 (15) 0.19767 (5) 0.0368 (4)
H23 −0.0548 0.3817 0.2109 0.044*
C24 0.11659 (17) 0.29816 (14) 0.20392 (5) 0.0363 (4)
H24 0.0973 0.2416 0.2216 0.044*
C25 0.23610 (17) 0.29836 (14) 0.18378 (5) 0.0339 (4)
H25 0.2957 0.2414 0.1879 0.041*
N1 0.42951 (14) 0.28435 (11) 0.11609 (5) 0.0324 (3)
H1 0.3687 (19) 0.2319 (17) 0.1108 (6) 0.039*
O1 0.44406 (12) 0.59120 (10) 0.04889 (4) 0.0357 (3)
O2 0.27802 (12) 0.65045 (10) 0.08742 (4) 0.0367 (3)
Cl1 0.94493 (4) 0.40680 (4) 0.052348 (14) 0.04005 (16)

(I) Ethyl 3-(5-chloro-2-phenyl-1H-indol-3-yl)-3-phenylpropanoate . Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
C1 0.0296 (8) 0.0234 (7) 0.0403 (9) 0.0003 (6) −0.0034 (7) −0.0012 (6)
C2 0.0384 (9) 0.0222 (7) 0.0438 (9) 0.0028 (7) −0.0050 (7) −0.0056 (7)
C3 0.0378 (9) 0.0279 (8) 0.0384 (9) 0.0066 (7) −0.0033 (7) −0.0055 (7)
C4 0.0291 (8) 0.0288 (8) 0.0400 (9) 0.0027 (7) −0.0020 (7) 0.0033 (7)
C5 0.0322 (9) 0.0218 (7) 0.0368 (9) 0.0001 (6) −0.0032 (7) −0.0004 (6)
C6 0.0305 (8) 0.0203 (7) 0.0362 (9) 0.0024 (6) −0.0034 (7) −0.0002 (6)
C7 0.0284 (8) 0.0205 (7) 0.0353 (8) 0.0014 (6) −0.0024 (6) 0.0001 (6)
C8 0.0305 (8) 0.0214 (7) 0.0371 (8) 0.0015 (6) −0.0038 (7) −0.0013 (6)
C9 0.0282 (8) 0.0193 (7) 0.0361 (9) 0.0007 (6) 0.0006 (6) −0.0003 (6)
C10 0.0333 (9) 0.0211 (7) 0.0393 (9) 0.0001 (6) 0.0021 (7) 0.0021 (6)
C11 0.0368 (9) 0.0208 (7) 0.0378 (9) 0.0050 (7) 0.0013 (7) 0.0033 (6)
C12 0.0416 (10) 0.0577 (12) 0.0379 (10) 0.0153 (9) −0.0057 (8) −0.0072 (8)
C13 0.0528 (12) 0.0515 (12) 0.0500 (12) −0.0075 (10) −0.0030 (9) −0.0182 (9)
C14 0.0277 (8) 0.0225 (7) 0.0377 (9) 0.0033 (6) 0.0010 (7) −0.0047 (6)
C15 0.0336 (9) 0.0286 (8) 0.0439 (10) 0.0017 (7) −0.0009 (7) −0.0007 (7)
C16 0.0403 (10) 0.0397 (10) 0.0423 (10) 0.0072 (8) −0.0026 (8) −0.0012 (8)
C17 0.0316 (9) 0.0462 (11) 0.0466 (11) 0.0064 (8) −0.0068 (8) −0.0120 (8)
C18 0.0313 (9) 0.0345 (9) 0.0551 (11) −0.0032 (7) 0.0005 (8) −0.0108 (8)
C19 0.0352 (9) 0.0257 (8) 0.0441 (10) −0.0017 (7) 0.0003 (7) −0.0033 (7)
C20 0.0303 (8) 0.0251 (8) 0.0382 (9) −0.0029 (6) −0.0030 (7) −0.0034 (6)
C21 0.0337 (9) 0.0290 (8) 0.0439 (10) 0.0004 (7) −0.0009 (7) 0.0020 (7)
C22 0.0347 (9) 0.0342 (9) 0.0468 (10) 0.0034 (7) −0.0016 (7) −0.0022 (8)
C23 0.0316 (8) 0.0375 (9) 0.0414 (9) −0.0049 (7) 0.0034 (7) −0.0071 (7)
C24 0.0414 (10) 0.0283 (8) 0.0392 (9) −0.0064 (7) 0.0024 (7) −0.0013 (7)
C25 0.0354 (9) 0.0245 (8) 0.0419 (9) −0.0013 (7) 0.0002 (7) −0.0026 (7)
N1 0.0301 (7) 0.0215 (6) 0.0456 (8) −0.0030 (6) −0.0016 (6) −0.0043 (6)
O1 0.0335 (7) 0.0377 (7) 0.0359 (7) 0.0078 (5) 0.0000 (5) −0.0013 (5)
O2 0.0353 (7) 0.0326 (6) 0.0422 (7) 0.0083 (5) 0.0009 (5) −0.0009 (5)
Cl1 0.0337 (3) 0.0348 (3) 0.0517 (3) 0.00319 (17) 0.00755 (18) 0.00006 (18)

(I) Ethyl 3-(5-chloro-2-phenyl-1H-indol-3-yl)-3-phenylpropanoate . Geometric parameters (Å, º)

