Abstract
Hemopexin (Hx), the major heme-binding plasma glycoprotein, scavenges circulating heme and performs an antioxidant function. In the present study, human Hx was expressed in a baculovirus system and its presumed essential His residues were mutated to Thr as a means of investigating their participation in heme binding. The recombinant Hx proteins were purified by sequential chromatography on Con A-agarose and SP-Sepharose. The purified recombinant wild-type Hx retained its heme binding. The binding constant for heme was considerably reduced, however, suggesting that glycosylation contributes critically to the heme binding property of Hx. Mutation either at His-127 or at His-56 plus His-127, but not at His-56 per se, reduced the affinity for heme by an order of magnitude relative to wild-type Hx. It is concluded that His-127 contributes to the high affinity for heme. We recorded proton NMR spectra to investigate the possibility that the degree of high-spin content is increased by deletion of an axial His-iron coordination. 1H NMR data indicate that each of the single-mutant heme-Hx complexes is predominantly low-spin, perhaps owing to coordination of the heme iron by the Thr side-chain oxygen or water oxygen coordinating to the iron.
Full text
PDF




Images in this article
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Aisen P., Leibman A., Harris D. C., Moss T. Human hemopexin. Preparation and magnetic properties. J Biol Chem. 1974 Nov 10;249(21):6824–6827. [PubMed] [Google Scholar]
- Altruda F., Poli V., Restagno G., Argos P., Cortese R., Silengo L. The primary structure of human hemopexin deduced from cDNA sequence: evidence for internal, repeating homology. Nucleic Acids Res. 1985 Jun 11;13(11):3841–3859. doi: 10.1093/nar/13.11.3841. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Au-Young J., Fielding C. J. Synthesis and secretion of wild-type and mutant human plasma cholesteryl ester transfer protein in baculovirus-transfected insect cells: the carboxyl-terminal region is required for both lipoprotein binding and catalysis of transfer. Proc Natl Acad Sci U S A. 1992 May 1;89(9):4094–4098. doi: 10.1073/pnas.89.9.4094. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Balla G., Vercellotti G. M., Muller-Eberhard U., Eaton J., Jacob H. S. Exposure of endothelial cells to free heme potentiates damage mediated by granulocytes and toxic oxygen species. Lab Invest. 1991 May;64(5):648–655. [PubMed] [Google Scholar]
- Barnard M. L., Muller-Eberhard U., Turrens J. F. Protective role of hemopexin on heme-dependent lung oxidative stress. Biochem Biophys Res Commun. 1993 Apr 15;192(1):82–87. doi: 10.1006/bbrc.1993.1384. [DOI] [PubMed] [Google Scholar]
- Bearden A. J., Morgan W. T., Muller-Eberhard U. Heme complexes of rabbit hemopexin, human hemopexin and human serum albumin: electron spin resonance and Mssbauer spectroscopic studies. Biochem Biophys Res Commun. 1974 Nov 6;61(1):265–272. doi: 10.1016/0006-291x(74)90562-2. [DOI] [PubMed] [Google Scholar]
- Clegg J. C. Glycoprotein detection in nitrocellulose transfers of electrophoretically separated protein mixtures using concanavalin A and peroxidase: application to arenavirus and flavivirus proteins. Anal Biochem. 1982 Dec;127(2):389–394. doi: 10.1016/0003-2697(82)90192-0. [DOI] [PubMed] [Google Scholar]
- Collier G. S., Pratt J. M., De Wet C. R., Tshabalala C. F. Studies on haemin in dimethyl sulphoxide/water mixtures. Biochem J. 1979 May 1;179(2):281–289. doi: 10.1042/bj1790281. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Davies D. M., Smith A., Muller-Eberhard U., Morgan W. T. Hepatic subcellular metabolism of heme from heme-hemopexin: incorporation of iron into ferritin. Biochem Biophys Res Commun. 1979 Dec 28;91(4):1504–1511. doi: 10.1016/0006-291x(79)91235-x. [DOI] [PubMed] [Google Scholar]
- Goldfarb V., Trimble R. B., De Falco M., Liem H. H., Metcalfe S. A., Wellner D., Muller-Eberhard U. An avian serum alpha 1-glycoprotein, hemopexin, differing significantly in both amino acid and carbohydrate composition from mammalian (beta-glycoprotein) counterparts. Biochemistry. 1986 Oct 21;25(21):6555–6562. doi: 10.1021/bi00369a033. [DOI] [PubMed] [Google Scholar]
- Hrkal Z., Muller-Eberhard U. Partial characterization of the heme-binding serum glycoproteins rabbit and human hemopexin. Biochemistry. 1971 May 11;10(10):1746–1750. doi: 10.1021/bi00786a002. [DOI] [PubMed] [Google Scholar]
- Hrkal Z., Vodrázka Z., Kalousek I. Transfer of heme from ferrihemoglobin and ferrihemoglobin isolated chains to hemopexin. Eur J Biochem. 1974 Mar 15;43(1):73–78. doi: 10.1111/j.1432-1033.1974.tb03386.x. [DOI] [PubMed] [Google Scholar]
