Skip to main content
Acta Crystallographica Section E: Crystallographic Communications logoLink to Acta Crystallographica Section E: Crystallographic Communications
. 2015 May 28;71(Pt 6):o426–o427. doi: 10.1107/S2056989015009469

Crystal structure of (E)-undec-2-enoic acid

Marcel Sonneck a, Tim Peppel a,*, Anke Spannenberg a, Sebastian Wohlrab a
PMCID: PMC4459382  PMID: 26090206

Abstract

In the mol­ecule of the title low-melting α,β-unsaturated carb­oxy­lic acid, C11H20O2, the least-squares mean line through the octyl chain forms an angle of 60.10 (13)° with the normal to plane of the acrylic acid fragment (r.m.s. deviation = 0.008 Å). In the crystal, centrosymmetrically related mol­ecules are linked by pairs of O—H⋯O hydrogen bonds into dimers, forming layers parallel to the (041) plane.

Keywords: crystal structure, hydrogen bond, dimer, unsaturated carb­oxy­lic acid

Related literature  

For an adapted direct synthesis of the title compound following the procedure established by Knoevenagel (1898) and Doebner (1902), see: Bikulova et al. (1988); Kemme et al. (2010). For crystal structure determinations of related unsat­urated α,β-carb­oxy­lic acids, see, for acrylic acid: Higgs & Sass (1963); Chatani et al. (1963); Boese et al. (1999); Oswald & Urquhart (2011); see, for crotonic acid: Shimizu et al. (1974); see, for (E)-pent-2-enoic acid: Peppel et al. (2015a ); see, for (E)-hex-2-enoic acid: Peppel et al. (2015b ). For structures of co-crystals containing (E)-hex-2-enoic acid, see: Aakeröy et al. (2003); Stanton & Bak (2008).graphic file with name e-71-0o426-scheme1.jpg

Experimental  

Crystal data  

  • C11H20O2

  • M r = 184.27

  • Triclinic, Inline graphic

  • a = 4.6346 (4) Å

  • b = 5.4200 (5) Å

  • c = 22.7564 (19) Å

  • α = 88.386 (2)°

  • β = 88.357 (2)°

  • γ = 78.340 (2)°

  • V = 559.46 (8) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.07 mm−1

  • T = 150 K

  • 0.50 × 0.41 × 0.12 mm

Data collection  

  • Bruker APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2014) T min = 0.87, T max = 0.99

  • 13660 measured reflections

  • 2687 independent reflections

  • 2317 reflections with I > 2σ(I)

  • R int = 0.022

Refinement  

  • R[F 2 > 2σ(F 2)] = 0.047

  • wR(F 2) = 0.134

  • S = 1.10

  • 2687 reflections

  • 122 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.33 e Å−3

  • Δρmin = −0.24 e Å−3

Data collection: APEX2 (Bruker, 2014); cell refinement: SAINT (Bruker, 2013); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015); molecular graphics: SHELXL2014; software used to prepare material for publication: SHELXL2014.

Supplementary Material

Crystal structure: contains datablock(s) I, New_Global_Publ_Block. DOI: 10.1107/S2056989015009469/rz5160sup1.cif

e-71-0o426-sup1.cif (430.1KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S2056989015009469/rz5160Isup2.hkl

e-71-0o426-Isup2.hkl (214.9KB, hkl)

Supporting information file. DOI: 10.1107/S2056989015009469/rz5160Isup3.cml

. DOI: 10.1107/S2056989015009469/rz5160fig1.tif

Mol­ecular structure of the title compound with displacement ellipsoids drawn at 30% probability level.

. DOI: 10.1107/S2056989015009469/rz5160fig2.tif

Side view of the mol­ecular structure of the title compound (displacement ellipsoids drawn at 30% probability level).

. DOI: 10.1107/S2056989015009469/rz5160fig3.tif

Packing diagram showing inter­molecular O—H⋯O hydrogen bonds. Hydrogen atoms not involved in hydrogen bonding are omitted for clarity.

CCDC reference: 1401589

Additional supporting information: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (, ).

DHA DH HA D A DHA
O1H1O2i 0.90(2) 1.73(2) 2.6244(14) 172.2(19)

Symmetry code: (i) Inline graphic.