C1—N1 1.376 (2) C12—H12B 0.9700
C1—C2 1.396 (2) C13—H13A 0.9600
C1—C6 1.423 (2) C13—H13B 0.9600
C2—C3 1.377 (3) C13—H13C 0.9600
C2—H2 0.9300 C14—C19 1.398 (2)
C3—C4 1.413 (2) C14—C15 1.398 (2)
C3—H3 0.9300 C15—C16 1.392 (3)
C4—C5 1.375 (2) C15—H15 0.9300
C4—Cl1 1.7569 (18) C16—C17 1.394 (3)
C5—C6 1.408 (2) C16—H16 0.9300
C5—H5 0.9300 C17—C18 1.381 (3)
C6—C7 1.439 (2) C17—H17 0.9300
C7—C8 1.378 (2) C18—C19 1.398 (3)
C7—C9 1.518 (2) C18—H18 0.9300
C8—N1 1.392 (2) C19—H19 0.9300
C8—C20 1.479 (2) C20—C21 1.399 (2)
C9—C14 1.535 (2) C20—C25 1.404 (2)
C9—C10 1.550 (2) C21—C22 1.391 (2)
C9—H9 0.9800 C21—H21 0.9300
C10—C11 1.503 (2) C22—C23 1.390 (3)
C10—H10A 0.9700 C22—H22 0.9300
C10—H10B 0.9700 C23—C24 1.393 (3)
C11—O2 1.216 (2) C23—H23 0.9300
C11—O1 1.337 (2) C24—C25 1.390 (2)
C12—O1 1.465 (2) C24—H24 0.9300
C12—C13 1.524 (3) C25—H25 0.9300
C12—H12A 0.9700 N1—H1 0.91 (2)
N1—C1—C2 130.09 (15) C12—C13—H13B 109.5
N1—C1—C6 107.52 (14) H13A—C13—H13B 109.5
C2—C1—C6 122.38 (16) C12—C13—H13C 109.5
C3—C2—C1 117.83 (15) H13A—C13—H13C 109.5
C3—C2—H2 121.1 H13B—C13—H13C 109.5
C1—C2—H2 121.1 C19—C14—C15 118.16 (16)
C2—C3—C4 120.02 (16) C19—C14—C9 123.52 (15)
C2—C3—H3 120.0 C15—C14—C9 118.31 (14)
C4—C3—H3 120.0 C16—C15—C14 121.52 (17)
C5—C4—C3 123.02 (16) C16—C15—H15 119.2
C5—C4—Cl1 119.41 (13) C14—C15—H15 119.2
C3—C4—Cl1 117.56 (13) C15—C16—C17 119.43 (17)
C4—C5—C6 117.79 (15) C15—C16—H16 120.3
C4—C5—H5 121.1 C17—C16—H16 120.3
C6—C5—H5 121.1 C18—C17—C16 119.92 (17)
C5—C6—C1 118.83 (15) C18—C17—H17 120.0
C5—C6—C7 134.25 (14) C16—C17—H17 120.0
C1—C6—C7 106.92 (14) C17—C18—C19 120.54 (17)
C8—C7—C6 106.98 (14) C17—C18—H18 119.7
C8—C7—C9 127.13 (14) C19—C18—H18 119.7
C6—C7—C9 125.86 (14) C18—C19—C14 120.43 (17)
C7—C8—N1 109.24 (14) C18—C19—H19 119.8
C7—C8—C20 132.44 (15) C14—C19—H19 119.8
N1—C8—C20 118.27 (14) C21—C20—C25 118.54 (16)
C7—C9—C14 111.54 (12) C21—C20—C8 121.89 (15)
C7—C9—C10 110.58 (13) C25—C20—C8 119.56 (15)
C14—C9—C10 112.09 (13) C22—C21—C20 120.60 (17)
C7—C9—H9 107.5 C22—C21—H21 119.7
C14—C9—H9 107.5 C20—C21—H21 119.7
C10—C9—H9 107.5 C23—C22—C21 120.47 (17)
C11—C10—C9 111.53 (13) C23—C22—H22 119.8
C11—C10—H10A 109.3 C21—C22—H22 119.8
C9—C10—H10A 109.3 C22—C23—C24 119.46 (17)
C11—C10—H10B 109.3 C22—C23—H23 120.3
C9—C10—H10B 109.3 C24—C23—H23 120.3
H10A—C10—H10B 108.0 C25—C24—C23 120.31 (16)
O2—C11—O1 123.06 (16) C25—C24—H24 119.8
O2—C11—C10 124.70 (16) C23—C24—H24 119.8
O1—C11—C10 112.24 (14) C24—C25—C20 120.62 (16)
O1—C12—C13 111.45 (16) C24—C25—H25 119.7
O1—C12—H12A 109.3 C20—C25—H25 119.7
C13—C12—H12A 109.3 C1—N1—C8 109.21 (13)
O1—C12—H12B 109.3 C1—N1—H1 127.3 (13)
C13—C12—H12B 109.3 C8—N1—H1 120.8 (13)
H12A—C12—H12B 108.0 C11—O1—C12 115.72 (14)
C12—C13—H13A 109.5
N1—C1—C2—C3 −179.31 (17) C10—C9—C14—C19 1.3 (2)
C6—C1—C2—C3 2.3 (3) C7—C9—C14—C15 −54.82 (19)
C1—C2—C3—C4 1.1 (3) C10—C9—C14—C15 −179.43 (14)
C2—C3—C4—C5 −2.6 (3) C19—C14—C15—C16 −0.2 (2)
C2—C3—C4—Cl1 178.83 (13) C9—C14—C15—C16 −179.44 (15)
C3—C4—C5—C6 0.7 (3) C14—C15—C16—C17 0.2 (3)
Cl1—C4—C5—C6 179.22 (12) C15—C16—C17—C18 −0.1 (3)
C4—C5—C6—C1 2.6 (2) C16—C17—C18—C19 0.1 (3)
C4—C5—C6—C7 −176.81 (18) C17—C18—C19—C14 −0.1 (3)
N1—C1—C6—C5 177.11 (14) C15—C14—C19—C18 0.1 (2)
C2—C1—C6—C5 −4.2 (2) C9—C14—C19—C18 179.36 (15)
N1—C1—C6—C7 −3.36 (18) C7—C8—C20—C21 53.7 (3)
C2—C1—C6—C7 175.36 (16) N1—C8—C20—C21 −129.19 (18)
C5—C6—C7—C8 −178.78 (18) C7—C8—C20—C25 −127.7 (2)
C1—C6—C7—C8 1.79 (18) N1—C8—C20—C25 49.4 (2)
C5—C6—C7—C9 3.1 (3) C25—C20—C21—C22 −0.4 (3)
C1—C6—C7—C9 −176.37 (15) C8—C20—C21—C22 178.19 (16)
C6—C7—C8—N1 0.44 (18) C20—C21—C22—C23 0.5 (3)
C9—C7—C8—N1 178.56 (15) C21—C22—C23—C24 0.0 (3)
C6—C7—C8—C20 177.73 (17) C22—C23—C24—C25 −0.7 (3)
C9—C7—C8—C20 −4.1 (3) C23—C24—C25—C20 0.8 (3)
C8—C7—C9—C14 119.22 (17) C21—C20—C25—C24 −0.3 (2)
C6—C7—C9—C14 −63.0 (2) C8—C20—C25—C24 −178.90 (15)
C8—C7—C9—C10 −115.32 (18) C2—C1—N1—C8 −174.90 (18)
C6—C7—C9—C10 62.5 (2) C6—C1—N1—C8 3.69 (19)
C7—C9—C10—C11 50.25 (17) C7—C8—N1—C1 −2.61 (19)
C14—C9—C10—C11 175.39 (13) C20—C8—N1—C1 179.66 (14)
C9—C10—C11—O2 72.6 (2) O2—C11—O1—C12 −4.3 (2)
C9—C10—C11—O1 −106.83 (15) C10—C11—O1—C12 175.18 (14)
C7—C9—C14—C19 125.93 (16) C13—C12—O1—C11 −81.27 (19)

(I) Ethyl 3-(5-chloro-2-phenyl-1H-indol-3-yl)-3-phenylpropanoate . Hydrogen-bond geometry (Å, º)

Cg2 and Cg4 are the centroids of the C1–C6 and C20–C25 rings, respectively.

D—H···A D—H H···A D···A D—H···A
C21—H21···O2 0.93 2.34 3.258 (2) 169
N1—H1···O2i 0.91 (2) 1.95 (2) 2.8310 (18) 163.0 (18)
C10—H10A···Cg4ii 0.97 2.93 3.8022 (18) 150
C12—H12A···Cg2iii 0.97 2.97 3.702 (2) 133
C16—H16···Cg4iv 0.93 2.78 3.643 (2) 154
C19—H19···Cg2i 0.93 2.96 3.7860 (18) 149

Symmetry codes: (i) −x+1/2, y−1/2, z; (ii) −x−1/2, y−1/2, z; (iii) −x+1, −y+1, −z; (iv) −x+1, y, −z+1/2.

(II) 2-Bromo-3-(2-nitro-1-phenylethyl)-1H-indole . Crystal data

C16H13BrN2O2 F(000) = 696
Mr = 345.19 Dx = 1.643 Mg m3
Monoclinic, P21/c Mo Kα radiation, λ = 0.71075 Å
Hall symbol: -P 2ybc Cell parameters from 14875 reflections
a = 9.7223 (7) Å θ = 2.9–27.5°
b = 10.2804 (7) Å µ = 2.95 mm1
c = 13.9652 (10) Å T = 100 K
β = 91.238 (2)° Slab, pale brown
V = 1395.48 (17) Å3 0.22 × 0.19 × 0.05 mm
Z = 4

(II) 2-Bromo-3-(2-nitro-1-phenylethyl)-1H-indole . Data collection

Rigaku Mercury CCD diffractometer 3213 independent reflections
Radiation source: fine-focus sealed tube 2911 reflections with I > 2σ(I)
Graphite monochromator Rint = 0.042
ω scans θmax = 27.5°, θmin = 2.9°
Absorption correction: multi-scan (SADABS; Sheldrick, 1996) h = −12→12
Tmin = 0.563, Tmax = 0.867 k = −13→13
14919 measured reflections l = −18→17

(II) 2-Bromo-3-(2-nitro-1-phenylethyl)-1H-indole . Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.040 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.108 H atoms treated by a mixture of independent and constrained refinement
S = 1.07 w = 1/[σ2(Fo2) + (0.0534P)2 + 2.3689P] where P = (Fo2 + 2Fc2)/3
3213 reflections (Δ/σ)max = 0.001
193 parameters Δρmax = 1.26 e Å3
0 restraints Δρmin = −0.82 e Å3

(II) 2-Bromo-3-(2-nitro-1-phenylethyl)-1H-indole . Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

