Skip to main content
Acta Crystallographica Section E: Crystallographic Communications logoLink to Acta Crystallographica Section E: Crystallographic Communications
. 2015 May 30;71(Pt 6):730–733. doi: 10.1107/S2056989015009330

Crystal structure of (E)-N-{2-[2-(4-methyl­benzyl­idene)hydrazin-1-yl]-2-oxoeth­yl}-p-toluene­sulfonamide

H Purandara a, Sabine Foro b, B Thimme Gowda a,c,*
PMCID: PMC4459384  PMID: 26090163

The title compound, an aryl­sulfonyl glycinyl aryl hydrazone Schiff base, crystallizes with two independent mol­ecules in the asymmetric unit. In the crystal, a series of N—H⋯O and C—H⋯O hydrogen bonds and C—H⋯π and slipped parallel π–π inter­actions link the mol­ecules, forming a three-dimensional structure.

Keywords: crystal structure, p-toluene­lsulfon­yl, glycin­yl, aryl­hydrazone, hydrogen bonding

Abstract

The title acyl­hydrazone derivative, C17H19N3O3S, containing an amino acid moiety and electron-donating substituents attached to both the phenyl rings, crystallized with two independent mol­ecules (A and B) in the asymmetric unit. The mol­ecules are bent at the S atom, with C—SO2—NH—CH2 torsion angles of −67.3 (2) and 67.7 (3)° in mol­ecules A and B, respectively. Further, the dihedral angles between the sulfonyl­glycine segments and the p-toluene­sulfonyl rings are 76.1 (1) and 85.8 (1)° in mol­ecules A and B, respectively. The central hydrazone segments and the toluene rings attached to them are almost co-planar with their mean planes being inclined to one another by 5.2 (2) (mol­ecule A) and 2.9 (2)° (mol­ecule B). The dihedral angles between the benzene rings are 86.83 (12) (mol­ecule A) and 74.00 (14)° (mol­ecule B). In the crystal, the A mol­ecules are linked by a pair of N—H⋯O hydrogen bonds, forming inversion dimers with an R 2 2(8) ring motif. The dimers are linked via three N—H⋯O hydrogen bonds involving the B mol­ecules, forming chains along [100] and enclosing R 2 2(12) and R 4 4(16) ring motifs. The chains are linked via C—H⋯O hydrogen bonds and a C—H⋯π inter­action, forming sheets parallel to (010). There is a further C—H⋯π inter­action and a slipped parallel π–π inter­action [inter-centroid distance = 3.8773 (16) Å] between the sheets, leading to the formation of a three-dimensional framework.

Chemical context  

Hydrazones display numerous biological activities. The hydrazone Schiff bases of aroyl, acyl and heteroaroyl compounds are more versatile and flexible (in the sense that they can be used as reaction intermediates in organic synthesis and as ligands forming complexes with metal ions in coordination chemistry) due to the presence of the C=O group, an additional donor site. N-acyl­hydrazones containing a glycine residue have been investigated extensively for their biological and medical activities (Tian et al., 2011). Anti­viral activity has been shown for acyl­hydrazone derivatives which contain an amino acid moiety and an electron-donating substituent in the sulfonyl phenyl ring (Tian et al., 2009). The biological activities of these Schiff bases are thought to be related to structural aspects.

In a continuation of our studies of substituent effects on the structures of such compounds, for example N-(ar­yl)-amides (Gowda et al., 2006; Rodrigues et al., 2011), N-chloro­aryl­amides (Jyothi & Gowda, 2004) and N-bromo­aryl­sulfonamides (Usha & Gowda, 2006), we report herein on the synthesis and crystal structure of the title compound. This acyl­hydrazone derivative contains a glycine moiety and electron-donating substituents in both the sulfonyl and hydrazone aromatic rings.graphic file with name e-71-00730-scheme1.jpg

Structural commentary  

The mol­ecular structures of the two independent mol­ecules (A and B) of the title compound are shown in Fig. 1. It can be seen quite clearly from Fig. 1 that mol­ecule A has an extended conformation while mol­ecule B is U-shaped. In mol­ecule A, the conformations of the hydrazide N—H and C—H bonds are syn to each other, while the N—H and C=O bonds are anti to each other. On the sulfonamide side, the conformations of the sulfonamide N—H and C=O bonds are syn to each other. In mol­ecule B, the conformations of the hydrazide N—H and C—H bonds, the hydrazide N—H and C=O, and the C=O and sulfonamide N—H bonds are all syn to each other.

Figure 1.

Figure 1

The mol­ecular structure of the two independent mol­ecules of the title compound, showing the atom labelling. Displacement ellipsoids are drawn at the 50% probability level.

In mol­ecule A, the benzene rings are inclined to one another by 86.83 (12)°. The mean plane through atoms C9/N3/N2/C8/O3/C7 [maximum deviation of 0.043 (2) Å for N2], the central section of the mol­ecule, is inclined to the two benzene rings, C1–C6 and C10–C15, by 86.38 (12) and 7.22 (12)°, respectively. In mol­ecule B, the benzene rings (C18–C23 and C27–C32) are inclined to one another by 74.00 (14)°, and by 76.85 (13) and 2.91 (12)°, respectively, to the mean plane through atoms C26/N6/N5/C25/O6/C24 [maximum deviation of 0.061 (2) Å for C26]. The different conformations of mol­ecules A and B are further demonstrated by the differences in the equivalent torsion angles; N1—C7—C8—N2 = 29.3 (3) ° in A, compared to N4—C24—C25—N5 = 177.2 (2)° in B, and C1—S1—N1—C7 = −67.3 (2)° in A, compared to C18—S2—N4—C24 = 67.7 (3)° in B.