- Knobler E., Poh-Fitzpatrick M. B., Kravetz D., Vincent W. R., Muller-Eberhard U., Vincent S. H. Interaction of hemopexin, albumin and liver fatty acid-binding protein with protoporphyrin. Hepatology. 1989 Dec;10(6):995–997. doi: 10.1002/hep.1840100617. [DOI] [PubMed] [Google Scholar]
- Morgan W. T., Muller-eberhard U. Chemical modification of histidine residues of rabbit hemopexin. Arch Biochem Biophys. 1976 Oct;176(2):431–441. doi: 10.1016/0003-9861(76)90185-5. [DOI] [PubMed] [Google Scholar]
- Morgan W. T., Muster P., Tatum F., Kao S. M., Alam J., Smith A. Identification of the histidine residues of hemopexin that coordinate with heme-iron and of a receptor-binding region. J Biol Chem. 1993 Mar 25;268(9):6256–6262. [PubMed] [Google Scholar]
- Morgan W. T., Smith A., Koskelo P. The interaction of human serum albumin and hemopexin with porphyrins. Biochim Biophys Acta. 1980 Jul 24;624(1):271–285. doi: 10.1016/0005-2795(80)90246-9. [DOI] [PubMed] [Google Scholar]
- Morgan W. T., Vickery L. E. Magnetic and natural circular dichroism of metalloporphyrin complexes of human and rabbit hemopexin. J Biol Chem. 1978 May 10;253(9):2940–2945. [PubMed] [Google Scholar]
- Moroi M., Jung S. M. Selective staining of human platelet glycoproteins using nitrocellulose transfer of electrophoresed proteins and peroxidase-conjugated lectins. Biochim Biophys Acta. 1984 Apr 24;798(3):295–301. doi: 10.1016/0304-4165(84)90101-6. [DOI] [PubMed] [Google Scholar]
- Muller-Eberhard U., Fraig M. Bioactivity of heme and its containment. Am J Hematol. 1993 Jan;42(1):59–62. doi: 10.1002/ajh.2830420112. [DOI] [PubMed] [Google Scholar]
- Muller-Eberhard U. Hemopexin. Methods Enzymol. 1988;163:536–565. doi: 10.1016/0076-6879(88)63049-7. [DOI] [PubMed] [Google Scholar]
- Muller-Eberhard U., Vincent S. H. Concepts of heme distribution within hepatocytes. Biochem Pharmacol. 1985 Mar 15;34(6):719–725. doi: 10.1016/0006-2952(85)90749-x. [DOI] [PubMed] [Google Scholar]
- Muster P., Tatum F., Smith A., Morgan W. T. Further characterization of structural determinants of rabbit hemopexin function. J Protein Chem. 1991 Feb;10(1):123–128. doi: 10.1007/BF01024662. [DOI] [PubMed] [Google Scholar]
- Nikkilä H., Gitlin J. D., Muller-Eberhard U. Rat hemopexin. Molecular cloning, primary structural characterization, and analysis of gene expression. Biochemistry. 1991 Jan 22;30(3):823–829. doi: 10.1021/bi00217a036. [DOI] [PubMed] [Google Scholar]
- Seery V. L., Hathaway G., Eberhard U. M. Hemopexin of human and rabbit: molecular weight and extinction coefficient. Arch Biochem Biophys. 1972 May;150(1):269–272. doi: 10.1016/0003-9861(72)90035-5. [DOI] [PubMed] [Google Scholar]
- Seery V. L., Morgan W. T., Muller-Eberhard U. Interaction of rabbit hemopexin with rose bengal and photooxidation of the rose bengal-hemopexin complex. J Biol Chem. 1975 Aug 25;250(16):6439–6444. [PubMed] [Google Scholar]
- Takagi Y., Ogawa H., Harada N., Shimada H., Ishimura Y., Takagi Y. Expression and transport into mitochondria of bovine cytochrome P-450(SCC) in insect cells using the baculovirus expression system. Biochem Biophys Res Commun. 1992 Apr 15;184(1):471–477. doi: 10.1016/0006-291x(92)91218-f. [DOI] [PubMed] [Google Scholar]
- Takahashi N., Takahashi Y., Heiny M. E., Putnam F. W. Purification of hemopexin and its domain fragments by affinity chromatography and high-performance liquid chromatography. J Chromatogr. 1985 Jun 19;326:373–385. doi: 10.1016/s0021-9673(01)87463-x. [DOI] [PubMed] [Google Scholar]
- Takahashi N., Takahashi Y., Putnam F. W. Complete amino acid sequence of human hemopexin, the heme-binding protein of serum. Proc Natl Acad Sci U S A. 1985 Jan;82(1):73–77. doi: 10.1073/pnas.82.1.73. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Takahashi N., Takahashi Y., Putnam F. W. Structure of human hemopexin: O-glycosyl and N-glycosyl sites and unusual clustering of tryptophan residues. Proc Natl Acad Sci U S A. 1984 Apr;81(7):2021–2025. doi: 10.1073/pnas.81.7.2021. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Tessier D. C., Thomas D. Y., Khouri H. E., Laliberté F., Vernet T. Enhanced secretion from insect cells of a foreign protein fused to the honeybee melittin signal peptide. Gene. 1991 Feb 15;98(2):177–183. doi: 10.1016/0378-1119(91)90171-7. [DOI] [PubMed] [Google Scholar]
- Vincent S. H., Grady R. W., Shaklai N., Snider J. M., Muller-Eberhard U. The influence of heme-binding proteins in heme-catalyzed oxidations. Arch Biochem Biophys. 1988 Sep;265(2):539–550. doi: 10.1016/0003-9861(88)90159-2. [DOI] [PubMed] [Google Scholar]
- Webb E., Tkalcevic J., Edwards S., Hocking D., Nisbet I. Expression of biologically active human factor VIII using a baculovirus vector. Biochem Biophys Res Commun. 1993 Jan 29;190(2):536–543. doi: 10.1006/bbrc.1993.1081. [DOI] [PubMed] [Google Scholar]