Skip to main content
Proceedings of the National Academy of Sciences of the United States of America logoLink to Proceedings of the National Academy of Sciences of the United States of America
. 1994 Aug 30;91(18):8492–8496. doi: 10.1073/pnas.91.18.8492

Global arrest of translation during invertebrate quiescence.

G E Hofmann 1, S C Hand 1
PMCID: PMC44632  PMID: 8078909

Abstract

Comparing the translational capacities of cell-free systems from aerobically developing embryos of the brine shrimp Artemia franciscana vs. quiescent embryos has revealed a global arrest of protein synthesis. Incorporation rates of [3H]leucine by lysates from 4-h anoxic embryos were 8% of those from aerobic (control) embryos, when assayed at the respective pH values measured for each treatment in vivo. Exposure of embryos to 4 h of aerobic acidosis (elevated CO2 in the presence of oxygen) suppressed protein synthesis to 3% of control values. These latter two experimental treatments promote developmental arrest of Artemia embryos and, concomitantly, cause acute declines in intracellular pH. When lysates from each treatment were assayed over a range of physiologically relevant pH values (pH 6.4-8.0), amino acid incorporation rates in lysates from quiescent embryos were consistently lower than values for the aerobic controls. Acute reversal of pH to alkaline values during the 6-min assays was not sufficient to return the incorporation rates of quiescent lysates to control values. Thus, a stable alteration in translational capacity of quiescent lysates is indicated. Addition of exogenous mRNA did not rescue the suppressed protein synthesis in quiescent lysates, which suggests that the acute blockage of amino acid incorporation is apparently not due to limitation in message. Thus, the results support a role for intracellular pH as an initial signaling event in translational control during quiescence yet, at the same time, indicate that a direct proton effect on the translational machinery is not the sole proximal agent for biosynthetic arrest in this primitive crustacean.