(II) 2-Bromo-3-(2-nitro-1-phenylethyl)-1H-indole . Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
C1 0.4952 (3) 0.3822 (3) 0.59411 (18) 0.0218 (5)
C2 0.3700 (3) 0.3784 (3) 0.54275 (19) 0.0261 (6)
H2 0.3510 0.3120 0.4970 0.031*
C3 0.2753 (3) 0.4750 (3) 0.5611 (2) 0.0297 (6)
H3 0.1888 0.4745 0.5281 0.036*
C4 0.3051 (3) 0.5740 (3) 0.6280 (2) 0.0281 (6)
H4 0.2376 0.6386 0.6395 0.034*
C5 0.4299 (3) 0.5801 (3) 0.6776 (2) 0.0257 (6)
H5 0.4492 0.6489 0.7213 0.031*
C6 0.5274 (3) 0.4817 (2) 0.66142 (18) 0.0210 (5)
C7 0.6650 (3) 0.4559 (3) 0.69787 (18) 0.0215 (5)
C8 0.7066 (3) 0.3462 (3) 0.65211 (19) 0.0223 (5)
C9 0.7553 (3) 0.5367 (3) 0.76399 (19) 0.0229 (5)
H9 0.8379 0.4833 0.7817 0.027*
C10 0.6852 (3) 0.5750 (3) 0.85699 (19) 0.0248 (6)
H10A 0.7475 0.6310 0.8960 0.030*
H10B 0.6003 0.6249 0.8420 0.030*
C11 0.8057 (3) 0.6574 (3) 0.70989 (18) 0.0219 (5)
C12 0.7453 (3) 0.7795 (3) 0.7152 (2) 0.0284 (6)
H12 0.6706 0.7933 0.7568 0.034*
C13 0.7938 (3) 0.8824 (3) 0.6596 (2) 0.0313 (6)
H13 0.7520 0.9657 0.6639 0.038*
C14 0.9025 (3) 0.8638 (3) 0.5982 (2) 0.0294 (6)
H14 0.9354 0.9338 0.5607 0.035*
C15 0.9624 (3) 0.7418 (3) 0.5922 (2) 0.0281 (6)
H15 1.0363 0.7278 0.5499 0.034*
C16 0.9147 (3) 0.6396 (3) 0.6479 (2) 0.0247 (5)
H16 0.9570 0.5566 0.6436 0.030*
N1 0.6058 (3) 0.2984 (2) 0.59133 (16) 0.0230 (5)
H1 0.623 (4) 0.242 (3) 0.554 (3) 0.028*
N2 0.6503 (3) 0.4554 (2) 0.91218 (16) 0.0271 (5)
O1 0.7431 (2) 0.3967 (2) 0.95513 (16) 0.0339 (5)
O2 0.5300 (3) 0.4220 (3) 0.91282 (19) 0.0464 (6)
Br1 0.87595 (3) 0.26053 (3) 0.66349 (2) 0.02856 (12)

(II) 2-Bromo-3-(2-nitro-1-phenylethyl)-1H-indole . Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
C1 0.0294 (13) 0.0189 (12) 0.0174 (11) −0.0045 (10) 0.0064 (10) 0.0008 (9)
C2 0.0357 (15) 0.0257 (13) 0.0169 (12) −0.0090 (11) 0.0020 (11) −0.0003 (10)
C3 0.0280 (14) 0.0373 (16) 0.0237 (14) −0.0035 (12) 0.0021 (11) 0.0056 (12)
C4 0.0321 (15) 0.0271 (14) 0.0255 (14) 0.0026 (11) 0.0075 (12) 0.0026 (11)
C5 0.0289 (14) 0.0279 (14) 0.0205 (13) −0.0011 (11) 0.0059 (11) 0.0042 (10)
C6 0.0279 (13) 0.0190 (12) 0.0164 (11) −0.0039 (10) 0.0062 (10) 0.0002 (9)
C7 0.0286 (13) 0.0206 (12) 0.0155 (11) −0.0043 (10) 0.0058 (10) 0.0007 (9)
C8 0.0266 (13) 0.0222 (12) 0.0184 (12) −0.0009 (10) 0.0058 (10) 0.0005 (10)
C9 0.0272 (13) 0.0219 (12) 0.0198 (12) −0.0006 (10) 0.0053 (10) −0.0005 (10)
C10 0.0336 (15) 0.0199 (12) 0.0210 (13) 0.0006 (11) 0.0041 (11) 0.0007 (10)
C11 0.0238 (12) 0.0246 (13) 0.0172 (12) −0.0053 (10) 0.0016 (10) −0.0021 (10)
C12 0.0313 (15) 0.0280 (14) 0.0263 (14) −0.0014 (12) 0.0078 (11) −0.0037 (12)
C13 0.0379 (16) 0.0232 (14) 0.0329 (15) 0.0001 (12) 0.0020 (13) −0.0002 (12)
C14 0.0319 (15) 0.0314 (15) 0.0250 (14) −0.0079 (12) 0.0010 (11) 0.0074 (11)
C15 0.0242 (13) 0.0368 (16) 0.0235 (14) −0.0051 (11) 0.0044 (11) 0.0029 (11)
C16 0.0249 (13) 0.0267 (13) 0.0226 (13) −0.0024 (11) 0.0024 (10) 0.0012 (11)
N1 0.0310 (12) 0.0192 (11) 0.0191 (11) −0.0020 (9) 0.0053 (9) −0.0030 (8)
N2 0.0453 (15) 0.0204 (11) 0.0158 (10) −0.0012 (10) 0.0063 (10) 0.0003 (9)
O1 0.0419 (12) 0.0265 (10) 0.0335 (11) 0.0044 (9) 0.0015 (9) 0.0070 (9)
O2 0.0381 (13) 0.0549 (16) 0.0463 (15) −0.0109 (12) 0.0043 (11) 0.0110 (12)
Br1 0.03170 (18) 0.02778 (17) 0.02638 (18) 0.00571 (11) 0.00434 (12) 0.00019 (10)

(II) 2-Bromo-3-(2-nitro-1-phenylethyl)-1H-indole . Geometric parameters (Å, º)

C1—N1 1.379 (4) C9—H9 1.0000
C1—C2 1.399 (4) C10—N2 1.495 (3)
C1—C6 1.419 (4) C10—H10A 0.9900
C2—C3 1.382 (4) C10—H10B 0.9900
C2—H2 0.9500 C11—C12 1.388 (4)
C3—C4 1.408 (4) C11—C16 1.395 (4)
C3—H3 0.9500 C12—C13 1.400 (4)
C4—C5 1.385 (4) C12—H12 0.9500
C4—H4 0.9500 C13—C14 1.388 (4)
C5—C6 1.408 (4) C13—H13 0.9500
C5—H5 0.9500 C14—C15 1.387 (4)
C6—C7 1.445 (4) C14—H14 0.9500
C7—C8 1.363 (4) C15—C16 1.392 (4)
C7—C9 1.510 (4) C15—H15 0.9500
C8—N1 1.373 (4) C16—H16 0.9500
C8—Br1 1.871 (3) N1—H1 0.80 (4)
C9—C10 1.531 (4) N2—O2 1.219 (4)
C9—C11 1.538 (4) N2—O1 1.231 (3)
N1—C1—C2 129.7 (2) N2—C10—C9 109.6 (2)
N1—C1—C6 107.9 (2) N2—C10—H10A 109.7
C2—C1—C6 122.5 (3) C9—C10—H10A 109.7
C3—C2—C1 117.4 (3) N2—C10—H10B 109.7
C3—C2—H2 121.3 C9—C10—H10B 109.7
C1—C2—H2 121.3 H10A—C10—H10B 108.2
C2—C3—C4 121.0 (3) C12—C11—C16 118.7 (3)
C2—C3—H3 119.5 C12—C11—C9 124.3 (2)
C4—C3—H3 119.5 C16—C11—C9 117.0 (2)
C5—C4—C3 122.0 (3) C11—C12—C13 120.4 (3)
C5—C4—H4 119.0 C11—C12—H12 119.8
C3—C4—H4 119.0 C13—C12—H12 119.8
C4—C5—C6 118.2 (3) C14—C13—C12 120.5 (3)
C4—C5—H5 120.9 C14—C13—H13 119.7
C6—C5—H5 120.9 C12—C13—H13 119.7
C5—C6—C1 118.9 (3) C15—C14—C13 119.3 (3)
C5—C6—C7 134.1 (3) C15—C14—H14 120.4
C1—C6—C7 106.9 (2) C13—C14—H14 120.4
C8—C7—C6 105.6 (2) C14—C15—C16 120.2 (3)
C8—C7—C9 124.6 (3) C14—C15—H15 119.9
C6—C7—C9 129.5 (2) C16—C15—H15 119.9
C7—C8—N1 111.7 (2) C15—C16—C11 121.0 (3)
C7—C8—Br1 128.3 (2) C15—C16—H16 119.5
N1—C8—Br1 120.0 (2) C11—C16—H16 119.5
C7—C9—C10 113.4 (2) C8—N1—C1 107.8 (2)
C7—C9—C11 109.3 (2) C8—N1—H1 121 (3)
C10—C9—C11 111.2 (2) C1—N1—H1 130 (3)
C7—C9—H9 107.6 O2—N2—O1 123.5 (3)
C10—C9—H9 107.6 O2—N2—C10 117.6 (3)
C11—C9—H9 107.6 O1—N2—C10 118.8 (3)
N1—C1—C2—C3 178.9 (3) C6—C7—C9—C11 −71.6 (3)
C6—C1—C2—C3 −1.3 (4) C7—C9—C10—N2 62.0 (3)
C1—C2—C3—C4 0.9 (4) C11—C9—C10—N2 −174.4 (2)
C2—C3—C4—C5 0.6 (4) C7—C9—C11—C12 97.6 (3)
C3—C4—C5—C6 −1.6 (4) C10—C9—C11—C12 −28.4 (4)
C4—C5—C6—C1 1.2 (4) C7—C9—C11—C16 −78.9 (3)
C4—C5—C6—C7 179.5 (3) C10—C9—C11—C16 155.2 (2)
N1—C1—C6—C5 −179.9 (2) C16—C11—C12—C13 −0.3 (4)
C2—C1—C6—C5 0.2 (4) C9—C11—C12—C13 −176.7 (3)
N1—C1—C6—C7 1.3 (3) C11—C12—C13—C14 0.2 (5)
C2—C1—C6—C7 −178.5 (2) C12—C13—C14—C15 0.2 (5)
C5—C6—C7—C8 −178.4 (3) C13—C14—C15—C16 −0.6 (4)
C1—C6—C7—C8 0.0 (3) C14—C15—C16—C11 0.5 (4)
C5—C6—C7—C9 −4.7 (5) C12—C11—C16—C15 0.0 (4)
C1—C6—C7—C9 173.8 (2) C9—C11—C16—C15 176.6 (3)
C6—C7—C8—N1 −1.4 (3) C7—C8—N1—C1 2.3 (3)
C9—C7—C8—N1 −175.6 (2) Br1—C8—N1—C1 −177.72 (18)
C6—C7—C8—Br1 178.61 (19) C2—C1—N1—C8 177.6 (3)
C9—C7—C8—Br1 4.5 (4) C6—C1—N1—C8 −2.2 (3)
C8—C7—C9—C10 −134.3 (3) C9—C10—N2—O2 −105.5 (3)
C6—C7—C9—C10 53.0 (4) C9—C10—N2—O1 75.3 (3)
C8—C7—C9—C11 101.0 (3)