Acknowledgments

The authors thank P. Thiele (University of Rostock) for the DSC measurements and Professor Dr J. G. de Vries (LIKAT) for helpful support.

supplementary crystallographic information

S1. Synthesis and crystallization

Malonic acid (25.0g, 240.2 mmol, 1.0 eq) is dissolved in dry pyridine (38.0g, 480.5mmol, 2.0 eq) at room temperature in a three-necked flask equipped with a magnetic stir bar and a reflux condenser under a mild flow of argon. Nonanal (34.2g, 240.2mmol, 1.0 eq) is then added in one portion and the resulting clear solution is further stirred for 72h at room temperature under argon. Afterwards, the resulting light yellow to orange solution is brought to an acidic pH value by adding phospho­ric acid at 0 °C (42.5wt. %, 138.5 g, 600.6mmol, 2.5 eq). The resulting two layers are extracted three times with 150mL portions of ethyl acetate and reduced to a volume of ca. 150 mL in vacuo. To remove impurities from aldol condensation the raw acid is converted into the corresponding sodium salt by addition of an aqueous solution of sodium carbonate (20.4 g, 192.2 mmol, 0.8 eq in 200 mL). After stirring for 30 minutes the water phase is separated and extracted three times with 150 mL portions of ethyl acetate. The water phase is then acidified with concentrated hydro­chloric acid (37.0wt. %, 35.5 g, 360.4 mmol, 1.5 eq), the organic phase is separated and the water phase is again extracted three times with 150mL portions of ethyl acetate. The combined organic phases are dried over Na2SO4 and evaporated to dryness under diminished pressure. The resulting raw product is further purified by distillation in vacuo yielding the product in purity >99% (GC). m.p. 18°C. 1H NMR (400MHz, CDCl3): δ = 12.24 (br s, 1H, OH); 7.09 (dt, 3J = 15.6 Hz, 3J = 7.0 Hz, 1H, -CH-); 5.82 (dt, 3J = 15.6 Hz, 4J = 1.6 Hz, 1H, -CH-); 2.26-2.19 (m, 2H, -CH2-); 1.50-1.43 (m, 2H, -CH2-); 1.33-1.24 (m, 10H, 5x -CH2-); 0.91-0.85 (m, 3H, -CH3-). 13C NMR (100MHz, CDCl3): δ = 172.50 (CO); 152.69 (CH); 120.76 (CH); 32.47 (CH2); 31.98 (CH2); 29.48 (CH2), 29.32 (CH2), 29.29 (CH2); 28.02 (CH2); 22.79 (CH2); 14.22 (CH3). MS (EI, 70eV): m/z = 184 (M+, 0), 99 (15), 97 (12), 96 (11), 95 (11), 86 (17), 84 (17), 83 (17), 82 (17), 81 (16), 73 (36), 70 (17), 69 (25), 68 (20), 67 (19), 57 (37), 56 (20), 55 (46), 54 (12), 53 (23), 45 (22), 43 (60), 42 (20), 41 (100), 40 (14), 39 (57), 29 (62). HRMS (ESI-TOF/MS): calculated for C11H20O2 ([M—H]-) 183.13905, found 183.13912. Elemental analysis for C11H20O2 % (calc.): C 71.67 (71.70); H 10.83 (10.94). Suitable single crystals were grown by slow evaporation of an ethano­lic solution at -30 °C over one week.

S2. Refinement

H1 could be found from the difference Fourier map and was refined with Uiso(H) fixed at 1.5 Ueq(O) . All other H atoms were placed in idealized positions with d(C—H) = 0.95 Å (CH), 0.99 Å (CH2), 0.98 Å (CH3) and refined using a riding model with Uiso(H) fixed at 1.2 Ueq(C) for CH and CH2 and 1.5 Ueq(C) for CH3.

S3. Comment

The crystal structure of (E)-undec-2-enoic acid, C11H20O2, an α,β-unsaturated carboxylic acid with a melting point near room temperature (m. p. 18°C), is characterized by acid dimers. The corresponding dimers are connected via intermolecular hydrogen bonds of the carboxylic groups C=O···H–O. The crystal packing of (E)-undec-2-enoic acid is described by layers of acid dimers parallel to the (0 4 1) plane which are featured by layers of polar headgroups and hydrophobic hydrocarbon chains. The carboxylic group and the following three carbon atoms (C2, C3, C4) of the (E)-undec-2-enoic acid molecule lie in one plane (r.m.s. deviation = 0.008 Å), whereas the atoms of the hydrocarbon chain starting from C4 until C11 adopt a nearly fully staggered conformation.

Figures

Fig. 1.

Fig. 1.

Molecular structure of the title compound with displacement ellipsoids drawn at 30% probability level.

Fig. 2.

Fig. 2.

