Skip to main content
Springer logoLink to Springer
. 2015 Jun 16;75(6):263. doi: 10.1140/epjc/s10052-015-3474-x

Search for a new resonance decaying to a W or Z boson and a Higgs boson in the /ν/νν+bb¯ final states with the ATLAS detector

G Aad 85, B Abbott 113, J Abdallah 151, O Abdinov 11, R Aben 107, M Abolins 90, O S AbouZeid 158, H Abramowicz 153, H Abreu 152, R Abreu 30, Y Abulaiti 146,226, B S Acharya 164,228, L Adamczyk 38, D L Adams 25, J Adelman 108, S Adomeit 100, T Adye 131, A A Affolder 74, T Agatonovic-Jovin 13, J A Aguilar-Saavedra 126,214, S P Ahlen 22, F Ahmadov 65, G Aielli 133,217, H Akerstedt 146,226, T P A Åkesson 81, G Akimoto 155, A V Akimov 96, G L Alberghi 20,184, J Albert 169, S Albrand 55, M J Alconada Verzini 71, M Aleksa 30, I N Aleksandrov 65, C Alexa 26, G Alexander 153, T Alexopoulos 10, M Alhroob 113, G Alimonti 91, L Alio 85, J Alison 31, S P Alkire 35, B M M Allbrooke 18, P P Allport 74, A Aloisio 104,207, A Alonso 36, F Alonso 71, C Alpigiani 76, A Altheimer 35, B Alvarez Gonzalez 90, D Álvarez Piqueras 167, M G Alviggi 104,207, B T Amadio 15, K Amako 66, Y Amaral Coutinho 24, C Amelung 23, D Amidei 89, S P Amor Dos Santos 126,211, A Amorim 126,210, S Amoroso 48, N Amram 153, G Amundsen 23, C Anastopoulos 139, L S Ancu 49, N Andari 30, T Andeen 35, C F Anders 201, G Anders 30, J K Anders 74, K J Anderson 31, A Andreazza 91,206, V Andrei 58, S Angelidakis 9, I Angelozzi 107, P Anger 44, A Angerami 35, F Anghinolfi 30, A V Anisenkov 109, N Anjos 12, A Annovi 124,209, M Antonelli 47, A Antonov 98, J Antos 223, F Anulli 132, M Aoki 66, L Aperio Bella 18, G Arabidze 90, Y Arai 66, J P Araque 126, A T H Arce 45, F A Arduh 71, J-F Arguin 95, S Argyropoulos 42, M Arik 19, A J Armbruster 30, O Arnaez 30, V Arnal 82, H Arnold 48, M Arratia 28, O Arslan 21, A Artamonov 97, G Artoni 23, S Asai 155, N Asbah 42, A Ashkenazi 153, B Åsman 146,226, L Asquith 149, K Assamagan 25, R Astalos 144, M Atkinson 165, N B Atlay 141, B Auerbach 6, K Augsten 128, M Aurousseau 224, G Avolio 30, B Axen 15, M K Ayoub 117, G Azuelos 95, M A Baak 30, A E Baas 58, C Bacci 134,218, H Bachacou 136, K Bachas 154, M Backes 30, M Backhaus 30, E Badescu 26, P Bagiacchi 132,216, P Bagnaia 132,216, Y Bai 33, T Bain 35, J T Baines 131, O K Baker 176, P Balek 129, T Balestri 148, F Balli 84, E Banas 39, Sw Banerjee 173, A A E Bannoura 175, H S Bansil 18, L Barak 30, S P Baranov 96, E L Barberio 88, D Barberis 50,199, M Barbero 85, T Barillari 101, M Barisonzi 164,228, T Barklow 143, N Barlow 28, S L Barnes 84, B M Barnett 131, R M Barnett 15, Z Barnovska 5, A Baroncelli 134, G Barone 49, A J Barr 120, F Barreiro 82, J Barreiro Guimarães da Costa 57, R Bartoldus 143, A E Barton 72, P Bartos 144, A Bassalat 117, A Basye 165, R L Bates 53, S J Batista 158, J R Batley 28, M Battaglia 137, M Bauce 132,216, F Bauer 136, H S Bawa 143, J B Beacham 111, M D Beattie 72, T Beau 80, P H Beauchemin 161, R Beccherle 124,209, P Bechtle 21, H P Beck 17, K Becker 120, M Becker 83, S Becker 100, M Beckingham 170, C Becot 117, A J Beddall 183, A Beddall 183, V A Bednyakov 65, C P Bee 148, L J Beemster 107, T A Beermann 175, M Begel 25, J K Behr 120, C Belanger-Champagne 87, P J Bell 49, W H Bell 49, G Bella 153, L Bellagamba 20, A Bellerive 29, M Bellomo 86, K Belotskiy 98, O Beltramello 30, O Benary 153, D Benchekroun 135, M Bender 100, K Bendtz 146,226, N Benekos 10, Y Benhammou 153, E Benhar Noccioli 49, J A Benitez Garcia 227, D P Benjamin 45, J R Bensinger 23, S Bentvelsen 107, L Beresford 120, M Beretta 47, D Berge 107, E Bergeaas Kuutmann 166, N Berger 5, F Berghaus 169, J Beringer 15, C Bernard 22, N R Bernard 86, C Bernius 110, F U Bernlochner 21, T Berry 77, P Berta 129, C Bertella 83, G Bertoli 146,226, F Bertolucci 124,209, C Bertsche 113, D Bertsche 113, M I Besana 91, G J Besjes 106, O Bessidskaia Bylund 146,226, M Bessner 42, N Besson 136, C Betancourt 48, S Bethke 101, A J Beven 76, W Bhimji 46, R M Bianchi 125, L Bianchini 23, M Bianco 30, O Biebel 100, S P Bieniek 78, M Biglietti 134, J Bilbao De Mendizabal 49, H Bilokon 47, M Bindi 54, S Binet 117, A Bingul 183, C Bini 132,216, C W Black 150, J E Black 143, K M Black 22, D Blackburn 138, R E Blair 6, J-B Blanchard 136, JE Blanco 77, T Blazek 144, I Bloch 42, C Blocker 23, W Blum 83, U Blumenschein 54, G J Bobbink 107, V S Bobrovnikov 109, S S Bocchetta 81, A Bocci 45, C Bock 100, M Boehler 48, J A Bogaerts 30, A G Bogdanchikov 109, C Bohm 146, V Boisvert 77, T Bold 38, V Boldea 26, A S Boldyrev 99, M Bomben 80, M Bona 76, M Boonekamp 136, A Borisov 130, G Borissov 72, S Borroni 42, J Bortfeldt 100, V Bortolotto 60,203,204, K Bos 107, D Boscherini 20, M Bosman 12, J Boudreau 125, J Bouffard 2, E V Bouhova-Thacker 72, D Boumediene 34, C Bourdarios 117, N Bousson 114, A Boveia 30, J Boyd 30, I R Boyko 65, I Bozic 13, J Bracinik 18, A Brandt 8, G Brandt 54, O Brandt 58, U Bratzler 156, B Brau 86, J E Brau 116, H M Braun 175, S F Brazzale 164,229, K Brendlinger 122, A J Brennan 88, L Brenner 107, R Brenner 166, S Bressler 172, K Bristow 225, T M Bristow 46, D Britton 53, D Britzger 42, F M Brochu 28, I Brock 21, R Brock 90, J Bronner 101, G Brooijmans 35, T Brooks 77, W K Brooks 191, J Brosamer 15, E Brost 116, J Brown 55, P A Bruckman de Renstrom 39, D Bruncko 223, R Bruneliere 48, A Bruni 20, G Bruni 20, M Bruschi 20, L Bryngemark 81, T Buanes 14, Q Buat 142, P Buchholz 141, A G Buckley 53, S I Buda 26, I A Budagov 65, F Buehrer 48, L Bugge 119, M K Bugge 119, O Bulekov 98, H Burckhart 30, S Burdin 74, B Burghgrave 108, S Burke 131, I Burmeister 43, E Busato 34, D Büscher 48, V Büscher 83, P Bussey 53, C P Buszello 166, J M Butler 22, A I Butt 3, C M Buttar 53, J M Butterworth 78, P Butti 107, W Buttinger 25, A Buzatu 53, R Buzykaev 109, S Cabrera Urbán 167, D Caforio 128, V M Cairo 37,197, O Cakir 4, P Calafiura 15, A Calandri 136, G Calderini 80, P Calfayan 100, L P Caloba 24, D Calvet 34, S Calvet 34, R Camacho Toro 49, S Camarda 42, P Camarri 133,217, D Cameron 119, L M Caminada 15, R Caminal Armadans 12, S Campana 30, M Campanelli 78, A Campoverde 148, V Canale 104,207, A Canepa 159, M Cano Bret 76, J Cantero 82, R Cantrill 126, T Cao 40, M D M Capeans Garrido 30, I Caprini 26, M Caprini 26, M Capua 37,197, R Caputo 83, R Cardarelli 133, T Carli 30, G Carlino 104, L Carminati 91,206, S Caron 106, E Carquin 32, G D Carrillo-Montoya 8, J R Carter 28, J Carvalho 126,211, D Casadei 78, M P Casado 12, M Casolino 12, E Castaneda-Miranda 224, A Castelli 107, V Castillo Gimenez 167, N F Castro 126, P Catastini 57, A Catinaccio 30, J R Catmore 119, A Cattai 30, J Caudron 83, V Cavaliere 165, D Cavalli 91, M Cavalli-Sforza 12, V Cavasinni 124,209, F Ceradini 134,218, B C Cerio 45, K Cerny 129, A S Cerqueira 185, A Cerri 149, L Cerrito 76, F Cerutti 15, M Cerv 30, A Cervelli 17, S A Cetin 182, A Chafaq 135, D Chakraborty 108, I Chalupkova 129, P Chang 165, B Chapleau 87, J D Chapman 28, D G Charlton 18, C C Chau 158, C A Chavez Barajas 149, S Cheatham 152, A Chegwidden 90, S Chekanov 6, S V Chekulaev 159, G A Chelkov 65, M A Chelstowska 89, C Chen 64, H Chen 25, K Chen 148, L Chen 194, S Chen 193, X Chen 196, Y Chen 67, H C Cheng 89, Y Cheng 31, A Cheplakov 65, E Cheremushkina 130, R Cherkaoui El Moursli 222, V Chernyatin 25, E Cheu 7, L Chevalier 136, V Chiarella 47, J T Childers 6, G Chiodini 73, A S Chisholm 18, R T Chislett 78, A Chitan 26, M V Chizhov 65, K Choi 61, S Chouridou 9, B K B Chow 100, V Christodoulou 78, D Chromek-Burckhart 30, M L Chu 151, J Chudoba 127, A J Chuinard 87, J J Chwastowski 39, L Chytka 115, G Ciapetti 132,216, A K Ciftci 4, D Cinca 53, V Cindro 75, I A Cioara 21, A Ciocio 15, Z H Citron 172, M Ciubancan 26, A Clark 49, B L Clark 57, P J Clark 46, R N Clarke 15, W Cleland 125, C Clement 146,226, Y Coadou 85, M Cobal 164,229, A Coccaro 138, J Cochran 64, L Coffey 23, J G Cogan 143, B Cole 35, S Cole 108, A P Colijn 107, J Collot 55, T Colombo 202, G Compostella 101, P Conde Muiño 126,210, E Coniavitis 48, S H Connell 224, I A Connelly 77, S M Consonni 91,206, V Consorti 48, S Constantinescu 26, C Conta 121,208, G Conti 30, F Conventi 104, M Cooke 15, B D Cooper 78, A M Cooper-Sarkar 120, T Cornelissen 175, M Corradi 20, F Corriveau 87, A Corso-Radu 163, A Cortes-Gonzalez 12, G Cortiana 101, G Costa 91, M J Costa 167, D Costanzo 139, D Côté 8, G Cottin 28, G Cowan 77, B E Cox 84, K Cranmer 110, G Cree 29, S Crépé-Renaudin 55, F Crescioli 80, W A Cribbs 146,226, M Crispin Ortuzar 120, M Cristinziani 21, V Croft 106, G Crosetti 37,197, T Cuhadar Donszelmann 139, J Cummings 176, M Curatolo 47, C Cuthbert 150, H Czirr 141, P Czodrowski 3, S D’Auria 53, M D’Onofrio 74, M J Da Cunha Sargedas De Sousa 126,210, C Da Via 84, W Dabrowski 38, A Dafinca 