(II) 2-Bromo-3-(2-nitro-1-phenylethyl)-1H-indole . Hydrogen-bond geometry (Å, º)

Cg2 and Cg4 are the centroids of the C1–C6 ring.

D—H···A D—H H···A D···A D—H···A
N1—H1···O1i 0.80 (4) 2.32 (4) 3.087 (3) 161 (4)
C12—H12···Cg2ii 0.95 2.75 3.500 (3) 136

Symmetry codes: (i) x, −y+1/2, z−1/2; (ii) −x+1, y+1/2, −z+3/2.

(III) 5-Methoxy-3-(2-nitro-1-phenylethyl)-2-phenyl-1H-indole . Crystal data

C23H20N2O3 Z = 2
Mr = 372.41 F(000) = 392
Triclinic, P1 Dx = 1.316 Mg m3
Hall symbol: -P 1 Mo Kα radiation, λ = 0.71075 Å
a = 9.7561 (7) Å Cell parameters from 12105 reflections
b = 10.0258 (7) Å θ = 2.9–27.5°
c = 10.8942 (8) Å µ = 0.09 mm1
α = 116.415 (5)° T = 100 K
β = 91.843 (4)° Slab, light yellow
γ = 97.963 (4)° 0.24 × 0.21 × 0.03 mm
V = 939.84 (12) Å3

(III) 5-Methoxy-3-(2-nitro-1-phenylethyl)-2-phenyl-1H-indole . Data collection

Rigaku Mercury CCD diffractometer 3782 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tube Rint = 0.028
Graphite monochromator θmax = 27.5°, θmin = 2.9°
ω scans h = −12→12
12625 measured reflections k = −13→13
4305 independent reflections l = −14→14

(III) 5-Methoxy-3-(2-nitro-1-phenylethyl)-2-phenyl-1H-indole . Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.035 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.097 H atoms treated by a mixture of independent and constrained refinement
S = 1.06 w = 1/[σ2(Fo2) + (0.0492P)2 + 0.1954P] where P = (Fo2 + 2Fc2)/3
4305 reflections (Δ/σ)max = 0.001
257 parameters Δρmax = 0.30 e Å3
0 restraints Δρmin = −0.22 e Å3

(III) 5-Methoxy-3-(2-nitro-1-phenylethyl)-2-phenyl-1H-indole . Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

(III) 5-Methoxy-3-(2-nitro-1-phenylethyl)-2-phenyl-1H-indole . Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
C1 0.19835 (10) 0.50476 (11) 0.67418 (11) 0.0204 (2)
C2 0.17538 (11) 0.56338 (12) 0.81213 (11) 0.0230 (2)
H2 0.1769 0.6686 0.8661 0.028*
C3 0.15006 (11) 0.46425 (12) 0.86931 (11) 0.0218 (2)
H3 0.1334 0.5015 0.9633 0.026*
C4 0.14906 (10) 0.30892 (11) 0.78826 (11) 0.0199 (2)
C5 0.17195 (10) 0.25007 (11) 0.65095 (10) 0.0196 (2)
H5 0.1709 0.1448 0.5979 0.024*
C6 0.19683 (10) 0.34839 (11) 0.59073 (10) 0.0191 (2)
C7 0.22732 (10) 0.33046 (11) 0.45606 (10) 0.0191 (2)
C8 0.24758 (10) 0.47341 (11) 0.46426 (10) 0.0203 (2)
C9 0.22632 (10) 0.18956 (11) 0.32343 (10) 0.0191 (2)
H9 0.2138 0.2182 0.2473 0.023*
C10 0.10313 (10) 0.06333 (11) 0.29937 (11) 0.0209 (2)
H10A 0.1067 −0.0259 0.2104 0.025*
H10B 0.1097 0.0324 0.3736 0.025*
C11 0.35712 (10) 0.11774 (11) 0.30199 (11) 0.0197 (2)
C12 0.45009 (11) 0.13848 (12) 0.41090 (11) 0.0222 (2)
H12 0.4337 0.2004 0.5031 0.027*
C13 0.56717 (11) 0.06865 (12) 0.38520 (12) 0.0246 (2)
H13 0.6302 0.0831 0.4601 0.030*
C14 0.59239 (11) −0.02169 (12) 0.25117 (12) 0.0258 (2)
H14 0.6726 −0.0687 0.2342 0.031*
C15 0.49987 (12) −0.04312 (12) 0.14192 (12) 0.0263 (2)
H15 0.5166 −0.1049 0.0498 0.032*
C16 0.38279 (11) 0.02591 (12) 0.16739 (11) 0.0238 (2)
H16 0.3195 0.0104 0.0923 0.029*
C17 0.29178 (11) 0.52239 (11) 0.36018 (11) 0.0216 (2)
C18 0.21895 (12) 0.61533 (12) 0.32766 (11) 0.0263 (2)
H18 0.1360 0.6427 0.3682 0.032*
C19 0.26838 (14) 0.66735 (13) 0.23588 (12) 0.0324 (3)
H19 0.2195 0.7313 0.2146 0.039*
C20 0.38861 (14) 0.62652 (13) 0.17520 (12) 0.0333 (3)
H20 0.4218 0.6627 0.1126 0.040*
C21 0.46049 (12) 0.53318 (14) 0.20555 (12) 0.0309 (3)
H21 0.5424 0.5046 0.1632 0.037*
C22 0.41268 (11) 0.48128 (13) 0.29814 (11) 0.0255 (2)
H22 0.4623 0.4177 0.3193 0.031*
C23 0.13008 (14) 0.25934 (13) 0.98450 (11) 0.0301 (3)
H23A 0.1179 0.1737 1.0062 0.045*
H23B 0.0556 0.3185 1.0194 0.045*
H23C 0.2204 0.3235 1.0280 0.045*
N1 0.22919 (10) 0.57768 (10) 0.59438 (9) 0.02257 (19)
H1 0.2353 (14) 0.6738 (16) 0.6209 (14) 0.027*
N2 −0.03129 (9) 0.11860 (10) 0.29782 (10) 0.0245 (2)
O1 −0.09938 (8) 0.14343 (9) 0.39586 (9) 0.0325 (2)
O2 −0.06497 (9) 0.13940 (10) 0.19906 (10) 0.0348 (2)
O3 0.12460 (8) 0.20475 (8) 0.83947 (7) 0.02322 (17)