The carbonyl bonds lengths, C8—O3 in A and C25—O6 in B, are 1.214 (3) and 1.229 (3) Å, respectively, indicating that the mol­ecules exist in the keto form in the solid state. The C9=N3 and C26=N6 bond lengths, both 1.272 (3) Å in mol­ecules A and B, respectively, confirm their significant double-bond character. The N2—N3 and N5—N6 bond distances are 1.383 (3) and 1.379 (3) Å, respectively, and the C8—N2 and C25—N5 bond distances are 1.339 (3) and 1.334 (3) Å, respectively, which indicates significant delocalization of π-electron density over the hydrazone portions of the mol­ecules.

Supra­molecular features  

In the crystal, the A mol­ecules are linked by a pair of N—H⋯O hydrogen bonds, forming inversion dimers with an Inline graphic(8) ring motif. The dimers are linked via three N—H⋯O hydrogen bonds involving the B mol­ecules, forming chains along [100] that enclose Inline graphic(12) and Inline graphic(16) ring motifs (Table 1 and Fig. 2). The chains are linked via C—H⋯O hydrogen bonds and a C—H⋯π inter­action, forming sheets parallel to (010). The is a C—H⋯π inter­action and a slipped parallel π–π inter­action [Cg2⋯Cg2i = 3.8773 (16) Å; inter-planar distance = 3.6071 (11) Å; slippage = 1.422 Å; Cg2 is the centroid of ring C10–C15, symmetry code: (i) −x, −y + 1, −z], between the sheets, leading to the formation of a three-dimensional framework (Fig. 3).

Table 1. Hydrogen-bond geometry (, ).

Cg1 and Cg3 are the centroids of the p-toluenesulfonamide rings C1C6 and C18C23, respectively.

DHA DH HA D A DHA
N1H1NO2i 0.84(2) 2.13(2) 2.947(2) 162(2)
N2H2NO6ii 0.85(2) 2.21(2) 3.047(3) 169(2)
N4H4NO2iii 0.83(2) 2.18(2) 2.965(3) 157(3)
N5H5NO3iv 0.86(2) 1.96(2) 2.809(3) 169(3)
C6H6O6v 0.93 2.55 3.305(3) 139
C7H7AO5v 0.97 2.51 3.256(3) 133
C19H19O4v 0.93 2.57 3.212(4) 127
C14H14Cg1vi 0.93 2.91 3.832(3) 171
C29H29Cg3iv 0.93 2.84 3.753(4) 167

Symmetry codes: (i) Inline graphic; (ii) Inline graphic; (iii) Inline graphic; (iv) Inline graphic; (v) Inline graphic; (vi) Inline graphic.

Figure 2.

Figure 2

Hydrogen-bonding pattern in the title compound (see Table 1 for details).

Figure 3.

Figure 3

A view along the b axis of the crystal packing of the title compound. For details of the hydrogen bonds and C—H⋯π inter­actions (dashed lines), see Table 1 (mol­ecule A is blue and mol­ecule B is red).

Database survey  

A search of the Cambridge Structural Database (Version 5.36; Groom & Allen, 2014) for the fragment –NH–CH2–C(=O)–NH–N=CH– yielded only one hit, namely N-(2-hy­droxy-1-naphthyl­methyl­ene)-N′-(N-phenyl­glyc­yl)hydrazine (MEMTOO; Gudasi et al., 2006). We have also very recently reported the crystal structure of a similar compound, namely (E)-N-{2-[2-(3-chloro­benzyl­idene) hydrazin­yl]-2-oxoeth­yl}-4-methyl­benzene­sulfonamide monohydrate (Purandara et al., 2015).

Synthesis and crystallization  

p-Toluene­sulfonyl chloride (0.01 mol) was added to glycine (0.02 mol) dissolved in an aqueous solution of potassium carbonate (0.06 mol, 50 ml). The reaction mixture was stirred at 373 K for 6 h, left overnight at room temperature, then filtered and treated with dilute hydro­chloric acid. The solid N-(p-toluene­sulfon­yl)glycine (L1) obtained was crystallized from aqueous ethanol.

Sulfuric acid (0.5 ml) was added to L1 (0.02 mol) dissolved in ethanol (30 ml) and the mixture was refluxed. The reaction was monitored by TLC at regular inter­vals. After completion of the reaction, the reaction mixture was concentrated to remove the excess ethanol. The product, N-(p-toluene­sulfon­yl)glycine ethyl ester (L2) was poured into water, neutralized with sodium bicarbonate and recrystallized from acetone.

The pure L2 (0.01 mol) was then added in small portions to a stirred solution of 99% hydrazine hydrate (10 ml) in 30 ml ethanol and the mixture was refluxed for 6 h. After cooling to room temperature, the resulting precipitate was filtered, washed with cold water and dried to give N-(p-toluene­sulfon­yl)glycinyl hydrazide (L3).

A mixture of L3 (0.01 mol) and p-methyl­benzaldehyde (0.01 mol) in anhydrous methanol (30 ml) and two drops of glacial acetic acid was refluxed for 8 h. After cooling, the precipitate was collected by vacuum filtration, washed with cold methanol and dried. It was recrystallized to constant melting point from methanol (455–457 K). Prism-like colourless single crystals were grown from a DMF solution by slow evaporation of the solvent. The purity of the compound was checked by TLC and characterized by its IR spectrum. The characteristic absorptions observed are 3286.7, 1678.1, 1606.7, 1323.2 and 1157.3 cm−1 for the stretching bands of N—H, C—O, C—N, S—O asymmetric and S—O symmetric, respectively.

