Skip to main content
Proceedings of the National Academy of Sciences of the United States of America logoLink to Proceedings of the National Academy of Sciences of the United States of America
. 1994 Sep 13;91(19):9014–9018. doi: 10.1073/pnas.91.19.9014

A lag in intracellular degradation of mutant alpha 1-antitrypsin correlates with the liver disease phenotype in homozygous PiZZ alpha 1-antitrypsin deficiency.

Y Wu 1, I Whitman 1, E Molmenti 1, K Moore 1, P Hippenmeyer 1, D H Perlmutter 1
PMCID: PMC44737  PMID: 8090762

Abstract

Liver injury in PiZZ alpha 1-antitrypsin (alpha 1-AT) deficiency probably results from toxic effects of the abnormal alpha 1-AT molecule accumulating within the ER of liver cells. However, only 12-15% of individuals with this same genotype develops liver disease. Therefore, we predicted that other genetic traits that determine the net intracellular accumulation of the mutant alpha 1-AT molecule would also determine susceptibility to liver disease. To address this prediction, we transduced skin fibroblasts from PiZZ individuals with liver disease or without liver disease with amphotropic recombinant retroviral particles designed for constitutive expression of the mutant alpha 1-AT Z gene. Human skin fibroblasts do not express the endogenous alpha 1-AT gene but presumably express other genes involved in postsynthetic processing of secretory proteins. The results show that expression of human alpha 1-AT gene was conferred on each fibroblast cell line. Compared to the same cell line transduced with the wild-type alpha 1-AT M gene, there was selective intracellular accumulation of the mutant alpha 1-AT Z protein in each case. However, there was a marked delay in degradation of the mutant alpha 1-AT Z protein after it accumulated in the fibroblasts from ZZ individuals with liver disease ("susceptible hosts") as compared to those without liver disease ("protected hosts"). Appropriate disease controls showed that the lag in degradation in susceptible hosts is specific for the combination of PiZZ phenotype and liver disease. Biochemical characteristics of alpha 1-AT Z degradation in the protected hosts were found to be similar to those of a common ER degradation pathway previously described in model experimental cell systems for T-cell receptor alpha subunits and asialoglycoprotein receptor subunits, therefore, raising the possibility that the lag in degradation in the susceptible host is a defect in this common ER degradation pathway. Thus, these data provide evidence that other genetic traits that affect the fate of the abnormal alpha 1-AT Z molecule, at least in part, determine susceptibility to liver disease. These data also validate a system for elucidating the biochemical/genetic characteristics of these traits and for examining the relevance to human disease of pathways for protein degradation in the ER.

