Abstract
Spatial correlations define the statistical structure of any visual image. Two-point correlations inform the visual system about the spatial frequency content of an image. Higher-order correlations can capture salient features such as object contours. We studied "isodipole" texture discrimination in V1 to determine if higher-order spatial correlations can be extracted by early stages of cortical processing. We made epicortical, local field potential, and single-cell recordings of responses elicited by isodipole texture interchange in anesthetized monkeys. Our studies demonstrate that single neurons in V1 can signal the presence of higher-order spatial correlations in visual textures. This places a computational mechanism, which may be essential for form vision at the earliest stage of cortical processing.
Full text
PDF




Images in this article
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Field D. J. Relations between the statistics of natural images and the response properties of cortical cells. J Opt Soc Am A. 1987 Dec;4(12):2379–2394. doi: 10.1364/josaa.4.002379. [DOI] [PubMed] [Google Scholar]
- Freeman J. A., Nicholson C. Experimental optimization of current source-density technique for anuran cerebellum. J Neurophysiol. 1975 Mar;38(2):369–382. doi: 10.1152/jn.1975.38.2.369. [DOI] [PubMed] [Google Scholar]
- Grosof D. H., Shapley R. M., Hawken M. J. Macaque V1 neurons can signal 'illusory' contours. Nature. 1993 Oct 7;365(6446):550–552. doi: 10.1038/365550a0. [DOI] [PubMed] [Google Scholar]
- Hevner R. F., Wong-Riley M. T. Regulation of cytochrome oxidase protein levels by functional activity in the macaque monkey visual system. J Neurosci. 1990 Apr;10(4):1331–1340. doi: 10.1523/JNEUROSCI.10-04-01331.1990. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Hochstein S., Shapley R. M. Quantitative analysis of retinal ganglion cell classifications. J Physiol. 1976 Nov;262(2):237–264. doi: 10.1113/jphysiol.1976.sp011594. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Hubel D. H., Wiesel T. N. Receptive fields and functional architecture of monkey striate cortex. J Physiol. 1968 Mar;195(1):215–243. doi: 10.1113/jphysiol.1968.sp008455. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Julesz B., Gilbert E. N., Victor J. D. Visual discrimination of textures with identical third-order statistics. Biol Cybern. 1978 Dec 5;31(3):137–140. doi: 10.1007/BF00336998. [DOI] [PubMed] [Google Scholar]
- Knierim J. J., van Essen D. C. Neuronal responses to static texture patterns in area V1 of the alert macaque monkey. J Neurophysiol. 1992 Apr;67(4):961–980. doi: 10.1152/jn.1992.67.4.961. [DOI] [PubMed] [Google Scholar]
- Knill D. C., Field D., Kersten D. Human discrimination of fractal images. J Opt Soc Am A. 1990 Jun;7(6):1113–1123. doi: 10.1364/josaa.7.001113. [DOI] [PubMed] [Google Scholar]
- Kovács I., Julesz B. A closed curve is much more than an incomplete one: effect of closure in figure-ground segmentation. Proc Natl Acad Sci U S A. 1993 Aug 15;90(16):7495–7497. doi: 10.1073/pnas.90.16.7495. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Lamme V. A., Van Dijk B. W., Spekreijse H. Texture segregation is processed by primary visual cortex in man and monkey. Evidence from VEP experiments. Vision Res. 1992 May;32(5):797–807. doi: 10.1016/0042-6989(92)90022-b. [DOI] [PubMed] [Google Scholar]
- Lamme V. A., van Dijk B. W., Spekreijse H. Contour from motion processing occurs in primary visual cortex. Nature. 1993 Jun 10;363(6429):541–543. doi: 10.1038/363541a0. [DOI] [PubMed] [Google Scholar]
- Laughlin S. B. The role of sensory adaptation in the retina. J Exp Biol. 1989 Sep;146:39–62. doi: 10.1242/jeb.146.1.39. [DOI] [PubMed] [Google Scholar]
- Purpura K., Tranchina D., Kaplan E., Shapley R. M. Light adaptation in the primate retina: analysis of changes in gain and dynamics of monkey retinal ganglion cells. Vis Neurosci. 1990 Jan;4(1):75–93. doi: 10.1017/s0952523800002789. [DOI] [PubMed] [Google Scholar]
- Shapley R., Lennie P. Spatial frequency analysis in the visual system. Annu Rev Neurosci. 1985;8:547–583. doi: 10.1146/annurev.ne.08.030185.002555. [DOI] [PubMed] [Google Scholar]
- Srinivasan M. V., Laughlin S. B., Dubs A. Predictive coding: a fresh view of inhibition in the retina. Proc R Soc Lond B Biol Sci. 1982 Nov 22;216(1205):427–459. doi: 10.1098/rspb.1982.0085. [DOI] [PubMed] [Google Scholar]
- Victor J. D. Complex visual textures as a tool for studying the VEP. Vision Res. 1985;25(12):1811–1827. doi: 10.1016/0042-6989(85)90005-7. [DOI] [PubMed] [Google Scholar]
- Victor J. D., Conte M. M. Cortical interactions in texture processing: scale and dynamics. Vis Neurosci. 1989;2(3):297–313. doi: 10.1017/s0952523800001218. [DOI] [PubMed] [Google Scholar]
- Victor J. D., Conte M. M. Spatial organization of nonlinear interactions in form perception. Vision Res. 1991;31(9):1457–1488. doi: 10.1016/0042-6989(91)90125-o. [DOI] [PubMed] [Google Scholar]
- Victor J. D. Isolation of components due to intracortical processing in the visual evoked potential. Proc Natl Acad Sci U S A. 1986 Oct;83(20):7984–7988. doi: 10.1073/pnas.83.20.7984. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Victor J. D., Zemon V. The human visual evoked potential: analysis of components due to elementary and complex aspects of form. Vision Res. 1985;25(12):1829–1842. doi: 10.1016/0042-6989(85)90006-9. [DOI] [PubMed] [Google Scholar]
- Zhou Y. X., Baker C. L., Jr A processing stream in mammalian visual cortex neurons for non-Fourier responses. Science. 1993 Jul 2;261(5117):98–101. doi: 10.1126/science.8316862. [DOI] [PubMed] [Google Scholar]
- von der Heydt R., Peterhans E., Baumgartner G. Illusory contours and cortical neuron responses. Science. 1984 Jun 15;224(4654):1260–1262. doi: 10.1126/science.6539501. [DOI] [PubMed] [Google Scholar]