Side view of the molecular structure of the title compound (displacement ellipsoids drawn at 30% probability level).

Fig. 3.

Fig. 3.

Packing diagram showing intermolecular O—H···O hydrogen bonds. Hydrogen atoms not involved in hydrogen bonding are omitted for clarity.

Crystal data

C11H20O2 Z = 2
Mr = 184.27 F(000) = 204
Triclinic, P1 Dx = 1.094 Mg m3
a = 4.6346 (4) Å Mo Kα radiation, λ = 0.71073 Å
b = 5.4200 (5) Å Cell parameters from 7014 reflections
c = 22.7564 (19) Å θ = 2.7–29.0°
α = 88.386 (2)° µ = 0.07 mm1
β = 88.357 (2)° T = 150 K
γ = 78.340 (2)° Plate, colourless
V = 559.46 (8) Å3 0.50 × 0.41 × 0.12 mm

Data collection

Bruker APEXII CCD diffractometer 2687 independent reflections
Radiation source: fine-focus sealed tube 2317 reflections with I > 2σ(I)
Detector resolution: 8.3333 pixels mm-1 Rint = 0.022
φ and ω scans θmax = 28.0°, θmin = 1.8°
Absorption correction: multi-scan (SADABS; Bruker, 2014) h = −6→6
Tmin = 0.87, Tmax = 0.99 k = −7→7
13660 measured reflections l = −30→30

Refinement

Refinement on F2 0 restraints
Least-squares matrix: full Hydrogen site location: mixed
R[F2 > 2σ(F2)] = 0.047 H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.134 w = 1/[σ2(Fo2) + (0.0544P)2 + 0.245P] where P = (Fo2 + 2Fc2)/3
S = 1.10 (Δ/σ)max < 0.001
2687 reflections Δρmax = 0.33 e Å3
122 parameters Δρmin = −0.24 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
C1 0.7148 (3) −0.2848 (2) 0.45696 (6) 0.0231 (3)
C2 0.8753 (3) −0.1147 (2) 0.42422 (6) 0.0264 (3)
H2 0.9723 −0.0090 0.4457 0.032*
C3 0.8904 (3) −0.1026 (2) 0.36643 (6) 0.0251 (3)
H3 0.7934 −0.2107 0.3457 0.030*
C4 1.0477 (3) 0.0674 (3) 0.33084 (6) 0.0278 (3)
H4A 1.2051 −0.0358 0.3066 0.033*
H4B 1.1418 0.1667 0.3576 0.033*
C5 0.8388 (3) 0.2471 (2) 0.29077 (6) 0.0247 (3)
H5A 0.7283 0.1481 0.2672 0.030*
H5B 0.6942 0.3622 0.3154 0.030*
C6 0.9983 (3) 0.4033 (2) 0.24928 (6) 0.0248 (3)
H6A 1.1150 0.4972 0.2728 0.030*
H6B 1.1374 0.2884 0.2236 0.030*
C7 0.7898 (3) 0.5893 (2) 0.21098 (6) 0.0249 (3)
H7A 0.6536 0.7060 0.2367 0.030*
H7B 0.6700 0.4953 0.1883 0.030*
C8 0.9460 (3) 0.7429 (2) 0.16835 (6) 0.0263 (3)
H8A 1.0691 0.8340 0.1910 0.032*
H8B 1.0792 0.6263 0.1421 0.032*
C9 0.7376 (3) 0.9326 (2) 0.13091 (6) 0.0267 (3)
H9A 0.6155 0.8415 0.1080 0.032*
H9B 0.6036 1.0487 0.1571 0.032*
C10 0.8949 (3) 1.0861 (3) 0.08881 (6) 0.0329 (3)
H10A 1.0269 0.9703 0.0622 0.039*
H10B 1.0190 1.1756 0.1116 0.039*
C11 0.6854 (4) 1.2777 (3) 0.05206 (7) 0.0392 (4)
H11A 0.5668 1.1901 0.0282 0.059*
H11B 0.7991 1.3723 0.0262 0.059*
H11C 0.5552 1.3943 0.0781 0.059*
O1 0.5924 (2) −0.43092 (19) 0.42681 (4) 0.0323 (3)
O2 0.7045 (2) −0.28190 (19) 0.51201 (4) 0.0320 (3)
H1 0.490 (5) −0.520 (4) 0.4504 (9) 0.048*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
C1 0.0225 (6) 0.0211 (6) 0.0259 (6) −0.0050 (5) −0.0002 (5) 0.0019 (5)
C2 0.0270 (6) 0.0256 (6) 0.0288 (7) −0.0111 (5) −0.0007 (5) 0.0023 (5)
C3 0.0239 (6) 0.0227 (6) 0.0294 (7) −0.0071 (5) −0.0009 (5) 0.0031 (5)
C4 0.0263 (7) 0.0299 (7) 0.0282 (7) −0.0093 (5) 0.0012 (5) 0.0064 (5)
C5 0.0245 (6) 0.0253 (6) 0.0255 (6) −0.0084 (5) 0.0012 (5) 0.0022 (5)
C6 0.0242 (6) 0.0239 (6) 0.0267 (6) −0.0065 (5) 0.0029 (5) 0.0030 (5)
C7 0.0243 (6) 0.0238 (6) 0.0269 (6) −0.0065 (5) 0.0012 (5) 0.0023 (5)
C8 0.0255 (6) 0.0239 (6) 0.0292 (7) −0.0052 (5) 0.0028 (5) 0.0039 (5)
C9 0.0271 (7) 0.0242 (6) 0.0288 (7) −0.0058 (5) 0.0003 (5) 0.0030 (5)
C10 0.0353 (8) 0.0307 (7) 0.0318 (7) −0.0059 (6) 0.0037 (6) 0.0064 (6)
C11 0.0485 (9) 0.0335 (8) 0.0338 (8) −0.0053 (7) −0.0004 (7) 0.0094 (6)
O1 0.0394 (6) 0.0321 (5) 0.0302 (5) −0.0195 (4) −0.0007 (4) 0.0029 (4)
O2 0.0413 (6) 0.0325 (5) 0.0253 (5) −0.0157 (4) 0.0023 (4) 0.0032 (4)