Refinement  

Crystal data, data collection and structure refinement details are summarized in Table 2. The amino H atoms were located in difference Fourier maps and refined with distance restraints: N—H = 0.86 (2) Å with U iso(H) = 1.2U eq(N). The C-bound H atoms were positioned with idealized geometry and refined using a riding model: C—H = 0.93–0.97 Å with U iso(H) = 1.5U eq(C) for methyl H atoms and 1.2U eq(C) for other H atoms.

Table 2. Experimental details.

Crystal data
Chemical formula C17H19N3O3S
M r 345.41
Crystal system, space group Triclinic, P Inline graphic
Temperature (K) 293
a, b, c () 11.2595(7), 11.2697(9), 14.538(1)
, , () 70.562(6), 87.330(7), 82.262(6)
V (3) 1723.8(2)
Z 4
Radiation type Mo K
(mm1) 0.21
Crystal size (mm) 0.36 0.28 0.24
 
Data collection
Diffractometer Oxford Diffraction Xcalibur with a Sapphire CCD detector
Absorption correction Multi-scan (CrysAlis RED; Oxford Diffraction, 2009)
T min, T max 0.929, 0.952
No. of measured, independent and observed [I > 2(I)] reflections 11371, 6281, 4859
R int 0.020
(sin /)max (1) 0.602
 
Refinement
R[F 2 > 2(F 2)], wR(F 2), S 0.047, 0.115, 1.07
No. of reflections 6281
No. of parameters 449
No. of restraints 4
H-atom treatment H atoms treated by a mixture of independent and constrained refinement
max, min (e 3) 0.21, 0.37

Computer programs: CrysAlis CCD and CrysAlis RED (Oxford Diffraction, 2009), SHELXS97 and SHELXL97 (Sheldrick, 2008), PLATON (Spek, 2009) and Mercury (Macrae et al., 2008).

Supplementary Material

Crystal structure: contains datablock(s) I, global. DOI: 10.1107/S2056989015009330/su5131sup1.cif

e-71-00730-sup1.cif (29.1KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S2056989015009330/su5131Isup2.hkl

e-71-00730-Isup2.hkl (307.4KB, hkl)

Supporting information file. DOI: 10.1107/S2056989015009330/su5131Isup3.cml

CCDC reference: 1401257

Additional supporting information: crystallographic information; 3D view; checkCIF report

Acknowledgments

HP thanks the Department of Science and Technology, Government of India, New Delhi for a research fellowship under its INSPIRE Program. BTG thanks the University Grants Commission, Government of India, New Delhi, for a special grant under the UGC–BSR one-time grant to faculty.

supplementary crystallographic information

Crystal data

C17H19N3O3S Z = 4
Mr = 345.41 F(000) = 728
Triclinic, P1 Dx = 1.331 Mg m3
Hall symbol: -P 1 Mo Kα radiation, λ = 0.71073 Å
a = 11.2595 (7) Å Cell parameters from 4653 reflections
b = 11.2697 (9) Å θ = 2.5–27.9°
c = 14.538 (1) Å µ = 0.21 mm1
α = 70.562 (6)° T = 293 K
β = 87.330 (7)° Prism, colourless
γ = 82.262 (6)° 0.36 × 0.28 × 0.24 mm
V = 1723.8 (2) Å3

Data collection

Oxford Diffraction Xcalibur single crystal X-ray diffractometer with a Sapphire CCD detector 6281 independent reflections
Radiation source: fine-focus sealed tube 4859 reflections with I > 2σ(I)
Graphite monochromator Rint = 0.020
Rotation method data acquisition using ω scans θmax = 25.4°, θmin = 2.5°
Absorption correction: multi-scan (CrysAlis RED; Oxford Diffraction, 2009) h = −13→11
Tmin = 0.929, Tmax = 0.952 k = −12→13
11371 measured reflections l = −17→17