(III) 5-Methoxy-3-(2-nitro-1-phenylethyl)-2-phenyl-1H-indole . Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
C1 0.0195 (5) 0.0209 (5) 0.0220 (5) 0.0045 (4) 0.0026 (4) 0.0104 (4)
C2 0.0250 (5) 0.0197 (5) 0.0228 (5) 0.0063 (4) 0.0036 (4) 0.0075 (4)
C3 0.0213 (5) 0.0246 (5) 0.0191 (5) 0.0062 (4) 0.0039 (4) 0.0088 (4)
C4 0.0161 (4) 0.0225 (5) 0.0229 (5) 0.0030 (4) 0.0022 (4) 0.0120 (4)
C5 0.0178 (5) 0.0188 (4) 0.0216 (5) 0.0037 (3) 0.0025 (4) 0.0085 (4)
C6 0.0156 (4) 0.0207 (5) 0.0204 (5) 0.0038 (3) 0.0020 (4) 0.0087 (4)
C7 0.0165 (4) 0.0208 (5) 0.0201 (5) 0.0031 (3) 0.0021 (4) 0.0094 (4)
C8 0.0186 (5) 0.0212 (5) 0.0205 (5) 0.0037 (4) 0.0012 (4) 0.0088 (4)
C9 0.0172 (4) 0.0207 (5) 0.0200 (5) 0.0036 (4) 0.0026 (4) 0.0098 (4)
C10 0.0173 (5) 0.0199 (5) 0.0251 (5) 0.0045 (4) 0.0029 (4) 0.0093 (4)
C11 0.0180 (4) 0.0196 (4) 0.0227 (5) 0.0030 (3) 0.0046 (4) 0.0104 (4)
C12 0.0199 (5) 0.0217 (5) 0.0229 (5) 0.0022 (4) 0.0022 (4) 0.0086 (4)
C13 0.0184 (5) 0.0256 (5) 0.0292 (6) 0.0018 (4) −0.0007 (4) 0.0126 (5)
C14 0.0191 (5) 0.0258 (5) 0.0353 (6) 0.0062 (4) 0.0074 (4) 0.0153 (5)
C15 0.0271 (5) 0.0277 (5) 0.0256 (5) 0.0085 (4) 0.0100 (4) 0.0120 (5)
C16 0.0235 (5) 0.0275 (5) 0.0221 (5) 0.0061 (4) 0.0044 (4) 0.0122 (4)
C17 0.0233 (5) 0.0191 (5) 0.0204 (5) −0.0008 (4) −0.0005 (4) 0.0086 (4)
C18 0.0343 (6) 0.0205 (5) 0.0218 (5) 0.0052 (4) 0.0003 (4) 0.0074 (4)
C19 0.0514 (7) 0.0217 (5) 0.0236 (6) 0.0034 (5) −0.0024 (5) 0.0111 (4)
C20 0.0446 (7) 0.0286 (6) 0.0234 (6) −0.0094 (5) −0.0017 (5) 0.0136 (5)
C21 0.0266 (5) 0.0369 (6) 0.0249 (6) −0.0061 (5) 0.0013 (4) 0.0135 (5)
C22 0.0220 (5) 0.0283 (5) 0.0253 (5) −0.0006 (4) −0.0006 (4) 0.0129 (5)
C23 0.0429 (7) 0.0261 (5) 0.0213 (5) 0.0033 (5) 0.0039 (5) 0.0117 (5)
N1 0.0283 (5) 0.0177 (4) 0.0223 (4) 0.0047 (3) 0.0042 (4) 0.0093 (4)
N2 0.0186 (4) 0.0191 (4) 0.0321 (5) 0.0024 (3) 0.0020 (4) 0.0087 (4)
O1 0.0209 (4) 0.0300 (4) 0.0343 (5) 0.0038 (3) 0.0078 (3) 0.0036 (4)
O2 0.0278 (4) 0.0361 (5) 0.0484 (5) 0.0061 (3) −0.0020 (4) 0.0265 (4)
O3 0.0286 (4) 0.0217 (4) 0.0199 (4) 0.0019 (3) 0.0031 (3) 0.0106 (3)

(III) 5-Methoxy-3-(2-nitro-1-phenylethyl)-2-phenyl-1H-indole . Geometric parameters (Å, º)