120, T Dai 89, O Dale 14, F Dallaire 95, C Dallapiccola 86, M Dam 36, J R Dandoy 31, N P Dang 48, A C Daniells 18, M Danninger 168, M Dano Hoffmann 136, V Dao 48, G Darbo 50, S Darmora 8, J Dassoulas 3, A Dattagupta 61, W Davey 21, C David 169, T Davidek 129, E Davies 120, M Davies 153, P Davison 78, Y Davygora 58, E Dawe 88, I Dawson 139, R K Daya-Ishmukhametova 86, K De 8, R de Asmundis 104, S De Castro 20,184, S De Cecco 80, N De Groot 106, P de Jong 107, H De la Torre 82, F De Lorenzi 64, L De Nooij 107, D De Pedis 132, A De Salvo 132, U De Sanctis 149, A De Santo 149, J B De Vivie De Regie 117, W J Dearnaley 72, R Debbe 25, C Debenedetti 137, D V Dedovich 65, I Deigaard 107, J Del Peso 82, T Del Prete 124,209, D Delgove 117, F Deliot 136, C M Delitzsch 49, M Deliyergiyev 75, A Dell’Acqua 30, L Dell’Asta 22, M Dell’Orso 124,209, M Della Pietra 104, D della Volpe 49, M Delmastro 5, P A Delsart 55, C Deluca 107, D A DeMarco 158, S Demers 176, M Demichev 65, A Demilly 80, S P Denisov 130, D Derendarz 39, J E Derkaoui 221, F Derue 80, P Dervan 74, K Desch 21, C Deterre 42, P O Deviveiros 30, A Dewhurst 131, S Dhaliwal 107, A Di Ciaccio 133,217, L Di Ciaccio 5, A Di Domenico 132,216, C Di Donato 104,207, A Di Girolamo 30, B Di Girolamo 30, A Di Mattia 152, B Di Micco 134,218, R Di Nardo 47, A Di Simone 48, R Di Sipio 158, D Di Valentino 29, C Diaconu 85, M Diamond 158, F A Dias 46, M A Diaz 32, E B Diehl 89, J Dietrich 16, S Diglio 85, A Dimitrievska 13, J Dingfelder 21, F Dittus 30, F Djama 85, T Djobava 200, J I Djuvsland 58, M A B do Vale 186, D Dobos 30, M Dobre 26, C Doglioni 49, T Dohmae 155, J Dolejsi 129, Z Dolezal 129, B A Dolgoshein 98, M Donadelli 187, S Donati 124,209, P Dondero 121,208, J Donini 34, J Dopke 131, A Doria 104, M T Dova 71, A T Doyle 53, E Drechsler 54, M Dris 10, E Dubreuil 34, E Duchovni 172, G Duckeck 100, O A Ducu 26,85, D Duda 175, A Dudarev 30, L Duflot 117, L Duguid 77, M Dührssen 30, M Dunford 58, H Duran Yildiz 4, M Düren 52, A Durglishvili 200, D Duschinger 44, M Dyndal 38, C Eckardt 42, K M Ecker 101, R C Edgar 89, W Edson 2, N C Edwards 46, W Ehrenfeld 21, T Eifert 30, G Eigen 14, K Einsweiler 15, T Ekelof 166, M El Kacimi 220, M Ellert 166, S Elles 5, F Ellinghaus 83, A A Elliot 169, N Ellis 30, J Elmsheuser 100, M Elsing 30, D Emeliyanov 131, Y Enari 155, O C Endner 83, M Endo 118, R Engelmann 148, J Erdmann 43, A Ereditato 17, G Ernis 175, J Ernst 2, M Ernst 25, S Errede 165, E Ertel 83, M Escalier 117, H Esch 43, C Escobar 125, B Esposito 47, A I Etienvre 136, E Etzion 153, H Evans 61, A Ezhilov 123, L Fabbri 20,184, G Facini 31, R M Fakhrutdinov 130, S Falciano 132, R J Falla 78, J Faltova 129, Y Fang 33, M Fanti 91,206, A Farbin 8, A Farilla 134, T Farooque 12, S Farrell 15, S M Farrington 170, P Farthouat 30, F Fassi 222, P Fassnacht 30, D Fassouliotis 9, M Faucci Giannelli 77, A Favareto 50,199, L Fayard 117, P Federic 144, O L Fedin 123, W Fedorko 168, S Feigl 30, L Feligioni 85, C Feng 194, E J Feng 6, H Feng 89, A B Fenyuk 130, P Fernandez Martinez 167, S Fernandez Perez 30, S Ferrag 53, J Ferrando 53, A Ferrari 166, P Ferrari 107, R Ferrari 121, D E Ferreira de Lima 53, A Ferrer 167, D Ferrere 49, C Ferretti 89, A Ferretto Parodi 50,199, M Fiascaris 31, F Fiedler 83, A Filipčič 75, M Filipuzzi 42, F Filthaut 106, M Fincke-Keeler 169, K D Finelli 150, M C N Fiolhais 126,211, L Fiorini 167, A Firan 40, A Fischer 2, C Fischer 12, J Fischer 175, W C Fisher 90, E A Fitzgerald 23, M Flechl 48, I Fleck 141, P Fleischmann 89, S Fleischmann 175, G T Fletcher 139, G Fletcher 76, T Flick 175, A Floderus 81, L R Flores Castillo 60, M J Flowerdew 101, A Formica 136, A Forti 84, D Fournier 117, H Fox 72, S Fracchia 12, P Francavilla 80, M Franchini 20,184, D Francis 30, L Franconi 119, M Franklin 57, M Fraternali 121,208, D Freeborn 78, S T French 28, F Friedrich 44, D Froidevaux 30, J A Frost 120, C Fukunaga 156, E Fullana Torregrosa 83, B G Fulsom 143, J Fuster 167, C Gabaldon 55, O Gabizon 175, A Gabrielli 20,184, A Gabrielli 132,216, S Gadatsch 107, S Gadomski 49, G Gagliardi 50,199, P Gagnon 61, C Galea 106, B Galhardo 126,211, E J Gallas 120, B J Gallop 131, P Gallus 128, G Galster 36, K K Gan 111, J Gao 192, Y Gao 46, Y S Gao 143, F M Garay Walls 46, F Garberson 176, C García 167, J E García Navarro 167, M Garcia-Sciveres 15, R W Gardner 31, N Garelli 143, V Garonne 119, C Gatti 47, A Gaudiello 50,199, G Gaudio 121, B Gaur 141, L Gauthier 95, P Gauzzi 132,216, I L Gavrilenko 96, C Gay 168, G Gaycken 21, E N Gazis 10, P Ge 194, Z Gecse 168, C N P Gee 131, D A A Geerts 107, Ch Geich-Gimbel 21, M P Geisler 58, C Gemme 50, M H Genest 55, S Gentile 132,216, M George 54, S George 77, D Gerbaudo 163, A Gershon 153, H Ghazlane 219, B Giacobbe 20, S Giagu 132,216, V Giangiobbe 12, P Giannetti 124,209, B Gibbard 25, S M Gibson 77, M Gilchriese 15, T P S Gillam 28, D Gillberg 30, G Gilles 34, D M Gingrich 3, N Giokaris 9, M P Giordani 164,229, F M Giorgi 20, F M Giorgi 16, P F Giraud 136, P Giromini 47, D Giugni 91, C Giuliani 48, M Giulini 201, B K Gjelsten 119, S Gkaitatzis 154, I Gkialas 154, E L Gkougkousis 117, L K Gladilin 99, C Glasman 82, J Glatzer 30, P C F Glaysher 46, A Glazov 42, M Goblirsch-Kolb 101, J R Goddard 76, J Godlewski 39, S Goldfarb 89, T Golling 49, D Golubkov 130, A Gomes 126,210,212, R Gonçalo 126, J Goncalves Pinto Firmino Da Costa 136, L Gonella 21, S González de la Hoz 167, G Gonzalez Parra 12, S Gonzalez-Sevilla 49, L Goossens 30, P A Gorbounov 97, H A Gordon 25, I Gorelov 105, B Gorini 30, E Gorini 205, A Gorišek 75, E Gornicki 39, A T Goshaw 45, C Gössling 43, M I Gostkin 65, D Goujdami 220, A G Goussiou 138, N Govender 224, H M X Grabas 137, L Graber 54, I Grabowska-Bold 38, P Grafström 20,184, K-J Grahn 42, J Gramling 49, E Gramstad 119, S Grancagnolo 16, V Grassi 148, V Gratchev 123, H M Gray 30, E Graziani 134, Z D Greenwood 79, K Gregersen 78, I M Gregor 42, P Grenier 143, J Griffiths 8, A A Grillo 137, K Grimm 72, S Grinstein 12, Ph Gris 34, J-F Grivaz 117, J P Grohs 44, A Grohsjean 42, E Gross 172, J Grosse-Knetter 54, G C Grossi 79, Z J Grout 149, L Guan 192, J Guenther 128, F Guescini 49, D Guest 176, O Gueta 153, E Guido 50,199, T Guillemin 117, S Guindon 2, U Gul 53, C Gumpert 44, J Guo 195, S Gupta 120, P Gutierrez 113, N G Gutierrez Ortiz 53, C Gutschow 44, C Guyot 136, C Gwenlan 120, C B Gwilliam 74, A Haas 110, C Haber 15, H K Hadavand 8, N Haddad 222, P Haefner 21, S Hageböck 21, Z Hajduk 39, H Hakobyan 177, M Haleem 42, J Haley 114, D Hall 120, G Halladjian 90, G D Hallewell 85, K Hamacher 175, P Hamal 115, K Hamano 169, M Hamer 54, A Hamilton 145, S Hamilton 161, G N Hamity 225, P G Hamnett 42, L Han 192, K Hanagaki 118, K Hanawa 155, M Hance 15, P Hanke 58, R Hanna 136, J B Hansen 36, J D Hansen 36, M C Hansen 21, P H Hansen 36, K Hara 160, A S Hard 173, T Harenberg 175, F Hariri 117, S Harkusha 92, R D Harrington 46, P F Harrison 170, F Hartjes 107, M Hasegawa 67, S Hasegawa 103, Y Hasegawa 140, A Hasib 113, S Hassani 136, S Haug 17, R Hauser 90, L Hauswald 44, M Havranek 127, C M Hawkes 18, R J Hawkings 30, A D Hawkins 81, T Hayashi 160, D Hayden 90, C P Hays 120, J M Hays 76, H S Hayward 74, S J Haywood 131, S J Head 18, T Heck 83, V Hedberg 81, L Heelan 8, S Heim 122, T Heim 175, B Heinemann 15, L Heinrich 110, J Hejbal 127, L Helary 22, S Hellman 146,226, D Hellmich 21, C Helsens 30, J Henderson 120, R C W Henderson 72, Y Heng 173, C Hengler 42, A Henrichs 176, A M Henriques Correia 30, S Henrot-Versille 117, G H Herbert 16, Y Hernández Jiménez 167, R Herrberg-Schubert 16, G Herten 48, R Hertenberger 100, L Hervas 30, G G Hesketh 78, N P Hessey 107, J W Hetherly 40, R Hickling 76, E Higón-Rodriguez 167, E Hill 169, J C Hill 28, K H Hiller 42, S J Hillier 18, I Hinchliffe 15, E Hines 122, R R Hinman 15, M Hirose 157, D Hirschbuehl 175, J Hobbs 148, N Hod 107, M C Hodgkinson 139, P Hodgson 139, A Hoecker 30, M R Hoeferkamp 105, F Hoenig 100, M Hohlfeld 83, D Hohn 21, T R Holmes 15, T M Hong 122, L Hooft van Huysduynen 110, W H Hopkins 116, Y Horii 103, A J Horton 142, J-Y Hostachy 55, S Hou 151, A Hoummada 135, J Howard 120, J Howarth 42, M Hrabovsky 115, I Hristova 16, J Hrivnac 117, T Hryn’ova 5, A Hrynevich 93, C Hsu 225, P J Hsu 151, S-C Hsu 138, D Hu 35, Q Hu 192, X Hu 89, Y Huang 42, Z Hubacek 30, F Hubaut 85, F Huegging 21, T B Huffman 120, E W Hughes 35, G Hughes 72, M Huhtinen 30, T A Hülsing 83, N Huseynov 64, J Huston 90, J Huth 57, G Iacobucci 49, G Iakovidis 25, I Ibragimov 141, L Iconomidou-Fayard 117, E Ideal 176, Z Idrissi 222, P Iengo 30, O Igonkina 107, T Iizawa 171, Y Ikegami 66, K Ikematsu 141, M Ikeno 66, Y Ilchenko 31, D Iliadis 154, N Ilic 158, Y Inamaru 67, T Ince 101, P Ioannou 9, M Iodice 134, K