Skip to main content
Proceedings of the National Academy of Sciences of the United States of America logoLink to Proceedings of the National Academy of Sciences of the United States of America
. 1994 Sep 27;91(20):9426–9430. doi: 10.1073/pnas.91.20.9426

Cloning, expression, and in situ localization of rat intestinal cGMP-dependent protein kinase II.

T Jarchau 1, C Häusler 1, T Markert 1, D Pöhler 1, J Vanderkerckhove 1, H R De Jonge 1, S M Lohmann 1, U Walter 1
PMCID: PMC44825  PMID: 7937783

Abstract

The cDNA for a membrane-associated cGMP-dependent protein kinase (cGK II) was cloned from rat intestine using reverse transcriptase PCR and oligonucleotide primers encoding two conserved motifs of known cGMP-dependent protein kinases and subsequently by screening a rat intestine cDNA library. A full-length clone encodes a protein of 761 amino acids with an estimated size of 87 kDa. Sequences of eight peptides from purified pig intestinal mucosa cGK II were found in the derived amino acid sequence of this clone, identifying it as rat intestinal cGK II. Phylogenetic analysis showed that rat intestinal cGK II is less related to mammalian cGK I than to the Drosophila DG1 gene product and most closely related to a recently cloned mouse brain CGKII isoform. Like several other cGK sequences, that of cGK II contained a leucine/isoleucine heptad repeat motif that has been implicated in dimer formation in cGK I. Expression of cGK II cDNA in HEK 293 cells followed by subcellular fractionation revealed cGK II localization in the cell particulate fraction, consistent with the membrane association of endogenous rat cGK II. On Northern blots, the major cGK II poly(A) RNA form was 4.8 kb, with minor forms of 6.2 and 3.1 kb. The cGK II RNA was highly expressed in rat intestinal mucosa and was 20 times less abundant in rat brain and kidney. The localization of endogenous cGK II RNA in rat small intestine was shown by in situ hybridization to be in villous epithelial cells and to some extent in crypt cells.

