Abstract
The hypothesis was tested that learned movement trajectories of different shapes can be stored in, and generated by, largely overlapping neural networks. Indeed, it was possible to train a massively interconnected neural network to generate different shapes of internally stored, dynamically evolving movement trajectories using a general-purpose core part, common to all networks, and a special-purpose part, specific for a particular trajectory. The weights of connections between the core units do not carry any information about trajectories. The core network alone could generate externally instructed trajectories but not internally stored ones, for which both the core and the trajectory-specific part were needed. All information about the movements is stored in the weights of connections between the core part and the specialized units and between the specialized units themselves. Due to these connections the core part reveals specific dynamical behavior for a particular trajectory and, as the result, discriminates different tasks. The percentage of trajectory-specific units needed to generate a certain trajectory was small (2-5%), and the total output of the network is almost entirely provided by the core part, whereas the role of the small specialized parts is to drive the dynamical behavior. These results suggest an efficient and effective mechanism for storing learned motor patterns in, and reproducing them by, overlapping neural networks and are in accord with neurophysiological findings of trajectory-specific cells and with neurological observations of loss of specific motor skills in the presence of otherwise intact motor control.
Full text
PDF



Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Ashe J., Taira M., Smyrnis N., Pellizzer G., Georgakopoulos T., Lurito J. T., Georgopoulos A. P. Motor cortical activity preceding a memorized movement trajectory with an orthogonal bend. Exp Brain Res. 1993;95(1):118–130. doi: 10.1007/BF00229661. [DOI] [PubMed] [Google Scholar]
- Bullock D., Grossberg S. Neural dynamics of planned arm movements: emergent invariants and speed-accuracy properties during trajectory formation. Psychol Rev. 1988 Jan;95(1):49–90. doi: 10.1037/0033-295x.95.1.49. [DOI] [PubMed] [Google Scholar]
- Burnod Y., Grandguillaume P., Otto I., Ferraina S., Johnson P. B., Caminiti R. Visuomotor transformations underlying arm movements toward visual targets: a neural network model of cerebral cortical operations. J Neurosci. 1992 Apr;12(4):1435–1453. doi: 10.1523/JNEUROSCI.12-04-01435.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Caminiti R., Johnson P. B. Internal representations of movement in the cerebral cortex as revealed by the analysis of reaching. Cereb Cortex. 1992 Jul-Aug;2(4):269–276. doi: 10.1093/cercor/2.4.269-a. [DOI] [PubMed] [Google Scholar]
- Fu Q. G., Suarez J. I., Ebner T. J. Neuronal specification of direction and distance during reaching movements in the superior precentral premotor area and primary motor cortex of monkeys. J Neurophysiol. 1993 Nov;70(5):2097–2116. doi: 10.1152/jn.1993.70.5.2097. [DOI] [PubMed] [Google Scholar]
- Georgopoulos A. P. Higher order motor control. Annu Rev Neurosci. 1991;14:361–377. doi: 10.1146/annurev.ne.14.030191.002045. [DOI] [PubMed] [Google Scholar]
- Georgopoulos A. P., Kalaska J. F., Caminiti R., Massey J. T. Interruption of motor cortical discharge subserving aimed arm movements. Exp Brain Res. 1983;49(3):327–340. doi: 10.1007/BF00238775. [DOI] [PubMed] [Google Scholar]
- Georgopoulos A. P., Kettner R. E., Schwartz A. B. Primate motor cortex and free arm movements to visual targets in three-dimensional space. II. Coding of the direction of movement by a neuronal population. J Neurosci. 1988 Aug;8(8):2928–2937. doi: 10.1523/JNEUROSCI.08-08-02928.1988. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Georgopoulos A. P., Schwartz A. B., Kettner R. E. Neuronal population coding of movement direction. Science. 1986 Sep 26;233(4771):1416–1419. doi: 10.1126/science.3749885. [DOI] [PubMed] [Google Scholar]
- Georgopoulos A. P., Taira M., Lukashin A. Cognitive neurophysiology of the motor cortex. Science. 1993 Apr 2;260(5104):47–52. doi: 10.1126/science.8465199. [DOI] [PubMed] [Google Scholar]
- Harris-Warrick R. M., Marder E. Modulation of neural networks for behavior. Annu Rev Neurosci. 1991;14:39–57. doi: 10.1146/annurev.ne.14.030191.000351. [DOI] [PubMed] [Google Scholar]
- Hocherman S., Wise S. P. Effects of hand movement path on motor cortical activity in awake, behaving rhesus monkeys. Exp Brain Res. 1991;83(2):285–302. doi: 10.1007/BF00231153. [DOI] [PubMed] [Google Scholar]
- Hopfield J. J., Tank D. W. Computing with neural circuits: a model. Science. 1986 Aug 8;233(4764):625–633. doi: 10.1126/science.3755256. [DOI] [PubMed] [Google Scholar]
- Kalaska J. F., Crammond D. J. Cerebral cortical mechanisms of reaching movements. Science. 1992 Mar 20;255(5051):1517–1523. doi: 10.1126/science.1549781. [DOI] [PubMed] [Google Scholar]
- Kirkpatrick S., Gelatt C. D., Jr, Vecchi M. P. Optimization by simulated annealing. Science. 1983 May 13;220(4598):671–680. doi: 10.1126/science.220.4598.671. [DOI] [PubMed] [Google Scholar]
- Kuperstein M. Neural model of adaptive hand-eye coordination for single postures. Science. 1988 Mar 11;239(4845):1308–1311. doi: 10.1126/science.3344437. [DOI] [PubMed] [Google Scholar]
- Lukashin A. V., Georgopoulos A. P. A dynamical neural network model for motor cortical activity during movement: population coding of movement trajectories. Biol Cybern. 1993;69(5-6):517–524. [PubMed] [Google Scholar]
- Poizner H., Mack L., Verfaellie M., Rothi L. J., Heilman K. M. Three-dimensional computergraphic analysis of apraxia. Neural representations of learned movement. Brain. 1990 Feb;113(Pt 1):85–101. doi: 10.1093/brain/113.1.85. [DOI] [PubMed] [Google Scholar]
- Schwartz A. B., Kettner R. E., Georgopoulos A. P. Primate motor cortex and free arm movements to visual targets in three-dimensional space. I. Relations between single cell discharge and direction of movement. J Neurosci. 1988 Aug;8(8):2913–2927. doi: 10.1523/JNEUROSCI.08-08-02913.1988. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Schwartz A. B. Motor cortical activity during drawing movements: population representation during sinusoid tracing. J Neurophysiol. 1993 Jul;70(1):28–36. doi: 10.1152/jn.1993.70.1.28. [DOI] [PubMed] [Google Scholar]
- Smyrnis N., Taira M., Ashe J., Georgopoulos A. P. Motor cortical activity in a memorized delay task. Exp Brain Res. 1992;92(1):139–151. doi: 10.1007/BF00230390. [DOI] [PubMed] [Google Scholar]
- Tononi G., Sporns O., Edelman G. M. Reentry and the problem of integrating multiple cortical areas: simulation of dynamic integration in the visual system. Cereb Cortex. 1992 Jul-Aug;2(4):310–335. doi: 10.1093/cercor/2.4.310. [DOI] [PubMed] [Google Scholar]