Iordanidou 35, V Ippolito 57, A Irles Quiles 167, C Isaksson 166, M Ishino 68, M Ishitsuka 157, R Ishmukhametov 111, C Issever 120, S Istin 19, J M Iturbe Ponce 84, R Iuppa 133,217, J Ivarsson 81, W Iwanski 39, H Iwasaki 66, J M Izen 41, V Izzo 104, S Jabbar 3, B Jackson 122, M Jackson 74, P Jackson 1, M R Jaekel 30, V Jain 2, K Jakobs 48, S Jakobsen 30, T Jakoubek 127, J Jakubek 128, D O Jamin 151, D K Jana 79, E Jansen 78, R W Jansky 62, J Janssen 21, M Janus 170, G Jarlskog 81, N Javadov 65, T Javůrek 48, L Jeanty 15, J Jejelava 51, G-Y Jeng 150, D Jennens 88, P Jenni 48, J Jentzsch 43, C Jeske 170, S Jézéquel 5, H Ji 173, J Jia 148, Y Jiang 192, S Jiggins 78, J Jimenez Pena 167, S Jin 33, A Jinaru 26, O Jinnouchi 157, M D Joergensen 36, P Johansson 139, K A Johns 7, K Jon-And 146,226, G Jones 170, R W L Jones 72, T J Jones 74, J Jongmanns 58, P M Jorge 126,210, K D Joshi 84, J Jovicevic 159, X Ju 173, C A Jung 43, P Jussel 62, A Juste Rozas 12, M Kaci 167, A Kaczmarska 39, M Kado 117, H Kagan 111, M Kagan 143, S J Kahn 85, E Kajomovitz 45, C W Kalderon 120, S Kama 40, A Kamenshchikov 130, N Kanaya 155, M Kaneda 30, S Kaneti 28, V A Kantserov 98, J Kanzaki 66, B Kaplan 110, A Kapliy 31, D Kar 53, K Karakostas 10, A Karamaoun 3, N Karastathis 107, M J Kareem 54, M Karnevskiy 83, S N Karpov 65, Z M Karpova 65, K Karthik 110, V Kartvelishvili 72, A N Karyukhin 130, L Kashif 173, R D Kass 111, A Kastanas 14, Y Kataoka 155, A Katre 49, J Katzy 42, K Kawagoe 70, T Kawamoto 155, G Kawamura 54, S Kazama 155, V F Kazanin 109, M Y Kazarinov 65, R Keeler 169, R Kehoe 40, J S Keller 42, J J Kempster 77, H Keoshkerian 84, O Kepka 127, B P Kerševan 75, S Kersten 175, R A Keyes 87, F Khalil-zada 11, H Khandanyan 146,226, A Khanov 114, AG Kharlamov 109, T J Khoo 28, V Khovanskiy 97, E Khramov 65, J Khubua 200, H Y Kim 8, H Kim 146,226, S H Kim 160, Y Kim 31, N Kimura 154, O M Kind 16, B T King 74, M King 167, R S B King 120, S B King 168, J Kirk 131, A E Kiryunin 101, T Kishimoto 67, D Kisielewska 38, F Kiss 48, K Kiuchi 160, O Kivernyk 136, E Kladiva 223, M H Klein 35, M Klein 74, U Klein 74, K Kleinknecht 83, P Klimek 146,226, A Klimentov 25, R Klingenberg 43, J A Klinger 84, T Klioutchnikova 30, P F Klok 106, E-E Kluge 58, P Kluit 107, S Kluth 101, E Kneringer 62, E B F G Knoops 85, A Knue 53, A Kobayashi 155, D Kobayashi 157, T Kobayashi 155, M Kobel 44, M Kocian 143, P Kodys 129, T Koffas 29, E Koffeman 107, L A Kogan 120, S Kohlmann 175, Z Kohout 128, T Kohriki 66, T Koi 143, H Kolanoski 16, I Koletsou 5, A A Komar 96, Y Komori 155, T Kondo 66, N Kondrashova 42, K Köneke 48, A C König 106, S König 83, T Kono 66, R Konoplich 110, N Konstantinidis 78, R Kopeliansky 152, S Koperny 38, L Köpke 83, A K Kopp 48, K Korcyl 39, K Kordas 154, A Korn 78, A A Korol 109, I Korolkov 12, E V Korolkova 139, O Kortner 101, S Kortner 101, T Kosek 129, V V Kostyukhin 21, V M Kotov 65, A Kotwal 45, A Kourkoumeli-Charalampidi 154, C Kourkoumelis 9, V Kouskoura 25, A Koutsman 159, R Kowalewski 169, T Z Kowalski 38, W Kozanecki 136, A S Kozhin 130, V A Kramarenko 99, G Kramberger 75, D Krasnopevtsev 98, M W Krasny 80, A Krasznahorkay 30, J K Kraus 21, A Kravchenko 25, S Kreiss 110, M Kretz 202, J Kretzschmar 74, K Kreutzfeldt 52, P Krieger 158, K Krizka 31, K Kroeninger 43, H Kroha 101, J Kroll 122, J Kroseberg 21, J Krstic 13, U Kruchonak 65, H Krüger 21, N Krumnack 64, Z V Krumshteyn 65, A Kruse 173, M C Kruse 45, M Kruskal 22, T Kubota 88, H Kucuk 78, S Kuday 180, S Kuehn 48, A Kugel 202, F Kuger 174, A Kuhl 137, T Kuhl 42, V Kukhtin 65, Y Kulchitsky 92, S Kuleshov 191, M Kuna 132,216, T Kunigo 68, A Kupco 127, H Kurashige 67, Y A Kurochkin 92, R Kurumida 67, V Kus 127, E S Kuwertz 169, M Kuze 157, J Kvita 115, T Kwan 169, D Kyriazopoulos 139, A La Rosa 49, J L La Rosa Navarro 187, L La Rotonda 37,197, C Lacasta 167, F Lacava 132,216, J Lacey 29, H Lacker 16, D Lacour 80, V R Lacuesta 167, E Ladygin 65, R Lafaye 5, B Laforge 80, T Lagouri 176, S Lai 48, L Lambourne 78, S Lammers 61, C L Lampen 7, W Lampl 7, E Lançon 136, U Landgraf 48, M P J Landon 76, V S Lang 58, J C Lange 12, A J Lankford 163, F Lanni 25, K Lantzsch 30, S Laplace 80, C Lapoire 30, J F Laporte 136, T Lari 91, F Lasagni Manghi 20,184, M Lassnig 30, P Laurelli 47, W Lavrijsen 15, A T Law 137, P Laycock 74, O Le Dortz 80, E Le Guirriec 85, E Le Menedeu 12, M LeBlanc 169, T LeCompte 6, F Ledroit-Guillon 55, C A Lee 224, S C Lee 151, L Lee 1, G Lefebvre 80, M Lefebvre 169, F Legger 100, C Leggett 15, A Lehan 74, G Lehmann Miotto 30, X Lei 7, W A Leight 29, A Leisos 154, A G Leister 176, M A L Leite 187, R Leitner 129, D Lellouch 172, B Lemmer 54, K J C Leney 78, T Lenz 21, B Lenzi 30, R Leone 7, S Leone 124,209, C Leonidopoulos 46, S Leontsinis 10, C Leroy 95, C G Lester 28, M Levchenko 123, J Levêque 5, D Levin 89, L J Levinson 172, M Levy 18, A Lewis 120, A M Leyko 21, M Leyton 41, B Li 192, H Li 148, H L Li 31, L Li 45, L Li 195, S Li 45, Y Li 33, Z Liang 137, H Liao 34, B Liberti 133, A Liblong 158, P Lichard 30, K Lie 165, J Liebal 21, W Liebig 14, C Limbach 21, A Limosani 150, S C Lin 151, T H Lin 83, F Linde 107, B E Lindquist 148, J T Linnemann 90, E Lipeles 122, A Lipniacka 14, M Lisovyi 42, T M Liss 165, D Lissauer 25, A Lister 168, A M Litke 137, B Liu 151, D Liu 151, J Liu 85, J B Liu 192, K Liu 85, L Liu 165, M Liu 45, M Liu 192, Y Liu 192, M Livan 121,208, A Lleres 55, J Llorente Merino 82, S L Lloyd 76, F Lo Sterzo 151, E Lobodzinska 42, P Loch 7, W S Lockman 137, F K Loebinger 84, A E Loevschall-Jensen 36, A Loginov 176, T Lohse 16, K Lohwasser 42, M Lokajicek 127, B A Long 22, J D Long 89, R E Long 72, K A Looper 111, L Lopes 126, D Lopez Mateos 57, B Lopez Paredes 139, I Lopez Paz 12, J Lorenz 100, N Lorenzo Martinez 61, M Losada 162, P Loscutoff 15, P J Lösel 100, X Lou 33, A Lounis 117, J Love 6, P A Love 72, N Lu 89, H J Lubatti 138, C Luci 132,216, A Lucotte 55, F Luehring 61, W Lukas 62, L Luminari 132, O Lundberg 146,226, B Lund-Jensen 147, D Lynn 25, R Lysak 127, E Lytken 81, H Ma 25, L L Ma 194, G Maccarrone 47, A Macchiolo 101, C M Macdonald 139, J Machado Miguens 122,210, D Macina 30, D Madaffari 85, R Madar 34, H J Maddocks 72, W F Mader 44, A Madsen 166, S Maeland 14, T Maeno 25, A Maevskiy 99, E Magradze 54, K Mahboubi 48, J Mahlstedt 107, C Maiani 136, C Maidantchik 24, A A Maier 101, T Maier 100, A Maio 126,210,212, S Majewski 116, Y Makida 66, N Makovec 117, B Malaescu 80, Pa Malecki 39, V P Maleev 123, F Malek 55, U Mallik 63, D Malon 6, C Malone 143, S Maltezos 10, V M Malyshev 109, S Malyukov 30, J Mamuzic 42, G Mancini 47, B Mandelli 30, L Mandelli 91, I Mandić 75, R Mandrysch 63, J Maneira 126,210, A Manfredini 101, L Manhaes de Andrade Filho 185, J Manjarres Ramos 227, A Mann 100, P M Manning 137, A Manousakis-Katsikakis 9, B Mansoulie 136, R Mantifel 87, M Mantoani 54, L Mapelli 30, L March 225, G Marchiori 80, M Marcisovsky 127, C P Marino 169, M Marjanovic 13, F Marroquim 24, S P Marsden 84, Z Marshall 15, L F Marti 17, S Marti-Garcia 167, B Martin 90, T A Martin 170, V J Martin 46, B Martin dit Latour 14, M Martinez 12, S Martin-Haugh 131, V S Martoiu 26, A C Martyniuk 78, M Marx 138, F Marzano 132, A Marzin 30, L Masetti 83, T Mashimo 155, R Mashinistov 96, J Masik 84, A L Maslennikov 109, I Massa 20,184, L Massa 20,184, N Massol 5, P Mastrandrea 148, A Mastroberardino 37,197, T Masubuchi 155, P Mättig 175, J Mattmann 83, J Maurer 26, S J Maxfield 74, D A Maximov 109, R Mazini 151, S M Mazza 91,206, L Mazzaferro 133,217, G Mc Goldrick 158, S P Mc Kee 89, A McCarn 89, R L McCarthy 148, T G McCarthy 29, N A McCubbin 131, K W McFarlane 56, J A Mcfayden 78, G Mchedlidze 54, S J McMahon 131, R A McPherson 169, M Medinnis 42, S Meehan 145, S Mehlhase 100, A Mehta 74, K Meier 58, C Meineck 100, B Meirose 41, B R Mellado Garcia 225, F Meloni 17, A Mengarelli 20,184, S Menke 101, E Meoni 161, K M Mercurio 57, S Mergelmeyer 21, P Mermod 49, L Merola 104,207, C Meroni 91, F S Merritt 31, A Messina 132,216, J Metcalfe 25, A S Mete 163, C Meyer 83, C Meyer 122, J-P Meyer 136, J Meyer 107, R P Middleton 131, S Miglioranzi 164,229, L Mijović 21, G Mikenberg 172, M Mikestikova 127, M Mikuž 75, M Milesi 88, A Milic 30, D W Miller 31, C Mills 46, A Milov 172, D A Milstead 146,226, A A Minaenko 130, Y Minami 155, I A Minashvili 65, A I Mincer 110, B Mindur 38, M Mineev 65, Y Ming 173, L M Mir 12, T Mitani 171, J Mitrevski 100, V A Mitsou 167, A Miucci 49, P S Miyagawa 139, J U Mjörnmark 81, T Moa 146,226, K Mochizuki 85, S Mohapatra 35, W Mohr 48, S Molander 146,226, R Moles-Valls 167, K Mönig 42, C Monini 55, J Monk 36, E Monnier 85, J Montejo Berlingen 12, F Monticelli 71, S Monzani 132,216, R W Moore 3, N Morange 117, D Moreno 162, M