Abstract
Many and diverse modifications of the myosin subfragment 1 (S-1) increase (modulate) its ATPase activity, including interaction of this particle with actin; a recent addition to these modifications is the extensive lysine modification of S-1 that seems prerequisite to crystallizing it for structure analysis. In this study we first established kinetically the ATPase modulations induced by various treatments of the myosin S-1 enzyme, and we also measured two properties of the S-1 active site--the affinity with which the site binds (a fluorescent analog of) the enzymatic nucleotide product and the access that a fluorescence quencher has to the bound ADP product--in an effort to get at the mechanism of modulation. Modulations achieved by substituting Ca2+ for the normal Mg2+ cocatalyst or by substituting Cl- for the normal carboxylate anion seem due to the product being held more loosely by the modulated enzyme. In other illustrative modulations (lysine methylation, or alkylation of Cys-707, or transition from neutral pH to pH 9.2) nucleotide product affinity and access to quencher do change, but not in a pattern explained simply by a lifting of product inhibition. Lysine methylation results in weaker binding of nucleotide product.
Full text
PDF




Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Ando T., Duke J. A., Tonomura Y., Morales M. F. Spectroscopic isolation of ES complexes of myosin subfragment-1 ATPase by fluorescence quenching. Biochem Biophys Res Commun. 1982 Nov 16;109(1):1–6. doi: 10.1016/0006-291x(82)91557-1. [DOI] [PubMed] [Google Scholar]
- Botts J., Ue K., Hozumi T., Samet J. Consequences of reacting the thiols of myosin subfragment 1. Biochemistry. 1979 Nov 13;18(23):5157–5163. doi: 10.1021/bi00590a020. [DOI] [PubMed] [Google Scholar]
- Cheung H. C. Conformation of myosin. Effects of substrate and modifiers. Biochim Biophys Acta. 1969 Dec 23;194(2):478–485. doi: 10.1016/0005-2795(69)90108-1. [DOI] [PubMed] [Google Scholar]
- Flaherty K. M., Wilbanks S. M., DeLuca-Flaherty C., McKay D. B. Structural basis of the 70-kilodalton heat shock cognate protein ATP hydrolytic activity. II. Structure of the active site with ADP or ATP bound to wild type and mutant ATPase fragment. J Biol Chem. 1994 Apr 29;269(17):12899–12907. [PubMed] [Google Scholar]
- Johnson W. C., Jr, Bivin D. B., Ue K., Morales M. F. A search for protein structural changes accompanying the contractile interaction. Proc Natl Acad Sci U S A. 1991 Nov 1;88(21):9748–9750. doi: 10.1073/pnas.88.21.9748. [DOI] [PMC free article] [PubMed] [Google Scholar]
- KIELLEY W. W., BRADLEY L. B. The relationship between sulfhydryl groups and the activation of myosin adenosinetriphosphatase. J Biol Chem. 1956 Feb;218(2):653–659. [PubMed] [Google Scholar]
- Lehrer S. S., Leavis P. C. Solute quenching of protein fluorescence. Methods Enzymol. 1978;49:222–236. doi: 10.1016/s0076-6879(78)49012-3. [DOI] [PubMed] [Google Scholar]
- Perkins W. J., Wells J. A., Yount R. G. Characterization of the properties of ethenoadenosine nucleotides bound or trapped at the active site of myosin subfragment 1. Biochemistry. 1984 Aug 14;23(17):3994–4002. doi: 10.1021/bi00312a029. [DOI] [PubMed] [Google Scholar]
- RAINFORD P., HOTTA K., MORALES M. EXPERIMENTAS ON THE MODIFICATION OF MYOSIN NUCLEOSIDETRIPHOSPHATASE. Biochemistry. 1964 Sep;3:1213–1220. doi: 10.1021/bi00897a005. [DOI] [PubMed] [Google Scholar]
- Rayment I., Holden H. M., Whittaker M., Yohn C. B., Lorenz M., Holmes K. C., Milligan R. A. Structure of the actin-myosin complex and its implications for muscle contraction. Science. 1993 Jul 2;261(5117):58–65. doi: 10.1126/science.8316858. [DOI] [PubMed] [Google Scholar]
- Rayment I., Rypniewski W. R., Schmidt-Bäse K., Smith R., Tomchick D. R., Benning M. M., Winkelmann D. A., Wesenberg G., Holden H. M. Three-dimensional structure of myosin subfragment-1: a molecular motor. Science. 1993 Jul 2;261(5117):50–58. doi: 10.1126/science.8316857. [DOI] [PubMed] [Google Scholar]
- Rosenfeld S. S., Taylor E. W. Reactions of 1-N6-ethenoadenosine nucleotides with myosin subfragment 1 and acto-subfragment 1 of skeletal and smooth muscle. J Biol Chem. 1984 Oct 10;259(19):11920–11929. [PubMed] [Google Scholar]
- Rypniewski W. R., Holden H. M., Rayment I. Structural consequences of reductive methylation of lysine residues in hen egg white lysozyme: an X-ray analysis at 1.8-A resolution. Biochemistry. 1993 Sep 21;32(37):9851–9858. doi: 10.1021/bi00088a041. [DOI] [PubMed] [Google Scholar]
- VONHIPPEL P. H., WONG K. Y. NEUTRAL SALTS: THE GENERALITY OF THEIR EFFECTS ON THE STABILITY OF MACROMOLECULAR CONFORMATIONS. Science. 1964 Aug 7;145(3632):577–580. doi: 10.1126/science.145.3632.577. [DOI] [PubMed] [Google Scholar]
- Warren J. C., Stowring L., Morales M. F. The effect of structure-disrupting ions on the activity of myosin and other enzymes. J Biol Chem. 1966 Jan 25;241(2):309–316. [PubMed] [Google Scholar]
- White H. D., Rayment I. Kinetic characterization of reductively methylated myosin subfragment 1. Biochemistry. 1993 Sep 21;32(37):9859–9865. doi: 10.1021/bi00088a042. [DOI] [PubMed] [Google Scholar]
- Yanagida T. Angles of nucleotides bound to cross-bridges in glycerinated muscle fiber at various concentrations of epsilon-ATP, epsilon-ADP and epsilon-AMPPNP detected by polarized fluorescence. J Mol Biol. 1981 Mar 15;146(4):539–560. doi: 10.1016/0022-2836(81)90046-2. [DOI] [PubMed] [Google Scholar]