Full text

PDF
9426

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Atkinson R. A., Saudek V., Huggins J. P., Pelton J. T. 1H NMR and circular dichroism studies of the N-terminal domain of cyclic GMP dependent protein kinase: a leucine/isoleucine zipper. Biochemistry. 1991 Oct 1;30(39):9387–9395. doi: 10.1021/bi00103a001. [DOI] [PubMed] [Google Scholar]
  2. Bookstein C., DePaoli A. M., Xie Y., Niu P., Musch M. W., Rao M. C., Chang E. B. Na+/H+ exchangers, NHE-1 and NHE-3, of rat intestine. Expression and localization. J Clin Invest. 1994 Jan;93(1):106–113. doi: 10.1172/JCI116933. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Brendel V., Bucher P., Nourbakhsh I. R., Blaisdell B. E., Karlin S. Methods and algorithms for statistical analysis of protein sequences. Proc Natl Acad Sci U S A. 1992 Mar 15;89(6):2002–2006. doi: 10.1073/pnas.89.6.2002. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Butt E., Geiger J., Jarchau T., Lohmann S. M., Walter U. The cGMP-dependent protein kinase--gene, protein, and function. Neurochem Res. 1993 Jan;18(1):27–42. doi: 10.1007/BF00966920. [DOI] [PubMed] [Google Scholar]
  5. Casnellie J. E., Schlichter D. J., Walter U., Greengard P. Photoaffinity labeling of a guanosine 3':5'-monophosphate-dependent protein kinase from vascular smooth muscle. J Biol Chem. 1978 Jul 10;253(13):4771–4776. [PubMed] [Google Scholar]
  6. Cohen M. B., Mann E. A., Lau C., Henning S. J., Giannella R. A. A gradient in expression of the Escherichia coli heat-stable enterotoxin receptor exists along the villus-to-crypt axis of rat small intestine. Biochem Biophys Res Commun. 1992 Jul 15;186(1):483–490. doi: 10.1016/s0006-291x(05)80833-2. [DOI] [PubMed] [Google Scholar]
  7. Cox K. H., DeLeon D. V., Angerer L. M., Angerer R. C. Detection of mrnas in sea urchin embryos by in situ hybridization using asymmetric RNA probes. Dev Biol. 1984 Feb;101(2):485–502. doi: 10.1016/0012-1606(84)90162-3. [DOI] [PubMed] [Google Scholar]
  8. Devereux J., Haeberli P., Smithies O. A comprehensive set of sequence analysis programs for the VAX. Nucleic Acids Res. 1984 Jan 11;12(1 Pt 1):387–395. doi: 10.1093/nar/12.1part1.387. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Field M., Rao M. C., Chang E. B. Intestinal electrolyte transport and diarrheal disease (1). N Engl J Med. 1989 Sep 21;321(12):800–806. doi: 10.1056/NEJM198909213211206. [DOI] [PubMed] [Google Scholar]
  10. Higgins D. G., Bleasby A. J., Fuchs R. CLUSTAL V: improved software for multiple sequence alignment. Comput Appl Biosci. 1992 Apr;8(2):189–191. doi: 10.1093/bioinformatics/8.2.189. [DOI] [PubMed] [Google Scholar]
  11. Hofmann F., Dostmann W., Keilbach A., Landgraf W., Ruth P. Structure and physiological role of cGMP-dependent protein kinase. Biochim Biophys Acta. 1992 Apr 30;1135(1):51–60. doi: 10.1016/0167-4889(92)90165-8. [DOI] [PubMed] [Google Scholar]
  12. Kalderon D., Rubin G. M. cGMP-dependent protein kinase genes in Drosophila. J Biol Chem. 1989 Jun 25;264(18):10738–10748. [PubMed] [Google Scholar]
  13. Kemp B. E., Pearson R. B., House C. M. Pseudosubstrate-based peptide inhibitors. Methods Enzymol. 1991;201:287–304. doi: 10.1016/0076-6879(91)01026-x. [DOI] [PubMed] [Google Scholar]
  14. Kozak M. The scanning model for translation: an update. J Cell Biol. 1989 Feb;108(2):229–241. doi: 10.1083/jcb.108.2.229. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Lewis L. G., Witte D. P., Laney D. W., Currie M. G., Cohen M. B. Guanylin mRNA is expressed in villous enterocytes of the rat small intestine and superficial epithelia of the rat colon. Biochem Biophys Res Commun. 1993 Oct 29;196(2):553–560. doi: 10.1006/bbrc.1993.2285. [DOI] [PubMed] [Google Scholar]
  16. Rost B., Sander C. Improved prediction of protein secondary structure by use of sequence profiles and neural networks. Proc Natl Acad Sci U S A. 1993 Aug 15;90(16):7558–7562. doi: 10.1073/pnas.90.16.7558. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Sandberg M., Natarajan V., Ronander I., Kalderon D., Walter U., Lohmann S. M., Jahnsen T. Molecular cloning and predicted full-length amino acid sequence of the type I beta isozyme of cGMP-dependent protein kinase from human placenta. Tissue distribution and developmental changes in rat. FEBS Lett. 1989 Sep 25;255(2):321–329. doi: 10.1016/0014-5793(89)81114-7. [DOI] [PubMed] [Google Scholar]
  18. Schmidt H. H., Lohmann S. M., Walter U. The nitric oxide and cGMP signal transduction system: regulation and mechanism of action. Biochim Biophys Acta. 1993 Aug 18;1178(2):153–175. doi: 10.1016/0167-4889(93)90006-b. [DOI] [PubMed] [Google Scholar]
  19. Schulz S., Green C. K., Yuen P. S., Garbers D. L. Guanylyl cyclase is a heat-stable enterotoxin receptor. Cell. 1990 Nov 30;63(5):941–948. doi: 10.1016/0092-8674(90)90497-3. [DOI] [PubMed] [Google Scholar]
  20. Trezise A. E., Buchwald M. In vivo cell-specific expression of the cystic fibrosis transmembrane conductance regulator. Nature. 1991 Oct 3;353(6343):434–437. doi: 10.1038/353434a0. [DOI] [PubMed] [Google Scholar]
  21. Uhler M. D. Cloning and expression of a novel cyclic GMP-dependent protein kinase from mouse brain. J Biol Chem. 1993 Jun 25;268(18):13586–13591. [PubMed] [Google Scholar]
  22. Vaandrager A. B., De Jonge H. R. Effect of cyclic GMP on intestinal transport. Adv Pharmacol. 1994;26:253–283. doi: 10.1016/s1054-3589(08)60057-5. [DOI] [PubMed] [Google Scholar]
  23. Wernet W., Flockerzi V., Hofmann F. The cDNA of the two isoforms of bovine cGMP-dependent protein kinase. FEBS Lett. 1989 Jul 17;251(1-2):191–196. doi: 10.1016/0014-5793(89)81453-x. [DOI] [PubMed] [Google Scholar]
  24. de Jonge H. R. Cyclic GMP-dependent protein kinase in intestinal brushborders. Adv Cyclic Nucleotide Res. 1981;14:315–333. [PubMed] [Google Scholar]

Articles from Proceedings of the National Academy of Sciences of the United States of America are provided here courtesy of National Academy of Sciences

RESOURCES