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.047 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.115 H atoms treated by a mixture of independent and constrained refinement
S = 1.07 w = 1/[σ2(Fo2) + (0.0366P)2 + 1.1753P] where P = (Fo2 + 2Fc2)/3
6281 reflections (Δ/σ)max = 0.016
449 parameters Δρmax = 0.21 e Å3
4 restraints Δρmin = −0.37 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
S1 0.43117 (5) −0.17537 (5) −0.01465 (4) 0.03681 (15)
O1 0.36089 (15) −0.22646 (16) −0.06749 (12) 0.0489 (4)
O2 0.51332 (14) −0.08895 (15) −0.06644 (12) 0.0453 (4)
O3 0.07623 (16) −0.07163 (18) 0.17483 (13) 0.0594 (5)
N1 0.34260 (16) −0.09801 (18) 0.04163 (15) 0.0392 (4)
H1N 0.381 (2) −0.053 (2) 0.0626 (17) 0.047*
N2 0.13018 (17) 0.04983 (19) 0.02447 (15) 0.0434 (5)
H2N 0.171 (2) 0.053 (2) −0.0265 (15) 0.052*
N3 0.04565 (17) 0.15249 (19) 0.02068 (15) 0.0445 (5)
C1 0.51424 (19) −0.3020 (2) 0.07298 (16) 0.0355 (5)
C2 0.4918 (2) −0.4252 (2) 0.09054 (18) 0.0464 (6)
H2 0.4308 −0.4418 0.0573 0.056*
C3 0.5606 (3) −0.5233 (2) 0.15777 (19) 0.0544 (7)
H3 0.5467 −0.6063 0.1686 0.065*
C4 0.6499 (2) −0.5007 (3) 0.20942 (19) 0.0533 (7)
C5 0.6692 (2) −0.3763 (3) 0.19142 (19) 0.0521 (6)
H5 0.7286 −0.3595 0.2260 0.062*
C6 0.6032 (2) −0.2771 (2) 0.12386 (17) 0.0439 (6)
H6 0.6180 −0.1942 0.1124 0.053*
C7 0.2439 (2) −0.1537 (2) 0.10092 (18) 0.0423 (5)
H7A 0.2721 −0.2001 0.1668 0.051*
H7B 0.2158 −0.2134 0.0745 0.051*
C8 0.1414 (2) −0.0541 (2) 0.10389 (17) 0.0408 (5)
C9 0.0466 (2) 0.2452 (2) −0.05851 (19) 0.0447 (6)
H9 0.0995 0.2364 −0.1076 0.054*
C10 −0.0314 (2) 0.3642 (2) −0.07566 (18) 0.0412 (5)
C11 −0.0239 (2) 0.4593 (3) −0.16435 (19) 0.0540 (7)
H11 0.0298 0.4452 −0.2113 0.065*
C12 −0.0944 (3) 0.5742 (3) −0.1843 (2) 0.0599 (7)
H12 −0.0873 0.6366 −0.2445 0.072*
C13 −0.1752 (2) 0.5988 (2) −0.1170 (2) 0.0505 (6)
C14 −0.1822 (2) 0.5038 (3) −0.0284 (2) 0.0530 (7)
H14 −0.2360 0.5183 0.0183 0.064*
C15 −0.1120 (2) 0.3886 (2) −0.00723 (19) 0.0473 (6)
H15 −0.1186 0.3267 0.0533 0.057*
C16 0.7256 (3) −0.6088 (3) 0.2820 (3) 0.0899 (11)
H16A 0.7480 −0.6756 0.2549 0.135*
H16B 0.6805 −0.6403 0.3408 0.135*
H16C 0.7964 −0.5795 0.2963 0.135*
C17 −0.2530 (3) 0.7248 (3) −0.1391 (3) 0.0770 (9)
H17A −0.3310 0.7174 −0.1591 0.115*
H17B −0.2171 0.7877 −0.1906 0.115*
H17C −0.2604 0.7494 −0.0817 0.115*
S2 0.55311 (6) 0.09396 (8) 0.65448 (5) 0.0589 (2)
O4 0.59893 (19) −0.0024 (2) 0.61467 (17) 0.0774 (6)
O5 0.63233 (18) 0.1381 (2) 0.70615 (17) 0.0843 (7)
O6 0.24349 (16) 0.07650 (17) 0.82524 (13) 0.0546 (5)
N4 0.4440 (2) 0.0538 (3) 0.72822 (16) 0.0628 (7)
H4N 0.460 (3) 0.035 (3) 0.7870 (14) 0.075*
N5 0.13783 (18) −0.0168 (2) 0.74840 (15) 0.0457 (5)
H5N 0.0720 (18) 0.000 (2) 0.7769 (18) 0.055*
N6 0.13391 (17) −0.07035 (18) 0.67618 (14) 0.0415 (5)
C18 0.4840 (2) 0.2221 (3) 0.55871 (19) 0.0528 (7)
C19 0.4764 (3) 0.2135 (3) 0.4672 (2) 0.0648 (8)
H19 0.5095 0.1401 0.4548 0.078*
C20 0.4195 (3) 0.3142 (3) 0.3940 (2) 0.0727 (9)
H20 0.4146 0.3073 0.3324 0.087*
C21 0.3698 (3) 0.4244 (3) 0.4090 (2) 0.0680 (8)
C22 0.3772 (3) 0.4304 (3) 0.5017 (3) 0.0737 (9)
H22 0.3432 0.5034 0.5142 0.088*
C23 0.4334 (3) 0.3316 (3) 0.5761 (2) 0.0675 (8)
H23 0.4374 0.3381 0.6379 0.081*
C24 0.3458 (2) −0.0013 (3) 0.70435 (18) 0.0488 (6)
H24A 0.3676 −0.0919 0.7187 0.059*
H24B 0.3272 0.0366 0.6354 0.059*
C25 0.2387 (2) 0.0232 (2) 0.76443 (17) 0.0423 (5)
C26 0.0308 (2) −0.0913 (2) 0.65790 (17) 0.0422 (5)
H26 −0.0352 −0.0703 0.6928 0.051*
C27 0.0140 (2) −0.1478 (2) 0.58330 (16) 0.0404 (5)
C28 −0.0982 (2) −0.1755 (2) 0.56938 (18) 0.0497 (6)
H28 −0.1627 −0.1557 0.6063 0.060*
C29 −0.1157 (3) −0.2325 (3) 0.50103 (19) 0.0559 (7)
H29 −0.1916 −0.2520 0.4936 0.067*
C30 −0.0230 (3) −0.2610 (2) 0.44395 (19) 0.0552 (7)
C31 0.0883 (2) −0.2282 (3) 0.4552 (2) 0.0566 (7)
H31 0.1516 −0.2437 0.4156 0.068*
C32 0.1069 (2) −0.1732 (2) 0.52392 (18) 0.0489 (6)
H32 0.1826 −0.1528 0.5306 0.059*
C33 0.3084 (4) 0.5341 (4) 0.3279 (3) 0.0983 (12)
H33A 0.2243 0.5456 0.3419 0.147*