C1—N1 1.3791 (13) C13—C14 1.3860 (16)
C1—C2 1.3880 (14) C13—H13 0.9500
C1—C6 1.4174 (14) C14—C15 1.3883 (16)
C2—C3 1.3891 (14) C14—H14 0.9500
C2—H2 0.9500 C15—C16 1.3889 (15)
C3—C4 1.4060 (14) C15—H15 0.9500
C3—H3 0.9500 C16—H16 0.9500
C4—C5 1.3814 (14) C17—C22 1.3986 (15)
C4—O3 1.3846 (12) C17—C18 1.3999 (15)
C5—C6 1.4072 (14) C18—C19 1.3891 (16)
C5—H5 0.9500 C18—H18 0.9500
C6—C7 1.4428 (13) C19—C20 1.3865 (19)
C7—C8 1.3811 (14) C19—H19 0.9500
C7—C9 1.5042 (14) C20—C21 1.3853 (18)
C8—N1 1.3728 (14) C20—H20 0.9500
C8—C17 1.4768 (14) C21—C22 1.3914 (15)
C9—C11 1.5250 (14) C21—H21 0.9500
C9—C10 1.5421 (13) C22—H22 0.9500
C9—H9 1.0000 C23—O3 1.4198 (13)
C10—N2 1.4951 (13) C23—H23A 0.9800
C10—H10A 0.9900 C23—H23B 0.9800
C10—H10B 0.9900 C23—H23C 0.9800
C11—C12 1.3901 (15) N1—H1 0.867 (14)
C11—C16 1.3954 (15) N2—O1 1.2243 (12)
C12—C13 1.3933 (15) N2—O2 1.2267 (13)
C12—H12 0.9500
N1—C1—C2 129.92 (9) C14—C13—H13 119.8
N1—C1—C6 107.75 (9) C12—C13—H13 119.8
C2—C1—C6 122.32 (9) C13—C14—C15 119.66 (10)
C1—C2—C3 118.32 (9) C13—C14—H14 120.2
C1—C2—H2 120.8 C15—C14—H14 120.2
C3—C2—H2 120.8 C14—C15—C16 119.93 (10)
C2—C3—C4 120.11 (9) C14—C15—H15 120.0
C2—C3—H3 119.9 C16—C15—H15 120.0
C4—C3—H3 119.9 C15—C16—C11 120.75 (10)
C5—C4—O3 115.49 (9) C15—C16—H16 119.6
C5—C4—C3 121.77 (9) C11—C16—H16 119.6
O3—C4—C3 122.74 (9) C22—C17—C18 119.44 (10)
C4—C5—C6 119.03 (9) C22—C17—C8 119.24 (9)
C4—C5—H5 120.5 C18—C17—C8 121.24 (10)
C6—C5—H5 120.5 C19—C18—C17 119.78 (11)
C5—C6—C1 118.44 (9) C19—C18—H18 120.1
C5—C6—C7 134.84 (9) C17—C18—H18 120.1
C1—C6—C7 106.69 (9) C20—C19—C18 120.42 (11)
C8—C7—C6 106.53 (9) C20—C19—H19 119.8
C8—C7—C9 122.90 (9) C18—C19—H19 119.8
C6—C7—C9 130.34 (9) C21—C20—C19 120.20 (10)
N1—C8—C7 109.81 (9) C21—C20—H20 119.9
N1—C8—C17 120.54 (9) C19—C20—H20 119.9
C7—C8—C17 129.53 (9) C20—C21—C22 119.95 (11)
C7—C9—C11 116.98 (8) C20—C21—H21 120.0
C7—C9—C10 113.02 (8) C22—C21—H21 120.0
C11—C9—C10 106.58 (8) C21—C22—C17 120.20 (11)
C7—C9—H9 106.5 C21—C22—H22 119.9
C11—C9—H9 106.5 C17—C22—H22 119.9
C10—C9—H9 106.5 O3—C23—H23A 109.5
N2—C10—C9 109.91 (8) O3—C23—H23B 109.5
N2—C10—H10A 109.7 H23A—C23—H23B 109.5
C9—C10—H10A 109.7 O3—C23—H23C 109.5
N2—C10—H10B 109.7 H23A—C23—H23C 109.5
C9—C10—H10B 109.7 H23B—C23—H23C 109.5
H10A—C10—H10B 108.2 C8—N1—C1 109.21 (9)
C12—C11—C16 119.01 (9) C8—N1—H1 124.8 (9)
C12—C11—C9 122.66 (9) C1—N1—H1 126.0 (9)
C16—C11—C9 118.32 (9) O1—N2—O2 124.00 (10)
C11—C12—C13 120.17 (10) O1—N2—C10 118.40 (9)
C11—C12—H12 119.9 O2—N2—C10 117.58 (9)
C13—C12—H12 119.9 C4—O3—C23 118.32 (8)
C14—C13—C12 120.48 (10)
N1—C1—C2—C3 −178.02 (10) C10—C9—C11—C16 75.88 (11)
C6—C1—C2—C3 −0.03 (16) C16—C11—C12—C13 0.21 (15)
C1—C2—C3—C4 0.44 (15) C9—C11—C12—C13 179.28 (9)
C2—C3—C4—C5 −0.41 (16) C11—C12—C13—C14 0.17 (15)
C2—C3—C4—O3 179.94 (9) C12—C13—C14—C15 −0.27 (15)
O3—C4—C5—C6 179.63 (8) C13—C14—C15—C16 0.00 (16)
C3—C4—C5—C6 −0.04 (15) C14—C15—C16—C11 0.38 (16)
C4—C5—C6—C1 0.44 (14) C12—C11—C16—C15 −0.48 (15)
C4—C5—C6—C7 178.27 (10) C9—C11—C16—C15 −179.60 (9)
N1—C1—C6—C5 177.97 (9) N1—C8—C17—C22 123.13 (11)
C2—C1—C6—C5 −0.42 (15) C7—C8—C17—C22 −52.40 (15)
N1—C1—C6—C7 −0.42 (11) N1—C8—C17—C18 −53.62 (14)
C2—C1—C6—C7 −178.81 (9) C7—C8—C17—C18 130.85 (12)
C5—C6—C7—C8 −177.12 (11) C22—C17—C18—C19 −0.89 (16)
C1—C6—C7—C8 0.88 (11) C8—C17—C18—C19 175.85 (10)
C5—C6—C7—C9 8.44 (19) C17—C18—C19—C20 0.67 (17)
C1—C6—C7—C9 −173.56 (10) C18—C19—C20—C21 0.07 (17)
C6—C7—C8—N1 −1.04 (11) C19—C20—C21—C22 −0.58 (17)
C9—C7—C8—N1 173.92 (9) C20—C21—C22—C17 0.34 (17)
C6—C7—C8—C17 174.87 (10) C18—C17—C22—C21 0.39 (16)
C9—C7—C8—C17 −10.17 (17) C8—C17—C22—C21 −176.42 (10)
C8—C7—C9—C11 102.46 (11) C7—C8—N1—C1 0.80 (12)
C6—C7—C9—C11 −83.89 (13) C17—C8—N1—C1 −175.54 (9)
C8—C7—C9—C10 −133.20 (10) C2—C1—N1—C8 178.01 (10)
C6—C7—C9—C10 40.46 (14) C6—C1—N1—C8 −0.21 (11)
C7—C9—C10—N2 58.52 (11) C9—C10—N2—O1 −108.24 (10)
C11—C9—C10—N2 −171.63 (8) C9—C10—N2—O2 70.21 (11)
C7—C9—C11—C12 24.35 (13) C5—C4—O3—C23 166.65 (9)
C10—C9—C11—C12 −103.20 (10) C3—C4—O3—C23 −13.68 (14)
C7—C9—C11—C16 −156.57 (9)

(III) 5-Methoxy-3-(2-nitro-1-phenylethyl)-2-phenyl-1H-indole . Hydrogen-bond geometry (Å, º)

Cg2 and Cg4 are the centroids of the C1–C6 and C17–C22 rings, respectively.

D—H···A D—H H···A D···A D—H···A
N1—H1···O1i 0.867 (14) 2.470 (14) 3.1872 (13) 140.5 (12)
C10—H10A···O3ii 0.99 2.56 2.9934 (14) 107
C14—H14···O3iii 0.95 2.51 3.4546 (14) 173
C18—H18···O1i 0.95 2.59 3.2877 (14) 131
C21—H21···Cg2iv 0.95 2.83 3.5297 (13) 131
C23—H23C···Cg4v 0.98 2.76 3.5781 (13) 141

Symmetry codes: (i) −x, −y+1, −z+1; (ii) −x, −y, −z+1; (iii) −x+1, −y, −z+1; (iv) −x+1, −y+1, −z+1; (v) x, y, z+1.

(IV) 5-Chloro-3-(2-nitro-1-phenylethyl)-2-phenyl-1H-indole . Crystal data

C22H17ClN2O2 V = 919.87 (11) Å3
Mr = 376.83 Z = 2
Triclinic, P1 F(000) = 392
Hall symbol: -P 1 Dx = 1.360 Mg m3
a = 9.5830 (7) Å Mo Kα radiation, λ = 0.71073 Å
b = 9.7555 (7) Å µ = 0.23 mm1
c = 10.2307 (7) Å T = 100 K
α = 79.546 (6)° Block, colourless
β = 77.966 (6)° 0.48 × 0.36 × 0.16 mm
γ = 87.455 (7)°

(IV) 5-Chloro-3-(2-nitro-1-phenylethyl)-2-phenyl-1H-indole . Data collection

Rigaku Mercury CCD diffractometer 4138 independent reflections
Radiation source: fine-focus sealed tube 3363 reflections with I > 2σ(I)
Graphite monochromator Rint = 0.023
ω scans θmax = 27.5°, θmin = 2.1°
Absorption correction: multi-scan (SADABS; Sheldrick, 1996) h = −12→12
Tmin = 0.899, Tmax = 0.965 k = −11→12
13253 measured reflections l = −13→13

(IV) 5-Chloro-3-(2-nitro-1-phenylethyl)-2-phenyl-1H-indole . Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.031 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.085 H atoms treated by a mixture of independent and constrained refinement
S = 1.06 w = 1/[σ2(Fo2) + (0.044P)2 + 0.1384P] where P = (Fo2 + 2Fc2)/3
4138 reflections (Δ/σ)max = 0.002
247 parameters Δρmax = 0.27 e Å3
0 restraints Δρmin = −0.23 e Å3

(IV) 5-Chloro-3-(2-nitro-1-phenylethyl)-2-phenyl-1H-indole . Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