Moreno Llácer 54, P Morettini 50, M Morgenstern 44, M Morii 57, M Morinaga 155, V Morisbak 119, S Moritz 83, A K Morley 147, G Mornacchi 30, J D Morris 76, S S Mortensen 36, A Morton 53, L Morvaj 103, H G Moser 101, M Mosidze 200, J Moss 111, K Motohashi 157, R Mount 143, E Mountricha 25, S V Mouraviev 96, E J W Moyse 86, S Muanza 85, R D Mudd 18, F Mueller 101, J Mueller 125, K Mueller 21, R S P Mueller 100, T Mueller 28, D Muenstermann 49, P Mullen 53, Y Munwes 153, J A Murillo Quijada 18, W J Murray 170,131, H Musheghyan 54, E Musto 152, A G Myagkov 130, M Myska 128, O Nackenhorst 54, J Nadal 54, K Nagai 120, R Nagai 157, Y Nagai 85, K Nagano 66, A Nagarkar 111, Y Nagasaka 59, K Nagata 160, M Nagel 101, E Nagy 85, A M Nairz 30, Y Nakahama 30, K Nakamura 66, T Nakamura 155, I Nakano 112, H Namasivayam 41, R F Naranjo Garcia 42, R Narayan 31, T Naumann 42, G Navarro 162, R Nayyar 7, H A Neal 89, P Yu Nechaeva 96, T J Neep 84, P D Nef 143, A Negri 121,208, M Negrini 20, S Nektarijevic 106, C Nellist 117, A Nelson 163, S Nemecek 127, P Nemethy 110, A A Nepomuceno 24, M Nessi 30, M S Neubauer 165, M Neumann 175, R M Neves 110, P Nevski 25, P R Newman 18, D H Nguyen 6, R B Nickerson 120, R Nicolaidou 136, B Nicquevert 30, J Nielsen 137, N Nikiforou 35, A Nikiforov 16, V Nikolaenko 130, I Nikolic-Audit 80, K Nikolopoulos 18, J K Nilsen 119, P Nilsson 25, Y Ninomiya 155, A Nisati 132, R Nisius 101, T Nobe 157, M Nomachi 118, I Nomidis 29, T Nooney 76, S Norberg 113, M Nordberg 30, O Novgorodova 44, S Nowak 101, M Nozaki 66, L Nozka 115, K Ntekas 10, G Nunes Hanninger 88, T Nunnemann 100, E Nurse 78, F Nuti 88, B J O’Brien 46, F O’grady 7, D C O’Neil 142, V O’Shea 53, F G Oakham 29, H Oberlack 101, T Obermann 21, J Ocariz 80, A Ochi 67, I Ochoa 78, S Oda 70, S Odaka 66, H Ogren 61, A Oh 84, S H Oh 45, C C Ohm 15, H Ohman 166, H Oide 30, W Okamura 118, H Okawa 160, Y Okumura 31, T Okuyama 155, A Olariu 26, S A Olivares Pino 46, D Oliveira Damazio 25, E Oliver Garcia 167, A Olszewski 39, J Olszowska 39, A Onofre 126,213, P U E Onyisi 31, C J Oram 159, M J Oreglia 31, Y Oren 153, D Orestano 134,218, N Orlando 154, C Oropeza Barrera 53, R S Orr 158, B Osculati 50,199, R Ospanov 84, G Otero y Garzon 27, H Otono 70, M Ouchrif 221, E A Ouellette 169, F Ould-Saada 119, A Ouraou 136, K P Oussoren 107, Q Ouyang 33, A Ovcharova 15, M Owen 53, R E Owen 18, V E Ozcan 19, N Ozturk 8, K Pachal 142, A Pacheco Pages 12, C Padilla Aranda 12, M Pagáčová 48, S Pagan Griso 15, E Paganis 139, C Pahl 101, F Paige 25, P Pais 86, K Pajchel 119, G Palacino 227, S Palestini 30, M Palka 198, D Pallin 34, A Palma 126,210, Y B Pan 173, E Panagiotopoulou 10, C E Pandini 80, J G Panduro Vazquez 77, P Pani 146,226, S Panitkin 25, L Paolozzi 133,217, Th D Papadopoulou 10, K Papageorgiou 154, A Paramonov 6, D Paredes Hernandez 154, M A Parker 28, K A Parker 139, F Parodi 50,199, J A Parsons 35, U Parzefall 48, E Pasqualucci 132, S Passaggio 50, F Pastore 134,218, Fr Pastore 77, G Pásztor 29, S Pataraia 175, N D Patel 150, J R Pater 84, T Pauly 30, J Pearce 169, B Pearson 113, L E Pedersen 36, M Pedersen 119, S Pedraza Lopez 167, R Pedro 126,210, S V Peleganchuk 109, D Pelikan 166, H Peng 192, B Penning 31, J Penwell 61, D V Perepelitsa 25, E Perez Codina 159, M T Pérez García-Estañ 167, L Perini 91,206, H Pernegger 30, S Perrella 104,207, R Peschke 42, V D Peshekhonov 65, K Peters 30, R F Y Peters 84, B A Petersen 30, T C Petersen 36, E Petit 42, A Petridis 146,226, C Petridou 154, E Petrolo 132, F Petrucci 134,218, N E Pettersson 157, R Pezoa 191, P W Phillips 131, G Piacquadio 143, E Pianori 170, A Picazio 49, E Piccaro 76, M Piccinini 20,184, M A Pickering 120, R Piegaia 27, D T Pignotti 111, J E Pilcher 31, A D Pilkington 78, J Pina 126,210,212, M Pinamonti 164,229, J L Pinfold 3, A Pingel 36, B Pinto 126, S Pires 80, M Pitt 172, C Pizio 91,206, L Plazak 144, M-A Pleier 25, V Pleskot 129, E Plotnikova 65, P Plucinski 146,226, D Pluth 64, R Poettgen 83, L Poggioli 117, D Pohl 21, G Polesello 121, A Policicchio 37,197, R Polifka 158, A Polini 20, C S Pollard 53, V Polychronakos 25, K Pommès 30, L Pontecorvo 132, B G Pope 90, G A Popeneciu 188, D S Popovic 13, A Poppleton 30, S Pospisil 128, K Potamianos 15, I N Potrap 65, C J Potter 149, C T Potter 116, G Poulard 30, J Poveda 30, V Pozdnyakov 65, P Pralavorio 85, A Pranko 15, S Prasad 30, S Prell 64, D Price 84, L E Price 6, M Primavera 73, S Prince 87, M Proissl 46, K Prokofiev 204, F Prokoshin 191, E Protopapadaki 136, S Protopopescu 25, J Proudfoot 6, M Przybycien 38, E Ptacek 116, D Puddu 134,218, E Pueschel 86, D Puldon 148, M Purohit 25, P Puzo 117, J Qian 89, G Qin 53, Y Qin 84, A Quadt 54, D R Quarrie 15, W B Quayle 164,228, M Queitsch-Maitland 84, D Quilty 53, S Raddum 119, V Radeka 25, V Radescu 42, S K Radhakrishnan 148, P Radloff 116, P Rados 88, F Ragusa 91,206, G Rahal 178, S Rajagopalan 25, M Rammensee 30, C Rangel-Smith 166, F Rauscher 100, S Rave 83, T Ravenscroft 53, M Raymond 30, A L Read 119, N P Readioff 74, D M Rebuzzi 121,208, A Redelbach 174, G Redlinger 25, R Reece 137, K Reeves 41, L Rehnisch 16, H Reisin 27, M Relich 163, C Rembser 30, H Ren 33, A Renaud 117, M Rescigno 132, S Resconi 91, O L Rezanova 109, P Reznicek 129, R Rezvani 95, R Richter 101, S Richter 78, E Richter-Was 198, O Ricken 21, M Ridel 80, P Rieck 16, C J Riegel 175, J Rieger 54, M Rijssenbeek 148, A Rimoldi 121,208, L Rinaldi 20, B Ristić 49, E Ritsch 62, I Riu 12, F Rizatdinova 114, E Rizvi 76, S H Robertson 87, A Robichaud-Veronneau 87, D Robinson 28, J E M Robinson 84, A Robson 53, C Roda 124,209, S Roe 30, O Røhne 119, S Rolli 161, A Romaniouk 98, M Romano 20,184, S M Romano Saez 34, E Romero Adam 167, N Rompotis 138, M Ronzani 48, L Roos 80, E Ros 167, S Rosati 132, K Rosbach 48, P Rose 137, P L Rosendahl 14, O Rosenthal 141, V Rossetti 226, E Rossi 104,207, L P Rossi 50, R Rosten 138, M Rotaru 26, I Roth 172, J Rothberg 138, D Rousseau 117, C R Royon 136, A Rozanov 85, Y Rozen 152, X Ruan 225, F Rubbo 143, I Rubinskiy 42, V I Rud 99, C Rudolph 44, M S Rudolph 158, F Rühr 48, A Ruiz-Martinez 30, Z Rurikova 48, N A Rusakovich 65, A Ruschke 100, H L Russell 138, J P Rutherfoord 7, N Ruthmann 48, Y F Ryabov 123, M Rybar 129, G Rybkin 117, N C Ryder 120, A F Saavedra 150, G Sabato 107, S Sacerdoti 27, A Saddique 3, H F-W Sadrozinski 137, R Sadykov 65, F Safai Tehrani 132, M Saimpert 136, H Sakamoto 155, Y Sakurai 171, G Salamanna 134,218, A Salamon 133, M Saleem 113, D Salek 107, P H Sales De Bruin 138, D Salihagic 101, A Salnikov 143, J Salt 167, D Salvatore 37,197, F Salvatore 149, A Salvucci 106, A Salzburger 30, D Sampsonidis 154, A Sanchez 104,207, J Sánchez 167, V Sanchez Martinez 167, H Sandaker 14, R L Sandbach 76, H G Sander 83, M P Sanders 100, M Sandhoff 175, C Sandoval 162, R Sandstroem 101, D P C Sankey 131, M Sannino 50,199, A Sansoni 47, C Santoni 34, R Santonico 133,217, H Santos 126, I Santoyo Castillo 149, K Sapp 125, A Sapronov 65, J G Saraiva 126,212, B Sarrazin 21, O Sasaki 66, Y Sasaki 155, K Sato 160, G Sauvage 5, E Sauvan 5, G Savage 77, P Savard 158, C Sawyer 120, L Sawyer 79, J Saxon 131, C Sbarra 20, A Sbrizzi 20,184, T Scanlon 78, D A Scannicchio 163, M Scarcella 150, V Scarfone 37,197, J Schaarschmidt 172, P Schacht 101, D Schaefer 30, R Schaefer 42, J Schaeffer 83, S Schaepe 21, S Schaetzel 201, U Schäfer 83, A C Schaffer 117, D Schaile 100, R D Schamberger 148, V Scharf 58, V A Schegelsky 123, D Scheirich 129, M Schernau 163, C Schiavi 50,199, C Schillo 48, M Schioppa 37,197, S Schlenker 30, E Schmidt 48, K Schmieden 30, C Schmitt 201, S Schmitt 58, S Schmitt 42, B Schneider 159, Y J Schnellbach 74, U Schnoor 44, L Schoeffel 136, A Schoening 201, B D Schoenrock 90, E Schopf 21, A L S Schorlemmer 54, M Schott 83, D Schouten 159, J Schovancova 8, S Schramm 158, M Schreyer 174, C Schroeder 83, N Schuh 83, M J Schultens 21, H-C Schultz-Coulon 58, H Schulz 16, M Schumacher 48, B A Schumm 137, Ph Schune 136, C Schwanenberger 84, A Schwartzman 143, T A Schwarz 89, Ph Schwegler 101, Ph Schwemling 136, R Schwienhorst 90, J Schwindling 136, T Schwindt 21, M Schwoerer 5, F G Sciacca 17, E Scifo 117, G Sciolla 23, F Scuri 124,209, F Scutti 21, J Searcy 89, G Sedov 42, E Sedykh 123, P Seema 21, S C Seidel 105, A Seiden 137, F Seifert 128, J M Seixas 24, G Sekhniaidze 104, K Sekhon 89, S J Sekula 40, K E Selbach 46, D M Seliverstov 123, N Semprini-Cesari 20,184, C Serfon 30, L Serin 117, L Serkin 164,228, T Serre 85, M Sessa 134,218, R Seuster 159, H Severini 113, T Sfiligoj 75, F Sforza 101, A Sfyrla 30, E Shabalina 54, M Shamim 116, L Y Shan 33, R Shang 165, J T Shank 22, M Shapiro 15, P B Shatalov 97, K Shaw 164,228, S M Shaw 84, A Shcherbakova 226, C Y Shehu 149, P Sherwood 78, L