H33B 0.3195 0.5168 0.2675 0.147*
H33C 0.3422 0.6099 0.3226 0.147*
C34 −0.0421 (3) −0.3240 (3) 0.3695 (2) 0.0814 (10)
H34A −0.1259 −0.3127 0.3547 0.122*
H34B −0.0140 −0.4130 0.3955 0.122*
H34C 0.0016 −0.2863 0.3110 0.122*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
S1 0.0365 (3) 0.0364 (3) 0.0384 (3) −0.0033 (2) −0.0001 (2) −0.0141 (2)
O1 0.0531 (10) 0.0495 (10) 0.0487 (10) −0.0065 (8) −0.0111 (8) −0.0209 (8)
O2 0.0442 (9) 0.0439 (9) 0.0455 (9) −0.0082 (7) 0.0067 (7) −0.0116 (8)
O3 0.0507 (11) 0.0712 (13) 0.0507 (11) 0.0006 (9) 0.0139 (9) −0.0177 (9)
N1 0.0318 (10) 0.0384 (11) 0.0522 (12) −0.0059 (8) 0.0004 (9) −0.0210 (9)
N2 0.0390 (11) 0.0467 (12) 0.0453 (12) 0.0019 (9) 0.0053 (9) −0.0196 (10)
N3 0.0360 (11) 0.0466 (12) 0.0549 (13) 0.0007 (9) −0.0010 (9) −0.0242 (11)
C1 0.0361 (12) 0.0356 (12) 0.0360 (12) −0.0014 (9) 0.0029 (9) −0.0151 (10)
C2 0.0530 (15) 0.0435 (14) 0.0464 (14) −0.0078 (12) −0.0003 (11) −0.0190 (12)
C3 0.0699 (18) 0.0355 (14) 0.0550 (16) −0.0044 (13) 0.0057 (14) −0.0126 (12)
C4 0.0507 (15) 0.0528 (16) 0.0455 (15) 0.0076 (13) 0.0030 (12) −0.0074 (12)
C5 0.0432 (14) 0.0616 (17) 0.0505 (15) −0.0024 (12) −0.0064 (12) −0.0182 (13)
C6 0.0420 (13) 0.0426 (13) 0.0500 (14) −0.0041 (11) −0.0034 (11) −0.0191 (12)
C7 0.0374 (12) 0.0408 (13) 0.0485 (14) −0.0068 (10) 0.0045 (10) −0.0143 (11)
C8 0.0343 (12) 0.0492 (14) 0.0438 (14) −0.0076 (11) 0.0012 (10) −0.0211 (12)
C9 0.0383 (13) 0.0510 (15) 0.0483 (15) −0.0034 (11) 0.0004 (11) −0.0222 (13)
C10 0.0340 (12) 0.0454 (14) 0.0498 (14) −0.0044 (10) −0.0031 (10) −0.0228 (12)
C11 0.0540 (16) 0.0580 (17) 0.0487 (15) 0.0035 (13) 0.0081 (12) −0.0210 (13)
C12 0.0679 (18) 0.0546 (17) 0.0483 (16) 0.0043 (14) 0.0018 (13) −0.0101 (13)
C13 0.0474 (15) 0.0528 (15) 0.0562 (16) 0.0019 (12) −0.0058 (12) −0.0270 (13)
C14 0.0457 (15) 0.0632 (17) 0.0570 (16) −0.0037 (13) 0.0086 (12) −0.0315 (14)
C15 0.0458 (14) 0.0494 (15) 0.0480 (15) −0.0073 (12) 0.0044 (11) −0.0180 (12)
C16 0.079 (2) 0.072 (2) 0.089 (3) 0.0150 (18) −0.0154 (19) 0.0056 (19)
C17 0.080 (2) 0.065 (2) 0.084 (2) 0.0192 (17) −0.0088 (18) −0.0318 (18)
S2 0.0454 (4) 0.0787 (5) 0.0626 (4) −0.0215 (4) 0.0047 (3) −0.0320 (4)
O4 0.0655 (13) 0.0849 (15) 0.0886 (16) 0.0003 (11) 0.0035 (11) −0.0419 (13)
O5 0.0582 (13) 0.1185 (19) 0.0939 (16) −0.0379 (13) −0.0071 (11) −0.0473 (15)
O6 0.0592 (11) 0.0601 (11) 0.0549 (11) −0.0050 (9) −0.0064 (9) −0.0329 (9)
N4 0.0575 (14) 0.0940 (18) 0.0423 (12) −0.0346 (13) −0.0014 (11) −0.0199 (13)
N5 0.0391 (11) 0.0578 (13) 0.0479 (12) −0.0048 (10) 0.0018 (9) −0.0284 (10)
N6 0.0429 (11) 0.0435 (11) 0.0403 (11) −0.0059 (9) −0.0022 (9) −0.0163 (9)
C18 0.0505 (15) 0.0647 (17) 0.0537 (16) −0.0263 (13) 0.0157 (12) −0.0280 (14)
C19 0.081 (2) 0.0655 (19) 0.0554 (18) −0.0194 (16) 0.0181 (15) −0.0285 (16)
C20 0.092 (2) 0.079 (2) 0.0512 (18) −0.0248 (19) 0.0127 (16) −0.0239 (17)
C21 0.0654 (19) 0.070 (2) 0.070 (2) −0.0253 (16) 0.0111 (16) −0.0209 (17)
C22 0.075 (2) 0.067 (2) 0.089 (2) −0.0143 (17) 0.0110 (18) −0.0383 (19)
C23 0.074 (2) 0.080 (2) 0.0650 (19) −0.0208 (17) 0.0095 (16) −0.0428 (18)
C24 0.0468 (14) 0.0583 (16) 0.0448 (14) −0.0159 (12) −0.0002 (11) −0.0182 (12)
C25 0.0464 (14) 0.0392 (13) 0.0411 (13) −0.0029 (11) −0.0050 (10) −0.0134 (11)
C26 0.0412 (13) 0.0427 (13) 0.0408 (13) −0.0038 (11) 0.0006 (10) −0.0121 (11)
C27 0.0434 (13) 0.0367 (12) 0.0381 (12) −0.0059 (10) −0.0056 (10) −0.0074 (10)
C28 0.0464 (14) 0.0575 (16) 0.0431 (14) −0.0148 (12) −0.0003 (11) −0.0108 (12)
C29 0.0565 (16) 0.0613 (17) 0.0511 (16) −0.0252 (14) −0.0086 (13) −0.0123 (13)
C30 0.0702 (18) 0.0483 (15) 0.0493 (15) −0.0094 (13) −0.0121 (14) −0.0167 (13)
C31 0.0550 (16) 0.0619 (17) 0.0578 (17) 0.0008 (14) −0.0023 (13) −0.0292 (14)
C32 0.0412 (13) 0.0547 (15) 0.0542 (15) −0.0033 (12) −0.0063 (11) −0.0228 (13)
C33 0.098 (3) 0.089 (3) 0.098 (3) −0.007 (2) −0.008 (2) −0.018 (2)
C34 0.104 (3) 0.081 (2) 0.074 (2) −0.017 (2) −0.0168 (19) −0.0415 (19)