Geometric parameters (Å, º)

C1—O2 1.2527 (16) C7—C8 1.5219 (17)
C1—O1 1.2862 (16) C7—H7A 0.9900
C1—C2 1.4717 (17) C7—H7B 0.9900
C2—C3 1.3153 (19) C8—C9 1.5207 (18)
C2—H2 0.9500 C8—H8A 0.9900
C3—C4 1.4942 (17) C8—H8B 0.9900
C3—H3 0.9500 C9—C10 1.5173 (19)
C4—C5 1.5289 (18) C9—H9A 0.9900
C4—H4A 0.9900 C9—H9B 0.9900
C4—H4B 0.9900 C10—C11 1.520 (2)
C5—C6 1.5239 (17) C10—H10A 0.9900
C5—H5A 0.9900 C10—H10B 0.9900
C5—H5B 0.9900 C11—H11A 0.9800
C6—C7 1.5215 (17) C11—H11B 0.9800
C6—H6A 0.9900 C11—H11C 0.9800
C6—H6B 0.9900 O1—H1 0.90 (2)
O2—C1—O1 123.41 (12) C8—C7—H7A 108.8
O2—C1—C2 119.25 (11) C6—C7—H7B 108.8
O1—C1—C2 117.34 (11) C8—C7—H7B 108.8
C3—C2—C1 122.85 (12) H7A—C7—H7B 107.7
C3—C2—H2 118.6 C9—C8—C7 113.76 (11)
C1—C2—H2 118.6 C9—C8—H8A 108.8
C2—C3—C4 125.24 (12) C7—C8—H8A 108.8
C2—C3—H3 117.4 C9—C8—H8B 108.8
C4—C3—H3 117.4 C7—C8—H8B 108.8
C3—C4—C5 111.88 (11) H8A—C8—H8B 107.7
C3—C4—H4A 109.2 C10—C9—C8 113.44 (11)
C5—C4—H4A 109.2 C10—C9—H9A 108.9
C3—C4—H4B 109.2 C8—C9—H9A 108.9
C5—C4—H4B 109.2 C10—C9—H9B 108.9
H4A—C4—H4B 107.9 C8—C9—H9B 108.9
C6—C5—C4 112.95 (11) H9A—C9—H9B 107.7
C6—C5—H5A 109.0 C9—C10—C11 113.21 (13)
C4—C5—H5A 109.0 C9—C10—H10A 108.9
C6—C5—H5B 109.0 C11—C10—H10A 108.9
C4—C5—H5B 109.0 C9—C10—H10B 108.9
H5A—C5—H5B 107.8 C11—C10—H10B 108.9
C7—C6—C5 113.02 (11) H10A—C10—H10B 107.8
C7—C6—H6A 109.0 C10—C11—H11A 109.5
C5—C6—H6A 109.0 C10—C11—H11B 109.5
C7—C6—H6B 109.0 H11A—C11—H11B 109.5
C5—C6—H6B 109.0 C10—C11—H11C 109.5
H6A—C6—H6B 107.8 H11A—C11—H11C 109.5
C6—C7—C8 113.71 (11) H11B—C11—H11C 109.5
C6—C7—H7A 108.8 C1—O1—H1 110.8 (13)
O2—C1—C2—C3 −178.40 (13) C4—C5—C6—C7 −177.83 (11)
O1—C1—C2—C3 1.88 (19) C5—C6—C7—C8 −178.77 (11)
C1—C2—C3—C4 179.50 (12) C6—C7—C8—C9 −178.82 (11)
C2—C3—C4—C5 −119.96 (15) C7—C8—C9—C10 179.63 (11)
C3—C4—C5—C6 −173.87 (11) C8—C9—C10—C11 −179.27 (12)