Full text

PDF
8492

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Akkaraju G. R., Hansen L. J., Jagus R. Increase in eukaryotic initiation factor 2B activity following fertilization reflects changes in redox potential. J Biol Chem. 1991 Dec 25;266(36):24451–24459. [PubMed] [Google Scholar]
  2. Anchordoguy T. J., Hofmann G. E., Hand S. C. Extension of enzyme half-life during quiescence in Artemia embryos. Am J Physiol. 1993 Jan;264(1 Pt 2):R85–R89. doi: 10.1152/ajpregu.1993.264.1.R85. [DOI] [PubMed] [Google Scholar]
  3. Brostrom C. O., Brostrom M. A. Calcium-dependent regulation of protein synthesis in intact mammalian cells. Annu Rev Physiol. 1990;52:577–590. doi: 10.1146/annurev.ph.52.030190.003045. [DOI] [PubMed] [Google Scholar]
  4. Busa W. B., Crowe J. H. Intracellular pH Regulates Transitions Between Dormancy and Development of Brine Shrimp (Artemia salina) Embryos. Science. 1983 Jul 22;221(4608):366–368. doi: 10.1126/science.221.4608.366. [DOI] [PubMed] [Google Scholar]
  5. Busa W. B., Crowe J. H., Matson G. B. Intracellular pH and the metabolic status of dormant and developing Artemia embryos. Arch Biochem Biophys. 1982 Jul;216(2):711–718. doi: 10.1016/0003-9861(82)90261-2. [DOI] [PubMed] [Google Scholar]
  6. Busa W. B. Mechanisms and consequences of pH-mediated cell regulation. Annu Rev Physiol. 1986;48:389–402. doi: 10.1146/annurev.ph.48.030186.002133. [DOI] [PubMed] [Google Scholar]
  7. Dholakia J. N., Mueser T. C., Woodley C. L., Parkhurst L. J., Wahba A. J. The association of NADPH with the guanine nucleotide exchange factor from rabbit reticulocytes: a role of pyridine dinucleotides in eukaryotic polypeptide chain initiation. Proc Natl Acad Sci U S A. 1986 Sep;83(18):6746–6750. doi: 10.1073/pnas.83.18.6746. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Epel D. The initiation of development at fertilization. Cell Differ Dev. 1990 Jan;29(1):1–12. doi: 10.1016/0922-3371(90)90019-s. [DOI] [PubMed] [Google Scholar]
  9. Goumard G., Cuny M., Sripati C. E., Hayes D. H. Monovalent cation-dependent reversible phosphorylation of a 40 S ribosomal subunit protein in growth-arrested Tetrahymena: correlation with changes in intracellular pH. FEBS Lett. 1990 Mar 26;262(2):335–338. doi: 10.1016/0014-5793(90)80222-5. [DOI] [PubMed] [Google Scholar]
  10. Hand S. C., Gnaiger E. Anaerobic dormancy quantified in artemia embryos: a calorimetric test of the control mechanism. Science. 1988 Mar 18;239(4846):1425–1427. doi: 10.1126/science.239.4846.1425. [DOI] [PubMed] [Google Scholar]
  11. Hershey J. W. Translational control in mammalian cells. Annu Rev Biochem. 1991;60:717–755. doi: 10.1146/annurev.bi.60.070191.003441. [DOI] [PubMed] [Google Scholar]
  12. Hofmann G. E., Hand S. C. Arrest of cytochrome-c oxidase synthesis coordinated with catabolic arrest in dormant Artemia embryos. Am J Physiol. 1990 May;258(5 Pt 2):R1184–R1191. doi: 10.1152/ajpregu.1990.258.5.R1184. [DOI] [PubMed] [Google Scholar]
  13. Hofmann G. E., Hand S. C. Comparison of messenger RNA pools in active and dormant Artemia franciscana embryos: evidence for translational control. J Exp Biol. 1992 Mar;164:103–116. doi: 10.1242/jeb.164.1.103. [DOI] [PubMed] [Google Scholar]
  14. Isfort R. J., Cody D. B., Asquith T. N., Ridder G. M., Stuard S. B., LeBoeuf R. A. Induction of protein phosphorylation, protein synthesis, immediate-early-gene expression and cellular proliferation by intracellular pH modulation. Implications for the role of hydrogen ions in signal transduction. Eur J Biochem. 1993 Apr 1;213(1):349–357. doi: 10.1111/j.1432-1033.1993.tb17768.x. [DOI] [PubMed] [Google Scholar]
  15. Jackson R. J., Herbert P., Campbell E. A., Hunt T. The roles of sugar phosphates and thiol-reducing systems in the control of reticulocyte protein synthesis. Eur J Biochem. 1983 Mar 15;131(2):313–324. doi: 10.1111/j.1432-1033.1983.tb07264.x. [DOI] [PubMed] [Google Scholar]
  16. Janssen G. M., Maessen G. D., Amons R., Möller W. Phosphorylation of elongation factor 1 beta by an endogenous kinase affects its catalytic nucleotide exchange activity. J Biol Chem. 1988 Aug 15;263(23):11063–11066. [PubMed] [Google Scholar]
  17. Kwast K. E., Hand S. C. Regulatory features of protein synthesis in isolated mitochondria from Artemia embryos. Am J Physiol. 1993 Dec;265(6 Pt 2):R1238–R1246. doi: 10.1152/ajpregu.1993.265.6.R1238. [DOI] [PubMed] [Google Scholar]
  18. Mateu M. G., Maroto F. G., Vicente O., Sierra J. M. Phosphorylation and guanine nucleotide exchange on polypeptide chain initiation factor-2 from Artemia embryos. Biochim Biophys Acta. 1989 Jan 23;1007(1):55–60. doi: 10.1016/0167-4781(89)90129-2. [DOI] [PubMed] [Google Scholar]
  19. Moreno A., Mendez R., de Haro C. Characterization of cell-free protein-synthesis systems from undeveloped and developing Artemia embryos. Biochem J. 1991 Jun 15;276(Pt 3):809–816. doi: 10.1042/bj2760809. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Peterson G. L. A simplification of the protein assay method of Lowry et al. which is more generally applicable. Anal Biochem. 1977 Dec;83(2):346–356. doi: 10.1016/0003-2697(77)90043-4. [DOI] [PubMed] [Google Scholar]
  21. Rhoads R. E., Hellmann G. M., Remy P., Ebel J. P. Translational recognition of messenger ribonucleic acid caps as a function of pH. Biochemistry. 1983 Dec 20;22(26):6084–6088. doi: 10.1021/bi00295a007. [DOI] [PubMed] [Google Scholar]
  22. Warner A. H., Shridhar V. Purification and characterization of a cytosol protease from dormant cysts of the brine shrimp Artemia. J Biol Chem. 1985 Jun 10;260(11):7008–7014. [PubMed] [Google Scholar]
  23. Winkler M. Translational regulation in sea urchin eggs: a complex interaction of biochemical and physiological regulatory mechanisms. Bioessays. 1988 May;8(5):157–161. doi: 10.1002/bies.950080507. [DOI] [PubMed] [Google Scholar]

Articles from Proceedings of the National Academy of Sciences of the United States of America are provided here courtesy of National Academy of Sciences

RESOURCES