Geometric parameters (Å, º)

S1—O1 1.4218 (16) S2—O4 1.421 (2)
S1—O2 1.4355 (16) S2—O5 1.427 (2)
S1—N1 1.6090 (19) S2—N4 1.602 (2)
S1—C1 1.754 (2) S2—C18 1.758 (3)
O3—C8 1.214 (3) O6—C25 1.229 (3)
N1—C7 1.453 (3) N4—C24 1.447 (3)
N1—H1N 0.846 (16) N4—H4N 0.831 (17)
N2—C8 1.339 (3) N5—C25 1.334 (3)
N2—N3 1.383 (3) N5—N6 1.379 (3)
N2—H2N 0.850 (16) N5—H5N 0.861 (16)
N3—C9 1.272 (3) N6—C26 1.272 (3)
C1—C2 1.382 (3) C18—C19 1.373 (4)
C1—C6 1.383 (3) C18—C23 1.383 (4)
C2—C3 1.378 (4) C19—C20 1.376 (4)
C2—H2 0.9300 C19—H19 0.9300
C3—C4 1.380 (4) C20—C21 1.374 (4)
C3—H3 0.9300 C20—H20 0.9300
C4—C5 1.383 (4) C21—C22 1.378 (4)
C4—C16 1.507 (4) C21—C33 1.508 (5)
C5—C6 1.372 (3) C22—C23 1.372 (4)
C5—H5 0.9300 C22—H22 0.9300
C6—H6 0.9300 C23—H23 0.9300
C7—C8 1.508 (3) C24—C25 1.506 (3)
C7—H7A 0.9700 C24—H24A 0.9700
C7—H7B 0.9700 C24—H24B 0.9700
C9—C10 1.454 (3) C26—C27 1.459 (3)
C9—H9 0.9300 C26—H26 0.9300
C10—C11 1.383 (3) C27—C28 1.381 (3)
C10—C15 1.385 (3) C27—C32 1.386 (3)
C11—C12 1.373 (4) C28—C29 1.384 (4)
C11—H11 0.9300 C28—H28 0.9300
C12—C13 1.375 (4) C29—C30 1.373 (4)
C12—H12 0.9300 C29—H29 0.9300
C13—C14 1.381 (4) C30—C31 1.385 (4)
C13—C17 1.507 (4) C30—C34 1.515 (4)
C14—C15 1.373 (3) C31—C32 1.375 (3)
C14—H14 0.9300 C31—H31 0.9300
C15—H15 0.9300 C32—H32 0.9300
C16—H16A 0.9600 C33—H33A 0.9600
C16—H16B 0.9600 C33—H33B 0.9600
C16—H16C 0.9600 C33—H33C 0.9600
C17—H17A 0.9600 C34—H34A 0.9600
C17—H17B 0.9600 C34—H34B 0.9600
C17—H17C 0.9600 C34—H34C 0.9600
O1—S1—O2 119.33 (10) O4—S2—O5 119.00 (14)
O1—S1—N1 108.63 (10) O4—S2—N4 112.07 (14)
O2—S1—N1 104.92 (10) O5—S2—N4 104.85 (13)
O1—S1—C1 108.15 (10) O4—S2—C18 107.17 (13)
O2—S1—C1 107.25 (10) O5—S2—C18 109.91 (14)
N1—S1—C1 108.09 (10) N4—S2—C18 102.65 (13)
C7—N1—S1 121.38 (15) C24—N4—S2 122.13 (18)
C7—N1—H1N 117.5 (17) C24—N4—H4N 117 (2)
S1—N1—H1N 110.3 (17) S2—N4—H4N 115 (2)
C8—N2—N3 121.0 (2) C25—N5—N6 120.1 (2)
C8—N2—H2N 121.0 (18) C25—N5—H5N 120.8 (18)
N3—N2—H2N 117.9 (18) N6—N5—H5N 118.5 (18)
C9—N3—N2 114.1 (2) C26—N6—N5 115.8 (2)
C2—C1—C6 120.4 (2) C19—C18—C23 119.4 (3)
C2—C1—S1 120.50 (18) C19—C18—S2 120.7 (2)
C6—C1—S1 119.12 (17) C23—C18—S2 119.9 (2)
C3—C2—C1 119.3 (2) C18—C19—C20 119.5 (3)
C3—C2—H2 120.3 C18—C19—H19 120.2
C1—C2—H2 120.3 C20—C19—H19 120.2
C2—C3—C4 121.3 (2) C21—C20—C19 122.2 (3)
C2—C3—H3 119.3 C21—C20—H20 118.9
C4—C3—H3 119.3 C19—C20—H20 118.9
C3—C4—C5 118.1 (2) C20—C21—C22 117.2 (3)
C3—C4—C16 120.8 (3) C20—C21—C33 121.6 (3)
C5—C4—C16 121.0 (3) C22—C21—C33 121.2 (3)
C6—C5—C4 121.8 (2) C23—C22—C21 121.8 (3)
C6—C5—H5 119.1 C23—C22—H22 119.1
C4—C5—H5 119.1 C21—C22—H22 119.1
C5—C6—C1 119.1 (2) C22—C23—C18 119.7 (3)
C5—C6—H6 120.4 C22—C23—H23 120.1
C1—C6—H6 120.4 C18—C23—H23 120.1
N1—C7—C8 111.69 (19) N4—C24—C25 108.2 (2)
N1—C7—H7A 109.3 N4—C24—H24A 110.1
C8—C7—H7A 109.3 C25—C24—H24A 110.1
N1—C7—H7B 109.3 N4—C24—H24B 110.1
C8—C7—H7B 109.3 C25—C24—H24B 110.1
H7A—C7—H7B 107.9 H24A—C24—H24B 108.4
O3—C8—N2 124.9 (2) O6—C25—N5 121.6 (2)
O3—C8—C7 120.0 (2) O6—C25—C24 122.2 (2)
N2—C8—C7 115.1 (2) N5—C25—C24 116.2 (2)
N3—C9—C10 122.9 (2) N6—C26—C27 121.4 (2)