(IV) 5-Chloro-3-(2-nitro-1-phenylethyl)-2-phenyl-1H-indole . Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
C1 0.30134 (13) 0.30487 (13) 0.47178 (13) 0.0244 (3)
C2 0.15631 (13) 0.33679 (14) 0.49919 (14) 0.0293 (3)
H2 0.1067 0.3398 0.5893 0.035*
C3 0.08662 (13) 0.36395 (14) 0.39233 (14) 0.0293 (3)
H3 −0.0124 0.3858 0.4077 0.035*
C4 0.16322 (13) 0.35909 (14) 0.26078 (13) 0.0259 (3)
C5 0.30654 (12) 0.32723 (13) 0.23105 (13) 0.0232 (3)
H5 0.3547 0.3250 0.1404 0.028*
C6 0.37928 (12) 0.29823 (12) 0.33886 (12) 0.0213 (2)
C7 0.52344 (12) 0.26002 (12) 0.35141 (12) 0.0208 (2)
C8 0.52687 (13) 0.24560 (13) 0.48676 (13) 0.0234 (3)
C9 0.65601 (12) 0.24850 (13) 0.24431 (12) 0.0206 (2)
H9 0.7395 0.2586 0.2863 0.025*
C10 0.66676 (13) 0.36530 (13) 0.12008 (12) 0.0230 (3)
H10A 0.7613 0.3610 0.0593 0.028*
H10B 0.5927 0.3523 0.0689 0.028*
C11 0.67609 (12) 0.11141 (13) 0.19138 (12) 0.0205 (2)
C12 0.56223 (13) 0.03868 (13) 0.17345 (12) 0.0232 (3)
H12 0.4676 0.0721 0.1988 0.028*
C13 0.58560 (13) −0.08258 (13) 0.11871 (13) 0.0253 (3)
H13 0.5070 −0.1314 0.1065 0.030*
C14 0.72269 (14) −0.13258 (13) 0.08191 (13) 0.0260 (3)
H14 0.7385 −0.2150 0.0435 0.031*
C15 0.83681 (14) −0.06224 (14) 0.10125 (15) 0.0300 (3)
H15 0.9311 −0.0971 0.0774 0.036*
C16 0.81368 (13) 0.05913 (14) 0.15540 (14) 0.0275 (3)
H16 0.8925 0.1072 0.1681 0.033*
C17 0.64585 (13) 0.20526 (14) 0.55687 (12) 0.0243 (3)
C18 0.68391 (14) 0.28733 (15) 0.64173 (14) 0.0308 (3)
H18 0.6360 0.3733 0.6516 0.037*
C19 0.79159 (16) 0.24370 (18) 0.71180 (16) 0.0402 (4)
H19 0.8166 0.2994 0.7704 0.048*
C20 0.86283 (16) 0.11925 (18) 0.69676 (16) 0.0414 (4)
H20 0.9364 0.0898 0.7453 0.050*
C21 0.82741 (14) 0.03761 (16) 0.61152 (15) 0.0355 (3)
H21 0.8768 −0.0476 0.6011 0.043*
C22 0.71956 (13) 0.08033 (14) 0.54118 (13) 0.0278 (3)
H22 0.6956 0.0245 0.4821 0.033*
N1 0.39365 (11) 0.27288 (12) 0.55865 (11) 0.0263 (2)
H1 0.3714 (16) 0.2700 (17) 0.6404 (17) 0.032*
N2 0.64715 (11) 0.50447 (11) 0.16313 (11) 0.0258 (2)
O1 0.55567 (10) 0.58312 (10) 0.12206 (11) 0.0354 (2)
O2 0.72277 (11) 0.53298 (10) 0.23676 (10) 0.0357 (2)
Cl1 0.07128 (3) 0.39630 (4) 0.12679 (3) 0.03265 (10)

(IV) 5-Chloro-3-(2-nitro-1-phenylethyl)-2-phenyl-1H-indole . Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
C1 0.0251 (6) 0.0227 (7) 0.0221 (6) 0.0022 (5) 0.0018 (5) −0.0036 (5)
C2 0.0257 (6) 0.0306 (7) 0.0269 (7) 0.0039 (5) 0.0054 (5) −0.0059 (6)
C3 0.0212 (6) 0.0281 (7) 0.0343 (7) 0.0043 (5) 0.0023 (5) −0.0051 (6)
C4 0.0243 (6) 0.0230 (7) 0.0285 (6) 0.0019 (5) −0.0038 (5) −0.0020 (5)
C5 0.0224 (6) 0.0215 (6) 0.0224 (6) 0.0005 (5) 0.0016 (5) −0.0029 (5)
C6 0.0214 (5) 0.0182 (6) 0.0216 (6) 0.0012 (4) 0.0025 (4) −0.0043 (5)
C7 0.0209 (5) 0.0189 (6) 0.0210 (6) 0.0012 (4) 0.0004 (4) −0.0046 (5)
C8 0.0239 (6) 0.0205 (6) 0.0233 (6) 0.0012 (4) 0.0012 (5) −0.0046 (5)
C9 0.0195 (5) 0.0210 (6) 0.0199 (6) 0.0006 (4) −0.0001 (4) −0.0044 (5)
C10 0.0242 (6) 0.0207 (6) 0.0222 (6) 0.0007 (5) 0.0007 (5) −0.0055 (5)
C11 0.0223 (5) 0.0198 (6) 0.0170 (5) 0.0007 (4) 0.0002 (4) −0.0023 (5)
C12 0.0212 (5) 0.0223 (6) 0.0235 (6) 0.0013 (4) −0.0010 (4) −0.0017 (5)
C13 0.0277 (6) 0.0227 (7) 0.0248 (6) −0.0037 (5) −0.0048 (5) −0.0028 (5)
C14 0.0337 (7) 0.0197 (6) 0.0229 (6) 0.0004 (5) −0.0003 (5) −0.0056 (5)
C15 0.0243 (6) 0.0281 (7) 0.0357 (7) 0.0049 (5) 0.0016 (5) −0.0106 (6)
C16 0.0211 (6) 0.0267 (7) 0.0354 (7) 0.0000 (5) −0.0015 (5) −0.0120 (6)
C17 0.0235 (6) 0.0269 (7) 0.0190 (6) −0.0017 (5) 0.0011 (4) −0.0010 (5)
C18 0.0306 (7) 0.0329 (8) 0.0275 (7) −0.0015 (5) −0.0004 (5) −0.0075 (6)
C19 0.0373 (8) 0.0517 (10) 0.0345 (8) −0.0071 (7) −0.0100 (6) −0.0105 (7)
C20 0.0312 (7) 0.0536 (10) 0.0386 (8) −0.0008 (7) −0.0132 (6) 0.0009 (7)
C21 0.0293 (7) 0.0344 (8) 0.0379 (8) 0.0037 (6) −0.0047 (6) 0.0026 (6)
C22 0.0286 (6) 0.0260 (7) 0.0263 (6) 0.0001 (5) −0.0023 (5) −0.0021 (5)
N1 0.0257 (5) 0.0324 (6) 0.0179 (5) 0.0043 (4) 0.0025 (4) −0.0055 (5)
N2 0.0279 (5) 0.0211 (6) 0.0242 (5) −0.0030 (4) 0.0049 (4) −0.0039 (4)
O1 0.0314 (5) 0.0234 (5) 0.0466 (6) 0.0044 (4) −0.0006 (4) −0.0034 (4)
O2 0.0465 (6) 0.0291 (6) 0.0326 (5) −0.0025 (4) −0.0066 (4) −0.0100 (4)
Cl1 0.02364 (15) 0.0386 (2) 0.03372 (18) 0.00338 (12) −0.00654 (12) −0.00124 (14)

(IV) 5-Chloro-3-(2-nitro-1-phenylethyl)-2-phenyl-1H-indole . Geometric parameters (Å, º)