Hydrogen-bond geometry (Å, º)

D—H···A D—H H···A D···A D—H···A
O1—H1···O2i 0.90 (2) 1.73 (2) 2.6244 (14) 172.2 (19)

Symmetry code: (i) −x+1, −y−1, −z+1.

Footnotes

Supporting information for this paper is available from the IUCr electronic archives (Reference: RZ5160).

References

  1. Aakeröy, C. B., Beatty, A. M., Helfrich, B. A. & Nieuwenhuyzen, M. (2003). Cryst. Growth Des. 3, 159–165.
  2. Bikulova, L. M., Verba, G. G., Kamaev, F. G. & Abduvakhabov, A. A. (1988). Khim. Prir. Soedin. pp. 682–683.
  3. Boese, R., Bläser, D., Steller, I., Latz, R. & Bäumen, A. (1999). Acta Cryst. C55 IUC9900006.
  4. Bruker (2013). SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.
  5. Bruker (2014). APEX2 and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.
  6. Chatani, Y., Sakata, Y. & Nitta, I. (1963). J. Polym. Sci. B Polym. Lett. 1, 419–421.
  7. Doebner, O. (1902). Ber. Dtsch. Chem. Ges. 35, 1136–1147.
  8. Higgs, M. A. & Sass, R. L. (1963). Acta Cryst. 16, 657–661.
  9. Kemme, S. T., Šmejkal, T. & Breit, B. (2010). Chem. Eur. J. 16, 3423–3433. [DOI] [PubMed]
  10. Knoevenagel, E. (1898). Ber. Dtsch. Chem. Ges. 31, 2596–2619.
  11. Oswald, I. D. H. & Urquhart, A. J. (2011). CrystEngComm, 13, 4503–4507.
  12. Peppel, T., Sonneck, M., Spannenberg, A. & Wohlrab, S. (2015a). Acta Cryst. E71, o316. [DOI] [PMC free article] [PubMed]
  13. Peppel, T., Sonneck, M., Spannenberg, A. & Wohlrab, S. (2015b). Acta Cryst. E71, o323. [DOI] [PMC free article] [PubMed]
  14. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  15. Sheldrick, G. M. (2015). Acta Cryst. C71, 3–8.
  16. Shimizu, S., Kekka, S., Kashino, S. & Haisa, M. (1974). Bull. Chem. Soc. Jpn, 47, 1627–1631.
  17. Stanton, M. K. & Bak, A. (2008). Cryst. Growth Des. 8, 3856–3862.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) I, New_Global_Publ_Block. DOI: 10.1107/S2056989015009469/rz5160sup1.cif

e-71-0o426-sup1.cif (430.1KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S2056989015009469/rz5160Isup2.hkl

e-71-0o426-Isup2.hkl (214.9KB, hkl)

Supporting information file. DOI: 10.1107/S2056989015009469/rz5160Isup3.cml

. DOI: 10.1107/S2056989015009469/rz5160fig1.tif

Mol­ecular structure of the title compound with displacement ellipsoids drawn at 30% probability level.

. DOI: 10.1107/S2056989015009469/rz5160fig2.tif

Side view of the mol­ecular structure of the title compound (displacement ellipsoids drawn at 30% probability level).

. DOI: 10.1107/S2056989015009469/rz5160fig3.tif

Packing diagram showing inter­molecular O—H⋯O hydrogen bonds. Hydrogen atoms not involved in hydrogen bonding are omitted for clarity.

CCDC reference: 1401589

Additional supporting information: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Crystallographic Communications are provided here courtesy of International Union of Crystallography

RESOURCES