Shi 151, S Shimizu 67, C O Shimmin 163, M Shimojima 102, M Shiyakova 65, A Shmeleva 96, D Shoaleh Saadi 95, M J Shochet 31, S Shojaii 91,206, S Shrestha 111, E Shulga 98, M A Shupe 7, S Shushkevich 42, P Sicho 127, O Sidiropoulou 174, D Sidorov 114, A Sidoti 20,184, F Siegert 44, Dj Sijacki 13, J Silva 126,212, Y Silver 153, S B Silverstein 146, V Simak 128, O Simard 5, Lj Simic 13, S Simion 117, E Simioni 83, B Simmons 78, D Simon 34, R Simoniello 91,206, P Sinervo 158, N B Sinev 116, G Siragusa 174, A N Sisakyan 65, S Yu Sivoklokov 99, J Sjölin 146,226, T B Sjursen 14, M B Skinner 72, H P Skottowe 57, P Skubic 113, M Slater 18, T Slavicek 128, M Slawinska 107, K Sliwa 161, V Smakhtin 172, B H Smart 46, L Smestad 14, S Yu Smirnov 98, Y Smirnov 98, L N Smirnova 99, O Smirnova 81, M N K Smith 35, M Smizanska 72, K Smolek 128, A A Snesarev 96, G Snidero 76, S Snyder 25, R Sobie 169, F Socher 44, A Soffer 153, D A Soh 151, C A Solans 30, M Solar 128, J Solc 128, E Yu Soldatov 98, U Soldevila 167, A A Solodkov 130, A Soloshenko 65, O V Solovyanov 130, V Solovyev 123, P Sommer 48, H Y Song 192, N Soni 1, A Sood 15, A Sopczak 128, B Sopko 128, V Sopko 128, V Sorin 12, D Sosa 201, M Sosebee 8, C L Sotiropoulou 124,209, R Soualah 164,229, P Soueid 95, A M Soukharev 109, D South 42, S Spagnolo 205, M Spalla 124,209, F Spanò 77, W R Spearman 57, F Spettel 101, R Spighi 20, G Spigo 30, L A Spiller 88, M Spousta 129, T Spreitzer 158, R D St Denis 53, S Staerz 44, J Stahlman 122, R Stamen 58, S Stamm 16, E Stanecka 39, C Stanescu 134, M Stanescu-Bellu 42, M M Stanitzki 42, S Stapnes 119, E A Starchenko 130, J Stark 55, P Staroba 127, P Starovoitov 42, R Staszewski 39, P Stavina 144, P Steinberg 25, B Stelzer 142, H J Stelzer 30, O Stelzer-Chilton 159, H Stenzel 52, S Stern 101, G A Stewart 53, J A Stillings 21, M C Stockton 87, M Stoebe 87, G Stoicea 26, P Stolte 54, S Stonjek 101, A R Stradling 8, A Straessner 44, M E Stramaglia 17, J Strandberg 147, S Strandberg 146,226, A Strandlie 119, E Strauss 143, M Strauss 113, P Strizenec 223, R Ströhmer 174, D M Strom 116, R Stroynowski 40, A Strubig 106, S A Stucci 17, B Stugu 14, N A Styles 42, D Su 143, J Su 125, R Subramaniam 79, A Succurro 12, Y Sugaya 118, C Suhr 108, M Suk 128, V V Sulin 96, S Sultansoy 181, T Sumida 68, S Sun 57, X Sun 33, J E Sundermann 48, K Suruliz 149, G Susinno 37,197, M R Sutton 149, S Suzuki 66, Y Suzuki 66, M Svatos 127, S Swedish 168, M Swiatlowski 143, I Sykora 144, T Sykora 129, D Ta 90, C Taccini 134,218, K Tackmann 42, J Taenzer 158, A Taffard 163, R Tafirout 159, N Taiblum 153, H Takai 25, R Takashima 69, H Takeda 67, T Takeshita 140, Y Takubo 66, M Talby 85, A A Talyshev 108, J Y C Tam 174, K G Tan 88, J Tanaka 155, R Tanaka 117, S Tanaka 66, B B Tannenwald 111, N Tannoury 21, S Tapprogge 83, S Tarem 152, F Tarrade 29, G F Tartarelli 91, P Tas 129, M Tasevsky 127, T Tashiro 68, E Tassi 37,197, A Tavares Delgado 126,210, Y Tayalati 221, F E Taylor 94, G N Taylor 88, W Taylor 227, F A Teischinger 30, M Teixeira Dias Castanheira 76, P Teixeira-Dias 77, K K Temming 48, H Ten Kate 30, P K Teng 151, J J Teoh 118, F Tepel 175, S Terada 66, K Terashi 155, J Terron 82, S Terzo 101, M Testa 47, R J Teuscher 159, J Therhaag 21, T Theveneaux-Pelzer 34, J P Thomas 18, J Thomas-Wilsker 77, E N Thompson 35, P D Thompson 18, R J Thompson 84, A S Thompson 53, L A Thomsen 36, E Thomson 122, M Thomson 28, R P Thun 89, M J Tibbetts 15, R E Ticse Torres 85, V O Tikhomirov 96, Yu A Tikhonov 109, S Timoshenko 98, E Tiouchichine 85, P Tipton 176, S Tisserant 85, T Todorov 5, S Todorova-Nova 129, J Tojo 70, S Tokár 144, K Tokushuku 66, K Tollefson 90, E Tolley 57, L Tomlinson 84, M Tomoto 103, L Tompkins 143, K Toms 105, E Torrence 116, H Torres 142, E Torró Pastor 167, J Toth 85, F Touchard 85, D R Tovey 139, T Trefzger 174, L Tremblet 30, A Tricoli 30, I M Trigger 159, S Trincaz-Duvoid 80, M F Tripiana 12, W Trischuk 158, B Trocmé 55, C Troncon 91, M Trottier-McDonald 15, M Trovatelli 134,218, P True 90, L Truong 164,229, M Trzebinski 39, A Trzupek 39, C Tsarouchas 30, J C-L Tseng 120, P V Tsiareshka 92, D Tsionou 154, G Tsipolitis 10, N Tsirintanis 9, S Tsiskaridze 12, V Tsiskaridze 48, E G Tskhadadze 51, I I Tsukerman 97, V Tsulaia 15, S Tsuno 66, D Tsybychev 148, A Tudorache 26, V Tudorache 26, A N Tuna 122, S A Tupputi 20,184, S Turchikhin 99, D Turecek 128, R Turra 91,206, A J Turvey 40, P M Tuts 35, A Tykhonov 49, M Tylmad 146,226, M Tyndel 131, I Ueda 155, R Ueno 29, M Ughetto 146,226, M Ugland 14, M Uhlenbrock 21, F Ukegawa 160, G Unal 30, A Undrus 25, G Unel 163, F C Ungaro 48, Y Unno 66, C Unverdorben 100, J Urban 223, P Urquijo 88, P Urrejola 83, G Usai 8, A Usanova 62, L Vacavant 85, V Vacek 128, B Vachon 87, C Valderanis 83, N Valencic 107, S Valentinetti 20,184, A Valero 167, L Valery 12, S Valkar 129, E Valladolid Gallego 167, S Vallecorsa 49, J A Valls Ferrer 167, W Van Den Wollenberg 107, P C Van Der Deijl 107, R van der Geer 107, H van der Graaf 107, R Van Der Leeuw 107, N van Eldik 152, P van Gemmeren 6, J Van Nieuwkoop 142, I van Vulpen 107, M C van Woerden 30, M Vanadia 132,216, W Vandelli 30, R Vanguri 122, A Vaniachine 6, F Vannucci 80, G Vardanyan 177, R Vari 132, E W Varnes 7, T Varol 40, D Varouchas 80, A Vartapetian 8, K E Varvell 150, F Vazeille 34, T Vazquez Schroeder 87, J Veatch 7, F Veloso 126,211, T Velz 21, S Veneziano 132, A Ventura 205, D Ventura 86, M Venturi 169, N Venturi 158, A Venturini 23, V Vercesi 121, M Verducci 132,216, W Verkerke 107, J C Vermeulen 107, A Vest 44, M C Vetterli 142, O Viazlo 81, I Vichou 165, T Vickey 139, O E Vickey Boeriu 139, G H A Viehhauser 120, S Viel 15, R Vigne 30, M Villa 20,184, M Villaplana Perez 91,206, E Vilucchi 47, M G Vincter 29, V B Vinogradov 65, I Vivarelli 149, F Vives Vaque 3, S Vlachos 10, D Vladoiu 100, M Vlasak 128, M Vogel 32, P Vokac 128, G Volpi 124,209, M Volpi 88, H von der Schmitt 101, H von Radziewski 48, E von Toerne 21, V Vorobel 129, K Vorobev 98, M Vos 167, R Voss 30, J H Vossebeld 74, N Vranjes 13, M Vranjes Milosavljevic 13, V Vrba 127, M Vreeswijk 107, R Vuillermet 30, I Vukotic 31, Z Vykydal 128, P Wagner 21, W Wagner 175, H Wahlberg 71, S Wahrmund 44, J Wakabayashi 103, J Walder 72, R Walker 100, W Walkowiak 141, C Wang 33, F Wang 173, H Wang 15, H Wang 40, J Wang 42, J Wang 33, K Wang 87, R Wang 6, S M Wang 151, T Wang 21, X Wang 176, C Wanotayaroj 116, A Warburton 87, C P Ward 28, D R Wardrope 78, M Warsinsky 48, A Washbrook 46, C Wasicki 42, P M Watkins 18, A T Watson 18, I J Watson 150, M F Watson 18, G Watts 138, S Watts 84, B M Waugh 78, S Webb 84, M S Weber 17, S W Weber 174, J S Webster 31, A R Weidberg 120, B Weinert 61, J Weingarten 54, C Weiser 48, H Weits 107, P S Wells 30, T Wenaus 25, T Wengler 30, S Wenig 30, N Wermes 21, M Werner 48, P Werner 30, M Wessels 58, J Wetter 161, K Whalen 29, A M Wharton 72, A White 8, M J White 1, R White 191, S White 124,209, D Whiteson 163, F J Wickens 131, W Wiedenmann 173, M Wielers 131, P Wienemann 21, C Wiglesworth 36, L A M Wiik-Fuchs 21, A Wildauer 101, H G Wilkens 30, H H Williams 122, S Williams 107, C Willis 90, S Willocq 86, A Wilson 89, J A Wilson 18, I Wingerter-Seez 5, F Winklmeier 116, B T Winter 21, M Wittgen 143, J Wittkowski 100, S J Wollstadt 83, M W Wolter 39, H Wolters 126,211, B K Wosiek 39, J Wotschack 30, M J Woudstra 84, K W Wozniak 39, M Wu 55, M Wu 31, S L Wu 173, X Wu 49, Y Wu 89, T R Wyatt 84, B M Wynne 46, S Xella 36, D Xu 192, L Xu 33, B Yabsley 150, S Yacoob 224, R Yakabe 67, M Yamada 66, Y Yamaguchi 118, A Yamamoto 66, S Yamamoto 155, T Yamanaka 155, K Yamauchi 103, Y Yamazaki 67, Z Yan 22, H Yang 195, H Yang 173, Y Yang 151, L Yao 33, W-M Yao 15, Y Yasu 66, E Yatsenko 5, K H Yau Wong 21, J Ye 40, S Ye 25, I Yeletskikh 65, A L Yen 57, E Yildirim 42, K Yorita 171, R Yoshida 6, K Yoshihara 122, C Young 143, C J S Young 30, S Youssef 22, D R Yu 15, J Yu 8, J M Yu 89, J Yu 114, L Yuan 67, A Yurkewicz 108, I Yusuff 28, B Zabinski 39, R Zaidan 63, A M Zaitsev 130, J Zalieckas 14, A Zaman 148, S Zambito 57, L Zanello 132,216, D Zanzi 88, C Zeitnitz 175, M Zeman 128, A Zemla 38, K Zengel 23, O Zenin 130, T Ženiš 144, D Zerwas 117, D Zhang 89, F Zhang 173, J Zhang 6, L Zhang 48, R Zhang 192, X Zhang 194, Z Zhang 117, X Zhao 40, Y Zhao 194,117, Z Zhao 192, A Zhemchugov 65, J Zhong 120, B Zhou 89, C Zhou 45, L Zhou 35, L Zhou 40, N Zhou 163, C G Zhu 192, H Zhu 194, J Zhu 89, Y Zhu 33, X Zhuang 33, K Zhukov 96, A Zibell 174, D Zieminska 61, N I Zimine 65, C Zimmermann 83, S Zimmermann 48, Z Zinonos 54, M Zinser 83, M Ziolkowski 141, L Živković 13, G Zobernig 173, A Zoccoli 20,184, M zur Nedden 16, G Zurzolo 104,207, L Zwalinski 30; ATLAS collaboration179
PMCID: PMC4469421  PMID: 26097411