C1—N1 1.3683 (17) C12—C13 1.3885 (18)
C1—C2 1.3921 (17) C12—H12 0.9500
C1—C6 1.4197 (16) C13—C14 1.3817 (18)
C2—C3 1.3766 (19) C13—H13 0.9500
C2—H2 0.9500 C14—C15 1.3828 (19)
C3—C4 1.4002 (18) C14—H14 0.9500
C3—H3 0.9500 C15—C16 1.3862 (19)
C4—C5 1.3775 (16) C15—H15 0.9500
C4—Cl1 1.7556 (13) C16—H16 0.9500
C5—C6 1.4044 (17) C17—C18 1.3922 (19)
C5—H5 0.9500 C17—C22 1.3991 (19)
C6—C7 1.4404 (16) C18—C19 1.385 (2)
C7—C8 1.3734 (17) C18—H18 0.9500
C7—C9 1.5096 (15) C19—C20 1.384 (2)
C8—N1 1.3751 (15) C19—H19 0.9500
C8—C17 1.4724 (17) C20—C21 1.382 (2)
C9—C11 1.5216 (17) C20—H20 0.9500
C9—C10 1.5344 (17) C21—C22 1.3866 (19)
C9—H9 1.0000 C21—H21 0.9500
C10—N2 1.4941 (16) C22—H22 0.9500
C10—H10A 0.9900 N1—H1 0.814 (16)
C10—H10B 0.9900 N2—O2 1.2213 (14)
C11—C12 1.3881 (17) N2—O1 1.2291 (14)
C11—C16 1.3929 (16)
N1—C1—C2 129.73 (12) C11—C12—C13 120.50 (11)
N1—C1—C6 107.57 (10) C11—C12—H12 119.8
C2—C1—C6 122.70 (12) C13—C12—H12 119.8
C3—C2—C1 118.29 (12) C14—C13—C12 120.29 (11)
C3—C2—H2 120.9 C14—C13—H13 119.9
C1—C2—H2 120.9 C12—C13—H13 119.9
C2—C3—C4 119.30 (11) C13—C14—C15 119.74 (12)
C2—C3—H3 120.4 C13—C14—H14 120.1
C4—C3—H3 120.4 C15—C14—H14 120.1
C5—C4—C3 123.55 (12) C14—C15—C16 120.03 (12)
C5—C4—Cl1 118.42 (10) C14—C15—H15 120.0
C3—C4—Cl1 118.03 (10) C16—C15—H15 120.0
C4—C5—C6 117.99 (11) C15—C16—C11 120.73 (12)
C4—C5—H5 121.0 C15—C16—H16 119.6
C6—C5—H5 121.0 C11—C16—H16 119.6
C5—C6—C1 118.18 (10) C18—C17—C22 119.25 (12)
C5—C6—C7 135.24 (11) C18—C17—C8 121.17 (12)
C1—C6—C7 106.59 (11) C22—C17—C8 119.56 (12)
C8—C7—C6 106.72 (10) C19—C18—C17 120.07 (14)
C8—C7—C9 122.33 (11) C19—C18—H18 120.0
C6—C7—C9 130.71 (11) C17—C18—H18 120.0
C7—C8—N1 109.55 (11) C20—C19—C18 120.24 (14)
C7—C8—C17 129.83 (11) C20—C19—H19 119.9
N1—C8—C17 120.61 (11) C18—C19—H19 119.9
C7—C9—C11 115.84 (10) C21—C20—C19 120.30 (14)
C7—C9—C10 112.82 (10) C21—C20—H20 119.8
C11—C9—C10 106.89 (9) C19—C20—H20 119.8
C7—C9—H9 106.9 C20—C21—C22 119.85 (14)
C11—C9—H9 106.9 C20—C21—H21 120.1
C10—C9—H9 106.9 C22—C21—H21 120.1
N2—C10—C9 110.47 (10) C21—C22—C17 120.27 (13)
N2—C10—H10A 109.6 C21—C22—H22 119.9
C9—C10—H10A 109.6 C17—C22—H22 119.9
N2—C10—H10B 109.6 C1—N1—C8 109.57 (11)
C9—C10—H10B 109.6 C1—N1—H1 124.3 (11)
H10A—C10—H10B 108.1 C8—N1—H1 126.1 (11)
C12—C11—C16 118.70 (11) O2—N2—O1 124.12 (11)
C12—C11—C9 122.24 (10) O2—N2—C10 118.09 (11)
C16—C11—C9 119.02 (11) O1—N2—C10 117.78 (11)
N1—C1—C2—C3 −179.28 (14) C7—C9—C11—C16 −145.63 (12)
C6—C1—C2—C3 −0.5 (2) C10—C9—C11—C16 87.68 (13)
C1—C2—C3—C4 −0.2 (2) C16—C11—C12—C13 −1.00 (18)
C2—C3—C4—C5 0.5 (2) C9—C11—C12—C13 176.86 (11)
C2—C3—C4—Cl1 −179.27 (11) C11—C12—C13—C14 0.26 (18)
C3—C4—C5—C6 0.0 (2) C12—C13—C14—C15 0.75 (19)
Cl1—C4—C5—C6 179.72 (10) C13—C14—C15—C16 −1.0 (2)
C4—C5—C6—C1 −0.66 (18) C14—C15—C16—C11 0.2 (2)
C4—C5—C6—C7 179.07 (13) C12—C11—C16—C15 0.75 (19)
N1—C1—C6—C5 179.96 (11) C9—C11—C16—C15 −177.17 (12)
C2—C1—C6—C5 0.96 (19) C7—C8—C17—C18 127.05 (15)
N1—C1—C6—C7 0.16 (14) N1—C8—C17—C18 −54.28 (17)
C2—C1—C6—C7 −178.84 (12) C7—C8—C17—C22 −54.79 (19)
C5—C6—C7—C8 −179.77 (14) N1—C8—C17—C22 123.88 (14)
C1—C6—C7—C8 −0.02 (14) C22—C17—C18—C19 −1.4 (2)
C5—C6—C7—C9 5.8 (2) C8—C17—C18—C19 176.80 (12)
C1—C6—C7—C9 −174.44 (12) C17—C18—C19—C20 0.7 (2)
C6—C7—C8—N1 −0.13 (14) C18—C19—C20—C21 0.2 (2)
C9—C7—C8—N1 174.87 (11) C19—C20—C21—C22 −0.3 (2)
C6—C7—C8—C17 178.65 (13) C20—C21—C22—C17 −0.4 (2)
C9—C7—C8—C17 −6.4 (2) C18—C17—C22—C21 1.24 (19)
C8—C7—C9—C11 102.42 (14) C8—C17—C22—C21 −176.96 (12)
C6—C7—C9—C11 −83.90 (16) C2—C1—N1—C8 178.66 (14)
C8—C7—C9—C10 −133.94 (12) C6—C1—N1—C8 −0.25 (14)
C6—C7—C9—C10 39.74 (17) C7—C8—N1—C1 0.24 (15)
C7—C9—C10—N2 51.15 (13) C17—C8—N1—C1 −178.67 (11)
C11—C9—C10—N2 179.61 (9) C9—C10—N2—O2 53.52 (14)
C7—C9—C11—C12 36.52 (16) C9—C10—N2—O1 −126.47 (11)
C10—C9—C11—C12 −90.17 (13)

(IV) 5-Chloro-3-(2-nitro-1-phenylethyl)-2-phenyl-1H-indole . Hydrogen-bond geometry (Å, º)

D—H···A D—H H···A D···A D—H···A
N1—H1···O2i 0.814 (16) 2.517 (16) 3.0806 (15) 127.4 (14)
C14—H14···O1ii 0.95 2.60 3.1827 (17) 120

Symmetry codes: (i) −x+1, −y+1, −z+1; (ii) x, y−1, z.

References

  1. Adam, L., Salois, D., Rihakova, L., Lapointe, S., St-Onge, S., Labrecque, J. & Payza, K. (2007). Poster presented at The 17th Annual Symposium on the Cannabinoids, Quebec, Canada. Abstract available from http://www.cannabinoidsociety.org
  2. Biswal, S., Sahoo, U., Sethy, S., Kumar, H. K. S. & Banerjee, M. (2012). Asian J. Pharm. Clin. Res. 5, 1–6.
  3. Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.
  4. Groom, C. R. & Allen, F. H. (2014). Angew. Chem. Int. Ed. 53, 662–671. [DOI] [PubMed]
  5. Kaushik, N. K., Kaushik, N., Attri, P., Kumar, N., Kim, C. H., Verma, A. K. & Choi, E. H. (2013). Molecules, 18, 6620–6662. [DOI] [PMC free article] [PubMed]
  6. Kerr, J. (2013). PhD thesis, University of Aberdeen, Scotland.
  7. Rigaku (2012). CrystalClear. Rigaku Corporation, Tokyo, Japan.
  8. Sharma, V., Kumar, P. & Pathaka, D. J. (2010). J. Heterocycl. Chem. 47, 491–501.
  9. Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.
  10. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  11. Spek, A. L. (2009). Acta Cryst. D65, 148–155. [DOI] [PMC free article] [PubMed]
  12. Westrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) I, II, III, IV, global. DOI: 10.1107/S2056989015008476/lh5763sup1.cif

e-71-00654-sup1.cif (73.3KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S2056989015008476/lh5763Isup2.hkl

e-71-00654-Isup2.hkl (231.3KB, hkl)

Structure factors: contains datablock(s) II. DOI: 10.1107/S2056989015008476/lh5763IIsup3.hkl

e-71-00654-IIsup3.hkl (157.6KB, hkl)

Structure factors: contains datablock(s) III. DOI: 10.1107/S2056989015008476/lh5763IIIsup4.hkl

e-71-00654-IIIsup4.hkl (210.9KB, hkl)

Structure factors: contains datablock(s) IV. DOI: 10.1107/S2056989015008476/lh5763IVsup5.hkl

e-71-00654-IVsup5.hkl (202.8KB, hkl)

Supporting information file. DOI: 10.1107/S2056989015008476/lh5763Isup6.cml

Supporting information file. DOI: 10.1107/S2056989015008476/lh5763IIsup7.cml

Supporting information file. DOI: 10.1107/S2056989015008476/lh5763IIIsup8.cml

Supporting information file. DOI: 10.1107/S2056989015008476/lh5763IVsup9.cml

CCDC references: 1062393, 1062392, 1062391, 1062390

Additional supporting information: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Crystallographic Communications are provided here courtesy of International Union of Crystallography

RESOURCES