N3—C9—H9 118.6 N6—C26—H26 119.3
C10—C9—H9 118.6 C27—C26—H26 119.3
C11—C10—C15 117.9 (2) C28—C27—C32 118.1 (2)
C11—C10—C9 118.6 (2) C28—C27—C26 119.6 (2)
C15—C10—C9 123.5 (2) C32—C27—C26 122.3 (2)
C12—C11—C10 121.2 (2) C27—C28—C29 120.7 (2)
C12—C11—H11 119.4 C27—C28—H28 119.7
C10—C11—H11 119.4 C29—C28—H28 119.7
C11—C12—C13 121.3 (3) C30—C29—C28 121.3 (2)
C11—C12—H12 119.4 C30—C29—H29 119.4
C13—C12—H12 119.4 C28—C29—H29 119.4
C12—C13—C14 117.5 (2) C29—C30—C31 117.9 (2)
C12—C13—C17 121.2 (3) C29—C30—C34 121.2 (3)
C14—C13—C17 121.3 (3) C31—C30—C34 120.8 (3)
C15—C14—C13 122.0 (2) C32—C31—C30 121.2 (3)
C15—C14—H14 119.0 C32—C31—H31 119.4
C13—C14—H14 119.0 C30—C31—H31 119.4
C14—C15—C10 120.2 (2) C31—C32—C27 120.7 (2)
C14—C15—H15 119.9 C31—C32—H32 119.6
C10—C15—H15 119.9 C27—C32—H32 119.6
C4—C16—H16A 109.5 C21—C33—H33A 109.5
C4—C16—H16B 109.5 C21—C33—H33B 109.5
H16A—C16—H16B 109.5 H33A—C33—H33B 109.5
C4—C16—H16C 109.5 C21—C33—H33C 109.5
H16A—C16—H16C 109.5 H33A—C33—H33C 109.5
H16B—C16—H16C 109.5 H33B—C33—H33C 109.5
C13—C17—H17A 109.5 C30—C34—H34A 109.5
C13—C17—H17B 109.5 C30—C34—H34B 109.5
H17A—C17—H17B 109.5 H34A—C34—H34B 109.5
C13—C17—H17C 109.5 C30—C34—H34C 109.5
H17A—C17—H17C 109.5 H34A—C34—H34C 109.5
H17B—C17—H17C 109.5 H34B—C34—H34C 109.5
O1—S1—N1—C7 49.8 (2) O4—S2—N4—C24 −47.0 (3)
O2—S1—N1—C7 178.47 (18) O5—S2—N4—C24 −177.4 (2)
C1—S1—N1—C7 −67.3 (2) C18—S2—N4—C24 67.7 (3)
C8—N2—N3—C9 178.9 (2) C25—N5—N6—C26 −171.7 (2)
O1—S1—C1—C2 −9.3 (2) O4—S2—C18—C19 3.5 (3)
O2—S1—C1—C2 −139.20 (19) O5—S2—C18—C19 134.1 (2)
N1—S1—C1—C2 108.2 (2) N4—S2—C18—C19 −114.7 (2)
O1—S1—C1—C6 170.28 (18) O4—S2—C18—C23 −178.6 (2)
O2—S1—C1—C6 40.4 (2) O5—S2—C18—C23 −47.9 (3)
N1—S1—C1—C6 −72.3 (2) N4—S2—C18—C23 63.2 (2)
C6—C1—C2—C3 −1.4 (4) C23—C18—C19—C20 0.6 (4)
S1—C1—C2—C3 178.15 (18) S2—C18—C19—C20 178.6 (2)
C1—C2—C3—C4 1.4 (4) C18—C19—C20—C21 0.2 (5)
C2—C3—C4—C5 −0.4 (4) C19—C20—C21—C22 −0.9 (5)
C2—C3—C4—C16 −179.3 (3) C19—C20—C21—C33 179.6 (3)
C3—C4—C5—C6 −0.6 (4) C20—C21—C22—C23 1.0 (5)
C16—C4—C5—C6 178.3 (3) C33—C21—C22—C23 −179.6 (3)
C4—C5—C6—C1 0.5 (4) C21—C22—C23—C18 −0.2 (5)
C2—C1—C6—C5 0.5 (3) C19—C18—C23—C22 −0.6 (4)
S1—C1—C6—C5 −179.10 (18) S2—C18—C23—C22 −178.6 (2)
S1—N1—C7—C8 −151.08 (17) S2—N4—C24—C25 −156.3 (2)
N3—N2—C8—O3 5.1 (4) N6—N5—C25—O6 176.7 (2)
N3—N2—C8—C7 −175.06 (19) N6—N5—C25—C24 −3.6 (3)
N1—C7—C8—O3 −150.8 (2) N4—C24—C25—O6 −3.1 (3)
N1—C7—C8—N2 29.3 (3) N4—C24—C25—N5 177.2 (2)
N2—N3—C9—C10 −177.2 (2) N5—N6—C26—C27 −179.9 (2)
N3—C9—C10—C11 −179.8 (2) N6—C26—C27—C28 176.4 (2)
N3—C9—C10—C15 1.2 (4) N6—C26—C27—C32 −4.7 (4)
C15—C10—C11—C12 −0.3 (4) C32—C27—C28—C29 3.0 (4)
C9—C10—C11—C12 −179.3 (2) C26—C27—C28—C29 −178.1 (2)
C10—C11—C12—C13 −0.2 (4) C27—C28—C29—C30 −1.2 (4)
C11—C12—C13—C14 0.4 (4) C28—C29—C30—C31 −1.5 (4)
C11—C12—C13—C17 −179.7 (3) C28—C29—C30—C34 179.7 (3)
C12—C13—C14—C15 −0.2 (4) C29—C30—C31—C32 2.4 (4)
C17—C13—C14—C15 180.0 (3) C34—C30—C31—C32 −178.7 (3)
C13—C14—C15—C10 −0.3 (4) C30—C31—C32—C27 −0.6 (4)
C11—C10—C15—C14 0.5 (4) C28—C27—C32—C31 −2.0 (4)
C9—C10—C15—C14 179.5 (2) C26—C27—C32—C31 179.0 (2)