Abstract

A search for a new resonance decaying to a W or Z boson and a Higgs boson in the /ν/νν+bb¯ final states is performed using 20.3 fb-1 of pp collision data recorded at s= 8 TeV with the ATLAS detector at the Large Hadron Collider. The search is conducted by examining the WH / ZH invariant mass distribution for a localized excess. No significant deviation from the Standard Model background prediction is observed. The results are interpreted in terms of constraints on the Minimal Walking Technicolor model and on a simplified approach based on a phenomenological Lagrangian of Heavy Vector Triplets.

Introduction

Although the Higgs boson discovery by the ATLAS [1] and CMS [2] collaborations imposes strong constraints on theories beyond the Standard Model (SM), the extreme fine tuning in quantum corrections required to have a light fundamental Higgs boson [3, 4] suggests that the SM may be incomplete, and not valid beyond a scale of a few TeV. Various dynamical electroweak symmetry breaking scenarios which attempt to solve this naturalness problem, such as Minimal Walking Technicolor [58], Little Higgs [9], or composite Higgs models [10, 11], predict the existence of new resonances decaying to a vector boson plus a Higgs boson.

Using the full dataset collected by the ATLAS detector at 8 TeV centre-of-mass energy at the Large Hadron Collider, a search is performed for a heavy resonance decaying to VH, where V is a W or Z boson and H is the SM Higgs boson. This analysis looks for the leptonic decay of the W or Z boson and the Higgs decay into a b-quark pair. Therefore the selected final states are: zero charged leptons targeting Z(νν)bb¯ decays, one charged lepton W(ν)bb¯, and two oppositely charged leptons Z()bb¯ where =e,μ. The search is performed by examining the distribution of the reconstructed VH mass (mVH) for a localized excess. The signal strength and the background normalization are determined from a likelihood fit to the data distribution in the three channels studied.

As a benchmark, the Minimal Walking Technicolor model (MWT) is used, a model with strongly coupled dynamics. This model predicts two triplets of resonances, R1±,0 and R2±,0, one of which is a vector and the other an axial-vector, that couple to vector bosons with strength g~ and to fermions with g/g~, where g is the weak SU(2) coupling constant. The bare axial-vector mass mA determines the masses of R1 and R2, with the lower mass resonance R1 having a mass close to mA. Recent lattice simulations in this model [1214] predict masses close to 2 TeV. The decay channels R1,2±WH and R1,20ZH, lead to Wbb¯ and Zbb¯ final states.

A simplified approach based on a phenomenological Lagrangian [15] that incorporates Heavy Vector Triplets (HVT), which allows the interpretation of the results in a model-independent way, is also used. Here, the new heavy vector bosons, V±,0, couple to the Higgs and SM gauge bosons via a combination of parameters gVcH and to the fermions via the combination (g2/gV)cF. The parameter gV represents the strength of the new vector boson interaction, while cH and cF, which represent the couplings to the Higgs and the fermions respectively, are expected to be of order unity in most models. Two benchmark models [15] are used here. In the first model, referred to as model A, the branching fractions to fermions and gauge bosons are comparable, as in some extensions of the SM gauge group [16]. For model B, fermionic couplings are suppressed, as for example in a composite Higgs model [17].

The three final states presented in this Letter have been extensively studied for non-resonant production in ATLAS [18]. Moreover, a search for a pseudoscalar resonance in the bb¯ and ννbb¯ channels has already been published by ATLAS, setting limits on two-Higgs-doublet models [19]. Other searches for particles occurring in MWT and HVT models have been conducted by the ATLAS [20, 21] and CMS [22] collaborations.

The ATLAS detector

The ATLAS detector [23] is a general-purpose particle detector used to investigate a broad range of physics processes. It includes inner tracking devices surrounded by a superconducting solenoid, electromagnetic and hadronic calorimeters and a muon spectrometer. The inner detector (ID) provides precision tracking of charged particles with pseudorapidity1  |η|<2.5. The calorimeter system covers the pseudorapidity range |η|<4.9. It is composed of sampling calorimeters with either liquid argon (LAr) or scintillator tiles as the active medium. The muon spectrometer consists of three large superconducting toroids and a system of trigger chambers and precision tracking chambers that provide triggering and tracking capabilities in the ranges of |η|< 2.4 and |η|<2.7 respectively.

The ATLAS detector has a three-level trigger system to select events for offline analysis.

Data and Monte Carlo samples

This analysis is based on s=8TeVpp collision data corresponding to 20.3 ± 0.6 fb-1  [24]. The data used in the νbb¯ final state were collected using single-electron and single-muon triggers with transverse momentum (pT) thresholds from 24 to 60 GeV. The data used in the bb¯ final state were collected using a combination of single-electron, single-muon, dielectron (ee) and dimuon (μμ) triggers. The pT thresholds for the ee and μμ triggers vary from 12 to 13 GeV. The data used in the ννbb¯ final state were collected using a trigger that requires a missing transverse momentum (ETmiss) with magnitude ETmiss greater than 80 GeV.

Simulated Monte Carlo (MC) samples for the MWT benchmark model use the implementation [25] in Madgraph5 [26], with the Higgs boson mass set to 126 GeV. The parameter g~ is set to 2 for signal generation. Constraints on other values of this parameter can be set using the same samples since the kinematic distributions do not depend on g~. The parameter S, which is an approximate value [27] of the Peskin–Takeuchi S parameter [28] which measures potential new contributions to electroweak radiative corrections, is set to 0.3, in accordance with the recommendations in Ref. [29].

Signal samples for the HVT model are also generated with Madgraph5. The parameter cF is assumed to be the same for quarks and leptons including third-generation fermions. Other parameters involving more than one heavy vector boson, gVcVVV, gV2cVVHH and cVVW, have negligible effect on the overall cross sections for the processes of interest here. For all signal events, parton showering and hadronization is performed with Pythia8 [30, 31] and the CTEQ6L1 [32] parton distribution functions (PDFs) are used. Benchmark signal samples are generated for a range of resonance masses from 300 to 2000GeV in steps of 100 GeV.

MC samples are used to model the shape and normalization of most SM background processes, although some are later adjusted using data-based corrections extracted from control samples. The production of W and Z bosons in association with jets is simulated with Sherpa 1.4.1 [33] using the CT10 PDFs [34]. Top quark pair production is simulated using Powheg [35, 36] with the Powheg-BOX program [37] interfaced to Pythia6, using the CTEQ6L1 PDFs. In this analysis, the final normalizations of these dominant backgrounds are constrained by the data, but theoretical cross sections are used to optimize the selection. The cross sections are calculated at NNLO accuracy for W / Z+jets [38] and at NNLO+NNLL accuracy for tt¯ [39]. Single top quark production is simulated with Powheg and AcerMC [40] interfaced to Pythia6, using the CTEQ6L1 PDFs, and the cross sections are taken from Ref. [41]. Diboson production (WW,WZ,ZZ) is simulated using Powheg interfaced to Pythia8, using the CT10 PDFs, and the cross sections are obtained at NLO from mcfm [42]. Finally, SM Higgs boson production in association with a W / Z boson is simulated using Pythia8 with the CTEQ6L1 PDFs, and considered as a background in this search. It is scaled to the SM cross section [18].

All MC simulated samples include the effect of multiple pp interactions in the same and neighbouring bunch crossings (pile-up) by overlaying simulated minimum-bias events on each generated signal or background event. The number of overlaid events is such that the distribution of the number of interactions per pp bunch crossing in the simulation matches that observed in the data, with on average 21 interactions per bunch crossing. The generated samples are processed through the Geant4-based ATLAS detector simulation [43, 44] or a fast simulation using a parameterization of the performance of the calorimetry and Geant4 for the other parts of the detector [45]. Simulated events are reconstructed with the standard ATLAS reconstruction software used for collision data.

Object reconstruction

The physics objects used in this analysis are electrons, muons, jets and missing transverse momentum.

Electrons are identified for |η|<2.47 and pT>7 GeV from energy clusters in the electromagnetic calorimeter that are matched to tracks in the inner detector [46]. Quality requirements based on the calorimeter cluster and track are applied to reduce contamination from jets.

Muons are reconstructed in the muon spectrometer in the range |η|<2.7 and pT>4 GeV [47]. For |η|<2.5 the muon spectrometer track must be matched with a track in the inner detector and information from both is used to reconstruct the momentum. Muons considered for this analysis must have pT>7 GeV.

Lepton candidates are required to be isolated to reduce the multijet background. The scalar sum of the transverse momenta of tracks with pT>1GeV within a cone of ΔR=(Δη)2+(Δϕ)2=0.2 around the lepton track (tracking isolation) is required to be less than 10 % of the lepton pT.

Jets are reconstructed using the anti-kt algorithm [48] with radius parameter R=0.4. The jet transverse momentum is corrected for energy losses in passive material, for the non-compensating response of the calorimeter, and for any additional energy due to multiple pp interactions [49]. Jets are required to have pT>30GeV and |η|<4.5. To reject low-pT jets from pile-up, for jets with pT<50GeV and |η|<2.5, the scalar sum of the pT of associated tracks, originating from the reconstructed primary vertex, is required to be at least 50 % of the scalar sum of the pT of all associated tracks. To avoid double-counting of leptons and jets, an overlap removal procedure is applied [18].

In the pseudorapidity range |η|<2.5, jets originating from b-quarks are identified using a multi-variate b-tagging algorithm [50]. This has an efficiency of 70 % and a misidentification rate of less than 1 % for selecting jets initiated by light quarks or gluons and of about 20 % for jets initiated by c-quarks, as determined from tt¯ MC events.

The missing transverse momentum is calculated as the negative of the vectorial sum of the calorimeter-based transverse momenta of all electrons, jets, and calibrated calorimeter clusters within |η|<4.9 that are not associated with any other objects [51], as well as muon momenta. In addition, a track-based missing transverse momentum (pTmiss, with magnitude pTmiss ) is used, calculated as the negative vectorial sum of the track-based transverse momenta of objects with |η|<2.4 associated with the primary vertex.

Event selection and reconstruction

Events are categorized into the ννbb¯,νbb¯orbb¯ channels if they have zero, one or two reconstructed charged leptons respectively. All categories require at least two jets in the pseudorapidity range |η|<2.5 (central jets). The channels are further subdivided into categories of events containing one or two b-tagged jets; events with zero or 3b-tagged jets are rejected. The Higgs boson candidate (and its mass mbb¯) is reconstructed from the two b-tagged jets or, for 1-b-tag events, the b-tagged jet and the highest-pT remaining central jet. In order to suppress W / Z+jets background, at least one of the jets must have pT>45 GeV and the invariant mass of the dijet pair must be in the range 105<mbb¯<145 GeV, consistent with the Higgs mass. In order to reduce the tt¯ background in the ννbb¯ and νbb¯ channels, events are rejected if they contain four or more jets. To improve the resolution of the VH mass a constraint to the Higgs boson mass is applied by scaling the Higgs boson candidate jet momenta by mH/mbb¯ (mH=125GeV). Further channel-specific cuts are applied as outlined below.

ννbb¯ channel

Events are selected with ETmiss>120 GeV and pTmiss>30GeV. A requirement is made on HT, defined as the scalar sum of the pT of all jets, in order to keep a high trigger efficiency: HT>120GeV (>150 GeV) for events with two (three) jets. Selections are also applied on the angle between the jets used for reconstructing the Higgs candidate, ΔRbb¯, to suppress the W/Z+jets background [18]: for 120<ETmiss<160GeV, 0.7<ΔRbb¯<1.8; for 160<ETmiss<200GeV, ΔRbb¯<1.8; for ETmiss>200GeV, ΔRbb¯<1.4. Events containing an electron or muon passing the selection cuts described in Sect. 4 are removed.

In events with real ETmiss the directions of ETmiss and pTmiss are expected to be similar. In events with fake ETmiss arising from a jet energy fluctuation, the direction of ETmiss should be close to the direction of the poorly measured jet. Therefore additional criteria are imposed on angular quantities in order to suppress the multijet background: the azimuthal angle between ETmiss and pTmiss, Δϕ(ETmiss,pTmiss)<π/2; the minimum azimuthal angle between ETmiss and any jet, min[Δϕ(ETmiss,jet)]>1.5; and the azimuthal angle between ETmiss and the jet pair combination used to reconstruct the Higgs candidate, Δϕ(ETmiss,bb¯)>2.8.

It is not possible to accurately reconstruct the invariant mass of the ZH system due to the missing neutrinos, so the transverse mass is used as the final discriminant: mVHT=(ETbb¯+ETmiss)2-(pTbb¯+ETmiss)2, where pTbb¯ is the transverse momentum of the Higgs candidate. The total acceptance times selection efficiency varies from 15 % for mR1=400 GeV, to 30 % for mR1=1000 GeV and down to 2 % for mR1=2000 GeV. The drop at very high masses is due to the merging of the jets.