Full text

PDF
9014

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Bergeron J. J., Brenner M. B., Thomas D. Y., Williams D. B. Calnexin: a membrane-bound chaperone of the endoplasmic reticulum. Trends Biochem Sci. 1994 Mar;19(3):124–128. doi: 10.1016/0968-0004(94)90205-4. [DOI] [PubMed] [Google Scholar]
  2. Brantly M., Courtney M., Crystal R. G. Repair of the secretion defect in the Z form of alpha 1-antitrypsin by addition of a second mutation. Science. 1988 Dec 23;242(4886):1700–1702. doi: 10.1126/science.2904702. [DOI] [PubMed] [Google Scholar]
  3. Carlson J. A., Rogers B. B., Sifers R. N., Finegold M. J., Clift S. M., DeMayo F. J., Bullock D. W., Woo S. L. Accumulation of PiZ alpha 1-antitrypsin causes liver damage in transgenic mice. J Clin Invest. 1989 Apr;83(4):1183–1190. doi: 10.1172/JCI113999. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Crystal R. G. Alpha 1-antitrypsin deficiency, emphysema, and liver disease. Genetic basis and strategies for therapy. J Clin Invest. 1990 May;85(5):1343–1352. doi: 10.1172/JCI114578. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Dycaico M. J., Grant S. G., Felts K., Nichols W. S., Geller S. A., Hager J. H., Pollard A. J., Kohler S. W., Short H. P., Jirik F. R. Neonatal hepatitis induced by alpha 1-antitrypsin: a transgenic mouse model. Science. 1988 Dec 9;242(4884):1409–1412. doi: 10.1126/science.3264419. [DOI] [PubMed] [Google Scholar]
  6. Hochstenbach F., David V., Watkins S., Brenner M. B. Endoplasmic reticulum resident protein of 90 kilodaltons associates with the T- and B-cell antigen receptors and major histocompatibility complex antigens during their assembly. Proc Natl Acad Sci U S A. 1992 May 15;89(10):4734–4738. doi: 10.1073/pnas.89.10.4734. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Jackson M. R., Cohen-Doyle M. F., Peterson P. A., Williams D. B. Regulation of MHC class I transport by the molecular chaperone, calnexin (p88, IP90). Science. 1994 Jan 21;263(5145):384–387. doi: 10.1126/science.8278813. [DOI] [PubMed] [Google Scholar]
  8. Keller G., Paige C., Gilboa E., Wagner E. F. Expression of a foreign gene in myeloid and lymphoid cells derived from multipotent haematopoietic precursors. Nature. 1985 Nov 14;318(6042):149–154. doi: 10.1038/318149a0. [DOI] [PubMed] [Google Scholar]
  9. Le A., Ferrell G. A., Dishon D. S., Le Q. Q., Sifers R. N. Soluble aggregates of the human PiZ alpha 1-antitrypsin variant are degraded within the endoplasmic reticulum by a mechanism sensitive to inhibitors of protein synthesis. J Biol Chem. 1992 Jan 15;267(2):1072–1080. [PubMed] [Google Scholar]
  10. Le A., Graham K. S., Sifers R. N. Intracellular degradation of the transport-impaired human PiZ alpha 1-antitrypsin variant. Biochemical mapping of the degradative event among compartments of the secretory pathway. J Biol Chem. 1990 Aug 15;265(23):14001–14007. [PubMed] [Google Scholar]
  11. Le A., Steiner J. L., Ferrell G. A., Shaker J. C., Sifers R. N. Association between calnexin and a secretion-incompetent variant of human alpha 1-antitrypsin. J Biol Chem. 1994 Mar 11;269(10):7514–7519. [PubMed] [Google Scholar]
  12. Lippincott-Schwartz J., Bonifacino J. S., Yuan L. C., Klausner R. D. Degradation from the endoplasmic reticulum: disposing of newly synthesized proteins. Cell. 1988 Jul 15;54(2):209–220. doi: 10.1016/0092-8674(88)90553-3. [DOI] [PubMed] [Google Scholar]
  13. Lodish H. F., Kong N., Snider M., Strous G. J. Hepatoma secretory proteins migrate from rough endoplasmic reticulum to Golgi at characteristic rates. Nature. 1983 Jul 7;304(5921):80–83. doi: 10.1038/304080a0. [DOI] [PubMed] [Google Scholar]
  14. Lomas D. A., Evans D. L., Finch J. T., Carrell R. W. The mechanism of Z alpha 1-antitrypsin accumulation in the liver. Nature. 1992 Jun 18;357(6379):605–607. doi: 10.1038/357605a0. [DOI] [PubMed] [Google Scholar]
  15. McCracken A. A., Kruse K. B., Brown J. L. Molecular basis for defective secretion of the Z variant of human alpha-1-proteinase inhibitor: secretion of variants having altered potential for salt bridge formation between amino acids 290 and 342. Mol Cell Biol. 1989 Apr;9(4):1406–1414. doi: 10.1128/mcb.9.4.1406. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Miller A. D., Buttimore C. Redesign of retrovirus packaging cell lines to avoid recombination leading to helper virus production. Mol Cell Biol. 1986 Aug;6(8):2895–2902. doi: 10.1128/mcb.6.8.2895. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Molmenti E. P., Perlmutter D. H., Rubin D. C. Cell-specific expression of alpha 1-antitrypsin in human intestinal epithelium. J Clin Invest. 1993 Oct;92(4):2022–2034. doi: 10.1172/JCI116797. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Nakamaye K. L., Eckstein F. Inhibition of restriction endonuclease Nci I cleavage by phosphorothioate groups and its application to oligonucleotide-directed mutagenesis. Nucleic Acids Res. 1986 Dec 22;14(24):9679–9698. doi: 10.1093/nar/14.24.9679. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Ou W. J., Cameron P. H., Thomas D. Y., Bergeron J. J. Association of folding intermediates of glycoproteins with calnexin during protein maturation. Nature. 1993 Aug 26;364(6440):771–776. doi: 10.1038/364771a0. [DOI] [PubMed] [Google Scholar]
  20. Perlmutter D. H., Kay R. M., Cole F. S., Rossing T. H., Van Thiel D., Colten H. R. The cellular defect in alpha 1-proteinase inhibitor (alpha 1-PI) deficiency is expressed in human monocytes and in Xenopus oocytes injected with human liver mRNA. Proc Natl Acad Sci U S A. 1985 Oct;82(20):6918–6921. doi: 10.1073/pnas.82.20.6918. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Perlmutter D. H. Liver disease associated with alpha 1-antitrypsin deficiency. Prog Liver Dis. 1993;11:139–165. [PubMed] [Google Scholar]
  22. Perlmutter D. H., Schlesinger M. J., Pierce J. A., Punsal P. I., Schwartz A. L. Synthesis of stress proteins is increased in individuals with homozygous PiZZ alpha 1-antitrypsin deficiency and liver disease. J Clin Invest. 1989 Nov;84(5):1555–1561. doi: 10.1172/JCI114332. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Smith G. H. In situ detection of transcription in transfected cells using biotin-labeled molecular probes. Methods Enzymol. 1987;151:530–539. doi: 10.1016/s0076-6879(87)51042-4. [DOI] [PubMed] [Google Scholar]
  24. Sveger T. Liver disease in alpha1-antitrypsin deficiency detected by screening of 200,000 infants. N Engl J Med. 1976 Jun 10;294(24):1316–1321. doi: 10.1056/NEJM197606102942404. [DOI] [PubMed] [Google Scholar]
  25. Sveger T. The natural history of liver disease in alpha 1-antitrypsin deficient children. Acta Paediatr Scand. 1988 Nov;77(6):847–851. doi: 10.1111/j.1651-2227.1988.tb10767.x. [DOI] [PubMed] [Google Scholar]
  26. Wikström L., Lodish H. F. Endoplasmic reticulum degradation of a subunit of the asialoglycoprotein receptor in vitro. Vesicular transport from endoplasmic reticulum is unnecessary. J Biol Chem. 1992 Jan 5;267(1):5–8. [PubMed] [Google Scholar]
  27. Wikström L., Lodish H. F. Nonlysosomal, pre-Golgi degradation of unassembled asialoglycoprotein receptor subunits: a TLCK- and TPCK-sensitive cleavage within the ER. J Cell Biol. 1991 Jun;113(5):997–1007. doi: 10.1083/jcb.113.5.997. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Yuk M. H., Lodish H. F. Two pathways for the degradation of the H2 subunit of the asialoglycoprotein receptor in the endoplasmic reticulum. J Cell Biol. 1993 Dec;123(6 Pt 2):1735–1749. doi: 10.1083/jcb.123.6.1735. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Proceedings of the National Academy of Sciences of the United States of America are provided here courtesy of National Academy of Sciences

RESOURCES