Hydrogen-bond geometry (Å, º)

Cg1 and Cg3 are the centroids of the p-toluenesulfonamide rings C1–C6 and C18–C23, respectively.

D—H···A D—H H···A D···A D—H···A
N1—H1N···O2i 0.84 (2) 2.13 (2) 2.947 (2) 162 (2)
N2—H2N···O6ii 0.85 (2) 2.21 (2) 3.047 (3) 169 (2)
N4—H4N···O2iii 0.83 (2) 2.18 (2) 2.965 (3) 157 (3)
N5—H5N···O3iv 0.86 (2) 1.96 (2) 2.809 (3) 169 (3)
C6—H6···O6v 0.93 2.55 3.305 (3) 139
C7—H7A···O5v 0.97 2.51 3.256 (3) 133
C19—H19···O4v 0.93 2.57 3.212 (4) 127
C14—H14···Cg1vi 0.93 2.91 3.832 (3) 171
C29—H29···Cg3iv 0.93 2.84 3.753 (4) 167

Symmetry codes: (i) −x+1, −y, −z; (ii) x, y, z−1; (iii) x, y, z+1; (iv) −x, −y, −z+1; (v) −x+1, −y, −z+1; (vi) x−1, y+1, z.

References

  1. Gowda, B. T., Kozisek, J. & Fuess, H. (2006). Z. Naturforsch. Teil A, 61, 588–594.
  2. Groom, C. R. & Allen, F. H. (2014). Angew. Chem. Int. Ed. 53, 662–671. [DOI] [PubMed]
  3. Gudasi, K. B., Patil, M. S., Vadavi, R. S., Shenoy, R. V., Patil, S. A. & Nethaji, M. (2006). Transition Met. Chem. 31, 580–585.
  4. Jyothi, K. & Gowda, B. T. (2004). Z. Naturforsch. Teil A, 59, 64–68.
  5. Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470.
  6. Oxford Diffraction (2009). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Yarnton, Oxfordshire, England.
  7. Purandara, H., Foro, S. & Gowda, B. T. (2015). Acta Cryst. E71, 602–605. [DOI] [PMC free article] [PubMed]
  8. Rodrigues, V. Z., Foro, S. & Gowda, B. T. (2011). Acta Cryst. E67, o2179. [DOI] [PMC free article] [PubMed]
  9. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  10. Spek, A. L. (2009). Acta Cryst. D65, 148–155. [DOI] [PMC free article] [PubMed]
  11. Tian, B., He, M., Tan, Z., Tang, S., Hewlett, I., Chen, S., Jin, Y. & Yang, M. (2011). Chem. Biol. Drug Des. 77, 189–198. [DOI] [PubMed]
  12. Tian, B., He, M., Tang, S., Hewlett, I., Tan, Z., Li, J., Jin, Y. & Yang, M. (2009). Bioorg. Med. Chem. Lett. 19, 2162–2167. [DOI] [PubMed]
  13. Usha, K. M. & Gowda, B. T. (2006). J. Chem. Sci. 118, 351–359.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) I, global. DOI: 10.1107/S2056989015009330/su5131sup1.cif

e-71-00730-sup1.cif (29.1KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S2056989015009330/su5131Isup2.hkl

e-71-00730-Isup2.hkl (307.4KB, hkl)

Supporting information file. DOI: 10.1107/S2056989015009330/su5131Isup3.cml

CCDC reference: 1401257

Additional supporting information: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Crystallographic Communications are provided here courtesy of International Union of Crystallography

RESOURCES