νbb¯ channel

In order to suppress the multijet background and ensure the single-lepton triggers are fully efficient, tighter identification criteria are placed on the lepton in this channel. The lepton pT requirement is raised to pT>25 GeV and, for the muon channel, the pseudorapidity is restricted to |η|<2.5. Moreover, the tracking isolation is tightened and required to be less than 4 % of the lepton pT. Similarly, the sum of transverse energy deposits in the calorimeter within a cone of ΔR=0.3 around the lepton, excluding the transverse energy due to the lepton and the correction for the expected pile-up contribution, is required to be less than 4 % of the lepton pT.

The multijet background is further reduced by requiring Δϕ(ETmiss,jet)>1.0. W boson candidates are selected by requiring ETmiss>30 GeV and the transverse mass reconstructed from the lepton and ETmiss, mWT=2×ET×ETmiss×(1-cosΔϕ(,ETmiss))>20 GeV.

The WH system mass, mVH, is reconstructed from the lepton, the ETmiss and the two jets. The momentum of the neutrino in the z-direction, pz, is obtained by imposing the W boson mass constraint on the lepton and neutrino system, which leads to a quadratic equation. Here pz is taken as either the real component of the complex solutions or the smaller of the two real solutions.

In order to reduce the W+jets background, a requirement is imposed on the transverse momentum of the W boson, pTW>0.4×mVH. The cut depends on mVH since the background is generally produced at low pTW, whereas for signal the mean pTW increases with mVH. The total acceptance times selection efficiency varies from 8 % for mR1=400 GeV, to 20 % for mR1=1000 GeV and down to 2 % for mR1=2000 GeV.

bb¯ channel

Events in this channel are selected by requiring two reconstructed leptons of the same flavour with opposite charge. In order to reduce the multijet background while keeping a high signal acceptance, tighter requirements are placed on one of the leptons. These tighter electrons or muons must have pT>25 GeV and, in addition, muons are restricted to |η|<2.5. A cut on the two-lepton invariant mass of 83 GeV<m<99 GeV is imposed to reduce tt¯ and multijet backgrounds. The tt¯ background is further reduced by requiring ETmiss<60 GeV.

The invariant mass of the two leptons and two jets is used to reconstruct mVH.

In order to reduce the dominant Z+jets background, a selection, optimized for this channel, is imposed on the transverse momentum of the Z boson: pTZ>0.4×mVH-100 GeV. The total acceptance times selection efficiency varies from 18 % for mR1=400 GeV, to 30 % for mR1=1000 GeV and down to 1 % for mR1=2000 GeV.

Background estimation

All backgrounds except the multijet background are estimated from simulation, with data-based corrections for the dominant W / Z+jets background as described in the following. The rate and shape of the multijet (MJ) background are estimated with data-driven methods.

The MJ background is estimated in the 0-lepton channel using an “ABCD method” based on two uncorrelated variables: min[Δϕ(ETmiss,jet)] and Δϕ(ETmiss,pTmiss). The data are divided into four regions such that three of the regions are dominated by background. The signal region (A) is defined as explained in Sect. 5. The MJ-dominated region C is obtained by reversing the Δϕ(ETmiss,pTmiss) requirement. An MJ template in region A is obtained using events in region C after subtracting the contribution of other backgrounds, taken from simulation. The template is then normalized by a fit to the regions with min[Δϕ(ETmiss,jet)]<0.4 [18] (regions B and D with orthogonal Δϕ(ETmiss,pTmiss) requirements).

In the 1-lepton channel, the MJ background is determined separately for the electron and muon sub-channels. An MJ-background template is obtained from an MJ-dominated region after subtracting the small contribution from the other backgrounds. An MJ-dominated region is obtained by loosening the lepton identification requirements and reversing the isolation criteria. A binned fit of the full ETmiss spectrum of the data to the sum of the MJ contribution, W / Z+jets and other MC contributions is then used to extract the MJ normalization. The templates are validated in a control region enriched in MJ events, selected by reversing the ETmiss requirement.

For the 2-lepton channel in the eebb¯ final state, the MJ background shape is determined by selecting events with reversed electron isolation criteria and its normalization is extracted by fitting the full data mee distribution including Z sidebands. The MJ background in the μμbb¯ final state is found to be negligible.

The W / Z+jets simulated samples are split into different components according to the true flavour of the jets, i.e. W/Z+qq, W/Z+cq, where q denotes a light quark (u, d, s) or a gluon, and W / Z plus heavy flavour (hf). The latter includes: W/Z+bb¯, W/Z+bq,W/Z+bc, W/Z+cc. The normalizations of W+cq, Z+cq and W+hf, Z+hf are free parameters of the global likelihood fit. The scale factors after the fit are all consistent with 1, except for the Z+hf normalization that is 15 % higher as seen in previous measurements [18]. The W / Z+jets modelling is checked in control regions selected by requiring events with no b-tagged jets or in the mbb¯ sideband region in the 1-tag and 2-tag channels. A difference between data and simulation is observed in the 0-tag control region and a correction is extracted as a function of the azimuthal angle difference between the two leading-pT jets, Δϕ(jet1,jet2). This is used to reweight the Z+qq and W+qq components. After this correction is applied a discrepancy is observed in the pT distribution in the 2-lepton channel after the requirement of at least one b-tagged jet. A correction is extracted and used to reweight the Z+cq and Z+hf components. The full procedure is described in detail in Ref. [18].

The background contributions from single top quark and diboson production are normalized to the number of background events predicted by simulation while the tt¯ normalization is a free parameter in the likelihood fit. The description of the shape of the tt¯ background from MC simulation has been validated in samples dominated by top pair events. Good agreement within uncertainties is observed between data and expectation in these validation regions.

The tt¯ control region is defined by requiring exactly one electron and one muon, one of which has pT>25 GeV, and two b-tagged jets. It is included in the likelihood fit to constrain the tt¯ normalization. The scale factor for the tt¯ normalization is found to be 1.03±0.04 after the likelihood fit to the 0- and 2-lepton channel plus the tt¯ control region, and 0.99±0.09 from the fit to the 1-lepton channel. The fit procedure is described in more detail in Sect. 8.

Systematic uncertainties

The most important experimental systematic uncertainties come from the jet energy scale (JES) and b-tagging efficiency.

The JES systematic uncertainty arises from several sources including uncertainties from the in-situ calibration, the corrections dependent on pile-up and the jet flavour composition [52]. The fractional systematic uncertainty on the JES ranges from 3 % for a 20 GeV jet to 1 % for a 1 TeV jet.

The uncertainty due to the jet energy resolution is also considered. It varies from 20 % for a jet with pT> 20 GeV to 5 % for a jet with pT> 1 TeV. The jet energy scale and resolution uncertainties are propagated to the reconstructed ETmiss. The uncertainty on ETmiss also has a contribution from hadronic energy that is not included in jets [53].

The b-tagging efficiency uncertainty depends on jet pT and comes mainly from the uncertainty on the measurement of the efficiency in tt¯ events [50]. Uncertainties are also derived for c- and light-flavour jet tagging [54].

Other experimental systematic uncertainties that have a smaller impact are those on the lepton energy scale and identification efficiency and the efficiency of the triggers.

In addition to the experimental systematic uncertainties, uncertainties are taken into account for possible differences between data and the simulation model that is used for each process. For the background modelling uncertainties the procedure described in Ref. [18] is followed. The Z+jets and W+jets backgrounds include uncertainties on the relative fraction of the different flavour components, and shape uncertainties on the modelling of mbb¯, Δϕ(jet1,jet2) and pTZ distributions. For tt¯ production, shape uncertainties are included for the modelling of top quark transverse momentum, mbb¯ and mVH distributions. The uncertainty on the MJ background shape in the 1-lepton channel is evaluated by using alternative templates obtained by changing the definition of the data sidebands. The uncertainty on the MJ background normalization is taken to be 100, 30 and 50 % for the 0-, 1- and 2-lepton channels, respectively. These are extracted from fits using alternative templates.

The dominant uncertainties on the signal acceptance arise from the choice of PDFs (2–5 %) estimated by comparing the default PDFs to other sets, and from the factorization and renormalization scales (5–10 %) obtained by varying these up and down by a factor of two.

Results and limit extraction

The reconstructed mass distributions for events passing the selection are shown in Fig. 1. The background expectation is shown after the profile likelihood fit to the data. Table 1 shows the number of events expected and observed in each final state.

Fig. 1.

Fig. 1

Distributions of the reconstructed, a transverse mass mννjjT for the ννbb¯ final state, b invariant mass mνjj for the νbb¯ final state and c invariant mass mjj for the bb¯ final state for the 1-b-tag (upper) and 2-b-tag (lower) channels. The background expectation is shown after the profile likelihood fit to the data. Any overflow is included in the last bin. The signals are shown stacked on top of the background and correspond to the benchmark models MWT with mR1=700 GeV and HVT with mV=1000 GeV normalized to the expected cross sections

Table 1.

The number of expected and observed events for the three final states. The expectation is shown after the profile likelihood fit to the data. The quoted uncertainties are the combined systematic and statistical uncertainties. The overall background is more constrained than the individual components, causing the errors of individual components to be anti-correlated

graphic file with name 10052_2015_3474_Tab1_HTML.jpg

No significant excess of events is observed in the data compared to the prediction from SM background sources. Exclusion limits at the 95 % confidence level (CL) are set on the production cross section times the branching fraction for MWT and HVT models. The limits for the charged resonance are obtained by performing the likelihood fit over the νbb¯ channel alone, while the bb¯, ννbb¯ channels as well as the tt¯ control region are used for the neutral resonance.

The exclusion limits are calculated with a modified frequentist method [55], also known as CLs, and the profile-likelihood test statistic [56], using the binned mVH mass distributions for νbb¯, bb¯ and ννbb¯ final states. Systematic uncertainties and their correlations are taken into account as nuisance parameters. None of the systematic uncertainties considered are significantly constrained or pulled in the likelihood fit. Figure 2 shows 95 % CL upper limits on the production cross section multiplied by the branching fraction into WH and ZH as a function of the resonance mass separately for the charged R1± and for the neutral R10. The experimental limits are obtained using samples with a single resonance R1, where the cross section for R2 has been set to zero to be less model-dependent. The theoretical predictions for the HVT benchmark model A with coupling constant gV=1 allow exclusion of mV0<1360 GeV (mV±<1470 GeV). For the MWT model, since there are two resonances of different mass, the results are displayed for the first one, R10,±. The excluded regions are mR10<410 GeV, 750<mR10<1200 GeV (700<mR1±<1150 GeV). The dip near 500 GeV in this theory curve is due to the interference between R1 and R2 [7]. To study the scenario in which the masses of charged and neutral resonances are the same, a combined likelihood fit over all signal regions and the tt¯ control region is also performed. The exclusion contours in the {mA,g~} plane for MWT are presented in Fig. 3. For this result, both resonances predicted by MWT, R1 and R2, are fitted simultaneously and, at each g~, the different branching ratios to WH and ZH are taken into account. Electroweak precision data, a requirement to remain within the walking technicolor regime and constraints from requiring real-valued physical decay constants exclude a portion of the plane. This analysis is particularly sensitive at high g~ values, where the limits exceed those from the dilepton resonance search [21].

Fig. 2.

Fig. 2

Combined upper limits at the 95 % CL for a the production cross section of R10 (V0) times its branching ratio to ZH and branching ratio of H to bb¯ and b the production cross section of R1± (V±) times its branching ratio to WH and branching ratio of H to bb¯ . The experimental limits are obtained using samples with a single resonance R1; however, the theory curve line for MWT includes both R1 and R2. The dip near 500 GeV in this theory curve is due to the interference between R1 and R2 [7]

Fig. 3.

Fig. 3

Exclusion contours at 95 % CL in the plane of the Minimal Walking Technicolor parameter space defined by the bare axial-vector mass versus the strength of the spin-1 resonance interaction {mA, g~}. Electroweak precision measurements exclude the (green) area in the bottom left corner. The requirement to stay in the walking regime excludes the (blue) area in the right corner. The large (red) area (black dashed line) shows the observed (expected) exclusion. The blue dashed line shows the observed exclusion from the dilepton resonance search [21]. The upper region is excluded due to non-real axial and axial-vector decay constants. Here both resonances predicted by MWT, R1 and R2, are fitted simultaneously

The exclusion contours in the HVT parameter space {(g2/gV)cF,gVcH} for resonances of mass 1, 1.5 and 1.8 TeV are shown in Fig. 4 where all three channels are combined, taking into account the branching ratios to WH and ZH from the HVT model. These contours are produced by scanning the parameter space, using the HVT tools provided in a web-interface [15, 57].

Fig. 4.

Fig. 4

Observed 95 % CL exclusion contours in the HVT parameter space {(g2/gV)cF, gVcH} for resonances of mass 1 TeV, 1.5 TeV and 1.8 TeV . The areas outside the curves are excluded. Also shown are the benchmark model parameters A(gV=1), A(gV=3) and B(gV=3)

Summary

A search for a new heavy resonance decaying to WH / ZH is presented in this Letter. The search is performed using 20.3 fb-1 of pp collision data at 8 TeV centre-of-mass energy collected by the ATLAS detector at the Large Hadron Collider. No significant deviations from the SM background predictions are observed in the three final states considered: bb¯, νbb¯, ννbb¯. Upper limits are set at the 95 % confidence level on the production cross sections of R1 and V for the Minimal Walking Technicolor and Heavy Vector Triplets models respectively. Exclusion contours at 95 % CL in the MWT parameter space {mA,g~} and in the HVT parameter space {(g2/gV)cF, gVcH} are presented.

Acknowledgments

We thank CERN for the very successful operation of the LHC, as well as the support staff from our institutions without whom ATLAS could not be operated efficiently. We acknowledge the support of ANPCyT, Argentina; YerPhI, Armenia; ARC, Australia; BMWFW and FWF, Austria; ANAS, Azerbaijan; SSTC, Belarus; CNPq and FAPESP, Brazil; NSERC, NRC and CFI, Canada; CERN; CONICYT, Chile; CAS, MOST and NSFC, China; COLCIENCIAS, Colombia; MSMT CR, MPO CR and VSC CR, Czech Republic; DNRF, DNSRC and Lundbeck Foundation, Denmark; EPLANET, ERC and NSRF, European Union; IN2P3-CNRS, CEA-DSM/IRFU, France; GNSF, Georgia; BMBF, DFG, HGF, MPG and AvH Foundation, Germany; GSRT and NSRF, Greece; RGC, Hong Kong SAR, China; ISF, MINERVA, GIF, I-CORE and Benoziyo Center, Israel; INFN, Italy; MEXT and JSPS, Japan; CNRST, Morocco; FOM and NWO, Netherlands; BRF and RCN, Norway; MNiSW and NCN, Poland; GRICES and FCT, Portugal; MNE/IFA, Romania; MES of Russia and NRC KI, Russian Federation; JINR; MSTD, Serbia; MSSR, Slovakia; ARRS and MIZŠ, Slovenia; DST/NRF, South Africa; MINECO, Spain; SRC and Wallenberg Foundation, Sweden; SER, SNSF and Cantons of Bern and Geneva, Switzerland; NSC, Taiwan; TAEK, Turkey; STFC, the Royal Society and Leverhulme Trust, United Kingdom; DOE and NSF, United States of America. The crucial computing support from all WLCG partners is acknowledged gratefully, in particular from CERN and the ATLAS Tier-1 facilities at TRIUMF (Canada), NDGF (Denmark, Norway, Sweden), CC-IN2P3 (France), KIT/GridKA (Germany), INFN-CNAF (Italy), NL-T1 (Netherlands), PIC (Spain), ASGC (Taiwan), RAL (UK) and BNL (USA) and in the Tier-2 facilities worldwide.

Footnotes

1

ATLAS uses a right-handed coordinate system with its origin at the nominal interaction point (IP) in the centre of the detector and the z-axis along the beam pipe. The x-axis points from the IP to the centre of the LHC ring, and the y-axis points upward. Cylindrical coordinates (r,ϕ) are used in the transverse plane, ϕ being the azimuthal angle around the beam pipe. The pseudorapidity is defined in terms of the polar angle θ as η=-lntan(θ/2).

References

  • 1.ATLAS Collaboration, Phys. Lett. B 716, 1–29 (2012). arXiv:1207.7214 [hep-ex]
  • 2.CMS Collaboration, Phys. Lett. B 716, 30–61 (2012). arXiv:1207.7235 [hep-ex]
  • 3.Particle Data Group Collaboration, K. Olive et al., Chin. Phys. C 38, 090001 (2014)
  • 4.Wilson KG. Phys. Rev. D. 1971;3:1818. doi: 10.1103/PhysRevD.3.1818. [DOI] [Google Scholar]
  • 5.Sannino F, Tuominen K. Phys. Rev. D. 2005;71:051901. doi: 10.1103/PhysRevD.71.051901. [DOI] [Google Scholar]
  • 6.Foadi R, Frandsen MT, Ryttov TA, Sannino F. Phys. Rev. D. 2007;76:055005. doi: 10.1103/PhysRevD.76.055005. [DOI] [Google Scholar]
  • 7.Belyaev A, et al. Phys. Rev. D. 2009;79:035006. doi: 10.1103/PhysRevD.79.035006. [DOI] [Google Scholar]
  • 8.Cacciapaglia G, Sannino F. JHEP. 2014;1404:111. doi: 10.1007/JHEP04(2014)111. [DOI] [Google Scholar]
  • 9.M. Schmaltz, D. Tucker-Smith, Ann. Rev. Nucl. Part. Sci. 55, 229–270 (2005). arXiv:hep-ph/0502182 [hep-ph]
  • 10.Dugan MJ, Georgi H, Kaplan DB. Nucl. Phys. B. 1985;254:299. doi: 10.1016/0550-3213(85)90221-4. [DOI] [Google Scholar]
  • 11.K. Agashe, R. Contino, A. Pomarol, Nucl. Phys. B 719, 165–187 (2005). arXiv:hep-ph/0412089 [hep-ph]
  • 12.Fodor Z, et al. Phys. Lett. B. 2012;718:657–666. doi: 10.1016/j.physletb.2012.10.079. [DOI] [Google Scholar]
  • 13.Z. Fodor, K. Holland, J. Kuti, D. Nogradi, C. H. Wong, PoS LATTICE 2013, 062 (2014). arXiv:1401.2176 [hep-lat]
  • 14.Hietanen A, Lewis R, Pica C, Sannino F. JHEP. 2014;1407:116. doi: 10.1007/JHEP07(2014)116. [DOI] [Google Scholar]
  • 15.D. Pappadopulo, A. Thamm, R. Torre, A. Wulzer, arXiv:1402.4431 [hep-ph]
  • 16.Barger VD, Keung W-Y, Ma E. Phys. Rev. D. 1980;22:727. doi: 10.1103/PhysRevD.22.727. [DOI] [Google Scholar]
  • 17.Contino R, Marzocca D, Pappadopulo D, Rattazzi R. JHEP. 2011;1110:081. doi: 10.1007/JHEP10(2011)081. [DOI] [Google Scholar]
  • 18.ATLAS Collaboration, JHEP 1501, 069 (2015). arXiv:1409.6212 [hep-ex]
  • 19.ATLAS Collaboration, arXiv:1502.04478 [hep-ex]
  • 20.ATLAS Collaboration, Phys. Lett. B 737, 223–243 (2014). arXiv:1406.4456 [hep-ex]
  • 21.ATLAS Collaboration, Phys. Rev. D 90(5), 052005 (2014). arXiv:1405.4123 [hep-ex]
  • 22.CMS Collaboration, arXiv:1502.04994 [hep-ex]
  • 23.ATLAS Collaboration, JINST 3, S08003 (2008)
  • 24.ATLAS Collaboration, Eur. Phys. J. C 73(8), 2518 (2013). arXiv:1302.4393 [hep-ex] [DOI] [PMC free article] [PubMed]
  • 25.MWT Tools, http://cp3-origins.dk/research/units/tc-tools
  • 26.Alwall J, Herquet M, Maltoni F, Mattelaer O, Stelzer T. JHEP. 2011;1106:128. doi: 10.1007/JHEP06(2011)128. [DOI] [Google Scholar]
  • 27.Foadi R, Sannino F. Phys. Rev. D. 2013;87:015008. doi: 10.1103/PhysRevD.87.015008. [DOI] [Google Scholar]
  • 28.Peskin ME, Takeuchi T. Phys. Rev. D. 1992;46:381–409. doi: 10.1103/PhysRevD.46.381. [DOI] [PubMed] [Google Scholar]
  • 29.Andersen JR, Hapola T, Sannino F. Phys. Rev. D. 2012;85:055017. doi: 10.1103/PhysRevD.85.055017. [DOI] [Google Scholar]
  • 30.T. Sjostrand, S. Mrenna, P. Z. Skands, JHEP 05, 026 (2006). arXiv:hep-ph/0603175 [hep-ph]
  • 31.Sjostrand T, Mrenna S, Skands PZ. Comput. Phys. Commun. 2008;178:852–867. doi: 10.1016/j.cpc.2008.01.036. [DOI] [Google Scholar]
  • 32.Pumplin, J. et al., JHEP 0207, 012 (2002). arXiv:hep-ph/0201195 [hep-ph]
  • 33.Gleisberg T, et al. JHEP. 2009;0902:007. doi: 10.1088/1126-6708/2009/02/007. [DOI] [Google Scholar]
  • 34.Lai H-L, et al. Phys. Rev. D. 2010;82:074024. doi: 10.1103/PhysRevD.82.074024. [DOI] [Google Scholar]
  • 35.Nason P. JHEP. 2004;11:040. doi: 10.1088/1126-6708/2004/11/040. [DOI] [Google Scholar]
  • 36.Frixione S, Nason P, Oleari C. JHEP. 2007;11:070. doi: 10.1088/1126-6708/2007/11/070. [DOI] [Google Scholar]
  • 37.Alioli S, Nason P, Oleari C, Re E. JHEP. 2010;06:043. doi: 10.1007/JHEP06(2010)043. [DOI] [Google Scholar]
  • 38.Melnikov K, Petriello F. Phys. Rev. D. 2006;74:114017. doi: 10.1103/PhysRevD.74.114017. [DOI] [PubMed] [Google Scholar]
  • 39.Czakon M, Fiedler P, Mitov A. Phys. Rev. Lett. 2013;110:252004. doi: 10.1103/PhysRevLett.110.252004. [DOI] [PubMed] [Google Scholar]
  • 40.B.P. Kersevan, E. Richter-Wa̧s, arXiv:hep-ph/0405247 [hep-ph]
  • 41.Kidonakis N. Phys. Rev. D. 2011;83:091503. doi: 10.1103/PhysRevD.83.091503. [DOI] [Google Scholar]
  • 42.Campbell JM, Ellis R. Nucl. Phys. Proc. Suppl. 2010;205–206:10–15. doi: 10.1016/j.nuclphysbps.2010.08.011. [DOI] [Google Scholar]
  • 43.GEANT4 Collaboration, S. Agostinelli et al., Nucl. Instrum. Meth. A 506, 250–303 (2003)
  • 44.ATLAS Collaboration, Eur. Phys. J. C 70, 823–874 (2010). arXiv:1005.4568 [physics.ins-det]
  • 45.ATLAS Collaboration, ATL-PHYS-PUB-2010-013 (2010). http://cdsweb.cern.ch/record/1300517
  • 46.ATLAS Collaboration, Eur. Phys. J. C 74(7), 2941 (2014). arXiv:1404.2240 [hep-ex] [DOI] [PMC free article] [PubMed]
  • 47.ATLAS Collaboration, Eur. Phys. J. C 74(11), 3130 (2014). arXiv:1407.3935 [hep-ex] [DOI] [PMC free article] [PubMed]
  • 48.Cacciari M, Salam GP, Soyez G. JHEP. 2008;04:063. doi: 10.1088/1126-6708/2008/04/063. [DOI] [Google Scholar]
  • 49.ATLAS Collaboration, Eur. Phys. J. C 73(3), 2304 (2013). arXiv:1112.6426 [hep-ex]
  • 50.ATLAS Collaboration, ATLAS-CONF-2014-004. http://cds.cern.ch/record/1664335
  • 51.ATLAS Collaboration, ATLAS-CONF-2010-057. http://cds.cern.ch/record/1281330
  • 52.ATLAS Collaboration, Eur. Phys. J. C 75(1), 17 (2015). arXiv:1406.0076 [hep-ex]
  • 53.ATLAS Collaboration, ATLAS-CONF-2013-082. http://cds.cern.ch/record/1570993
  • 54.ATLAS Collaboration, ATLAS-CONF-2014-046. http://cds.cern.ch/record/1741020
  • 55.Read AL. J. Phys. G. 2002;28:2693–2704. doi: 10.1088/0954-3899/28/10/313. [DOI] [Google Scholar]
  • 56.Cowan G, Cranmer K, Gross E, Vitells O. Eur. Phys. J. C. 2011;71:1554. doi: 10.1140/epjc/s10052-011-1554-0. [DOI] [Google Scholar]
  • 57.HVT Tools, http://heidi.pd.infn.it/html/vector/

Articles from The European Physical Journal. C, Particles and Fields are provided here courtesy of Springer

RESOURCES